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1 S T R U C T U R E O F F I N I T E
F I E L D S
These notes follow [REF]. In the following, we will assume many concepts contained in the
first chapter of [REF]. For this chapter we will assume the following notions and notations:

Notation. With F, E, K we will always refer to a field.

Definition 1.1 – Algebraic Variety
Let f ∈ F[x], the variety of f is the set of all the roots of f over an extension of F:

V(f) := { α ∈ E | f(α) = 0 } with E ⊃ F.

Property 1.2.
xa − 1 | xb − 1 ⇐⇒ a | b.

Property 1.3.
|V(f)| ⩽ ∂f.

Definition 1.4 – Perfect Field
Let K be a field. K is a perfect field if given f ∈ K[x] an irreducible polynomial, then
f has no multiple roots.

Remark. A field with characteristic zero or a finite field is always a perfect field.

1.1 characterization of finite fields
Lemma 1.5. Let F, K be finite fields with F ⊃ K and |K| = q. Then F has qm
elements, where

m = [F : K].

Proof. Let m = [F : K], F is a vector space of degree m over K. Therefore F has a basis
over K of m elements

α1, . . . , αm ∈ F.

Then every element β ∈ F can be uniquely represented as

λ1α1 + λ2α2 + . . .+ λmαm, with λ1, . . . , λm ∈ K.

Since |K| = q, we can choose λi among q elements for each i, therefore

|F| = qm.
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Theorem 1.6 – Cardinality of a Finite Field
Let F be a finite field. Suppose that

Char F = p and [F : Fp] = n,

then F has pn elements.

Proof. As Char F = p then its prime subfield is isomorphic to Fp and thus contains p
elements. By [1.5] follows that F has pn elements.

Lemma 1.7 (Field equation). Let F be a finite field with q elements, then

aq = q for all a ∈ F.

Proof. If a = 0 then it is obvious that aq = a. Suppose a is a nonzero element of F. We
can now think a as an element of F∗ which is a group of order q− 1 under multiplication.
By group theory it is well known that

aq−1 = 1 =⇒ aq = a.

Lemma 1.8. Let F be a finite field with q elements and K a subfield of F. Then F is
a splitting field of xq − x over K and the polynomial in K[x] factors in F[x] as

xq − x =
∏
a∈F

(x− a).

Proof. We know that
|V(xq − x)| ⩽ ∂(xq − x) = q.

By previous lemma we know that aq = a for all a ∈ F, therefore we know exactly q such
roots, which are all the distinct elements of F. Thus xq − x splits as indicated and it
cannot split in any smaller field.

Theorem 1.9 – Existence and Uniqueness of Finite Fields
For every prime p and every integerm, there exists a finite field F with pm elements.
Moreover any finite field with q = pm elements is isomorphic to the splitting field
of xq − x over Fp.

Proof.Existence Let F be the splitting field of xq−x over Fp. Since q = pm and Fp has characteristic
p, the derivative of xq − x is qxq−1 − 1 = −1 in Fp[x]; therefore the polynomial has q
distinct roots in F. Let

S = { a ∈ F | aq − a = 0 } = V(xq − x),

then S is easily proven as a subfield of F with q elements. But xq − x splits in S since it
contains all its root, therefore F = S is a finite field with q elements.

Uniqueness Let F, E be finite fields with q = pm elements. Then both F and E has Fp as a subfield.
From previous lemma it follows that they are both splitting fields of xq−x over Fp. Thus
F and E are isomorphic, and the uniqueness is proven (up to isomorphism).
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Notation. We denote with Fpn a finite field with pn elements.

Remark. Rather than acting this way, we might be tempted to build Fpn adjoining
a root of f to Fp, where f ∈ Fp[x] is an irreducible polynomial of degree n. However,
with our current knowledge, we cannot be sure about the existence of such f.

Theorem 1.10 – Subfield criterion
Let q = pn and consider the finite field Fq. Then every subfield of Fq is of the
form Fpm with m | n. Conversely, if m | n, then there is exactly one subfield of Fq

with pm elements.

Proof. ” ⇒ ”Let K be a subfield of Fq. By [1.5], K has order pm for some m ⩽ n. From the
same lemma we get that pn must be a power of pm, hence m is a divisor of n.

” ⇐ ”Suppose m | n, then

xm − 1 | xn − 1 =⇒ pm − 1 | pn − 1 =⇒ xp
m−1 − 1 | xp

n−1 − 1,

hence xpm

− x | xp
n

− x in Fp[x]. Therefore all the roots of xpm

− x are roots of xpn

− x
and are thus elements of Fq. It follows that a splitting field of xpm

− x is a subfield of
Fq, and by [1.9] such splitting field has order pm.
Suppose F1, F2 are both subfields of Fq with order pm. If they were distinct, Fq would
contain more than pm roots for xpm

− x, which is a contradiction.

Definition 1.11 – Primitive Element
Let Fq a finite field. A generator α ∈ F∗

q of the multiplicative group F∗
q is called a

primitive element of Fq.

Theorem 1.12 – Primitive element
Let Fq a finite field, then the multiplicative group F∗

q is cyclic. Therefore there
exists at least one primitive element of Fq.

Proof. We assume q ⩾ 3, otherwise it’s trivial. Let h = q− 1 the order of F∗
q and let

h = pr11 p
r2
2 · . . . · prmm

be its prime factorization. We know that the polynomial xh/pi − 1 has at most h/pi
roots in Fq for every 1 ⩽ i ⩽ m. Since h

pi
< h, there is at least one nonzero element in

Fq which is not a root of this polynomial. Let ai be such an element and consider

bi = a
h/p

ri
i

i .

As bp
ri
i

i = 1, the order of bi must divide prii and therefore it is of the form psi

i with
0 ⩽ si ⩽ ri. But

b
p

ri−1

i

i = a
h/pi

i ̸= 1,

as ai is not a root of xh/pi − 1. Therefore the order of bi is exactly prii . Now consider

b = b1b2 · . . . · bm,
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we claim that b has order h and it is therefore a primitive element of Fq. Suppose, by
contradiction, that the order of b divides h. Thus it must divide at least one of h/pi
with 1 ⩽ i ⩽ m, suppose it does divide h/p1. It follows

1 = bh/p1 = b
h/p1

1 b
h/p1

2 · . . . · bh/p1
m .

Remember that the order of bi is prii , and, for 2 ⩽ i ⩽ m, prii divide h/p1. Hence

b
h/p1

i = 1 for all 2 ⩽ i ⩽ m =⇒ b
h/p1

1 = 1.

This would implies that the order of b1 divides h/p1, which is impossible as the order of
b1 is pr11 .

Remark. We know that in cyclic group there are φ(d) elements of order d, with d
a divisor of the group’s order. Therefore Fq has φ(q − 1) primitive elements. In
particular, if α is a primitive element of Fq, then αr is a primitive element of Fq iff
r and q− 1 are coprime.

Remark. The reason why this does not hold for every group is that, in general, the
property

|V(f)| ⩽ ∂f

is false. For example in Z∗
5 = { 1, 2, 3, 4 } we know that the order of an element could

be 1, 2 or 4. Moreover

|{ ord(α) = 1 }| = 1 and |{ ord(α) = 2 }| = |V(x2 − 1)| ⩽ 2,

therefore there is at least one element with order 4, which is a generator of Z∗
5.

Definition 1.13 – Defining element
Let Fq be a finite field and Fr an extension field of Fq. α ∈ Fr is called a defining
element of Fr over Fq if

Fr = Fq(α).

Proposition 1.14 – Primitive element as defining element
Let Fq be a finite field and Fr an extension field of Fq. Then Fr is a simple algebraic
extension of Fq and every primitive element of Fr are defining element of Fr over Fq.

Proof. Let α be a primitive element of Fr. As α ∈ Fr we have Fq(α) ⊆ Fr. But α is a
generator of of F∗

r, therefore

Fr =
{
0, α, α2, . . . , αr−1

}
⊆ Fq(α).

Therefore Fq(α) = Fr.

Corollary. Let Fpm be a finite field and n a positive integer. Then there exists an
irreducible polynomial f in Fpm [x] of degree n.

Proof. Let Fpnm be the extension field of Fpm . By previous theorem we know that
Fpnm = Fpm(α) with α ∈ Fpnm . Let f ∈ Fpm [x] be the minimal polynomial of α. We
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know that f exists and is irreducible, moreover

[Fpnm : Fpm ] = n

implies that f has degree n.

Example (Anatomy of F16). F16 = F24 , by the subfield criterion, the subfield of
F16 are all of the form F2k with k | 4. Therefore F2, F4 are the only proper subfield
of F16. We know that

V(x16 − x) = F16.

As 1 | 2 | 4 we have that x2 − x | x4 − x | x16 − x, where x2 − x splits in F2 and x4 − x
has a factor of degree 2 as F4 is an extension of degree 2 over F2. What remains is a
polynomial of degree 12 which factors in three polynomial of degree 4, as the degree
of the extension F16 over F2:

x16 − x = x (x− 1)(x2 + x+ 1)f1(x)f2(x)f3(x).

The following is a graphical representation of F16 decomposition:

F2

F4

V(f1)

V(f3)

V(f2)

F16

Moreover F∗
16 has order 15, therefore F16 has φ(15) = 8 primitive elements. It is also

possible to compute the other factors of x16 − x:

f1 = x4 + x+ 1 f2 = x4 + x3 + 1 f3 = x4 + x3 + x2 + x+ 1.

Later we will understand why all the roots of f1, f2 are the primitive elements of F16.
The roots of f3 are defining elements, but not primitive.

1.2 roots of irreducible polynomials
Lemma 1.15. Let Fq be a finite field, f ∈ Fq[x] an irreducible polynomial and α a
root of f in an extension field of Fq. Let h ∈ Fq[x], then h(α) = 0 if and only if f
divides h.

Proof. Let g be the minimal polynomial of α over Fq. By definition if α is a root of f,
then g divides f; but both f and g are irreducible in Fq[x], therefore they are associate:

f(x) = ag(x) with a ∈ Fq.

The lemma follows from the property of the minimal polynomial.

Lemma 1.16. Let Fq be a finite field and f ∈ Fq[x] an irreducible polynomial of
degree m. Then f(x) divides xqn

− x if and only if m divides n.



8 structure of finite fields

Proof.” ⇒ ” Suppose f(x) | xqn

− x, then the set of roots of f is contained in that of xqn

− x,
which is isomorphic to Fqn . But f is irreducible, therefore V(f) is isomorphic to Fqm and
from [1.10] we know that

Fqm ⊂ Fqn ⇐⇒ m | n.

” ⇐ ” Suppose m | n, then Fqm ⊂ Fqn . Let α be a root of f in the splitting field of f over Fq.
As f is irreducible

[Fq(α) : Fq] = m =⇒ Fq(α) = Fqm .

Therefore α ∈ Fqn and αqn

= α, thus α is a root of xqn

− x ∈ Fq[x]. From previous
lemma we deduce that f divides xqn

− x.

Proposition 1.17 – Root of an irreducible polynomial
Let Fq be a finite field and f ∈ Fq[x] an irreducible polynomial of degree m. Then f
has a root α ∈ Fqm and the set of roots is

V(f) =
{
α,αq, αq2

, . . . , αqm−1
}
,

which are all distinct in Fqm .

Proof. Let α be a root of f in the splitting field of f over Fq. Then [Fq(α) : Fq] = m,
hence Fq(α) = Fqm and α ∈ Fqm . Now suppose β is a root of f, we want to show that
βq is also a root of f. Write

f(x) = a0 + a1x+ . . .+ amx
m with ai ∈ Fq.

Then, using [1.7] we get

f(βq) =

m∑
i=0

aiβ
qi =

m∑
i=0

(aiβ
i)q =

( m∑
i=0

aiβ
i
)q

= f(β)q = 0.

Therefore α,αq, . . . , αqm−1 are roots of f. We are left to prove that these element are
distinct.

Uniqueness Suppose, by contradiction, that αqi

= αqj for some 0 ⩽ i < j ⩽ m − 1. By raising this
identity to the power qm−j, we get

αqm−j+i

= αqm

= α.

From [1.15] follows that f(x) divides xqm−j+i

− x and by [1.16] this is possible only if

m | m− j+ i,

which is a contradiction as 0 < m− j+ i < m.

Corollary. Let Fq be a finite field and let f ∈ Fq[x] an irreducible polynomial of
degree m. Then the splitting field of f over Fq is Fqm .

Proof. From the previous theorem follows that f splits in Fqm . Moreover, from the proof
of the theorem follows that

Fq(α,α
q, αq2

, . . . , αqm−1

) = Fq(α) = Fqm ,

where α is a root of f in Fqm .
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Corollary. Let Fq be a finite field and let f, g ∈ Fq[x] irreducible polynomials with
the same degree. Then the splitting fields of f, g are isomorphic.

Proof. Follows from the previous lemma.

Definition 1.18 – Conjugates of an element
Let Fqm be an extension of Fq and let α ∈ Fqm . Then the elements

α,αq, αq2

, . . . , αqm−1

are called conjugates of α with respect to Fq.

Theorem 1.19 – Order of conjugates
Let Fq be a finite field and α ∈ F∗

q. The conjugates of α have the same order in
the group F∗

q.

Proof. Let α ∈ F∗
q, from [1.12] we know that F∗

q is a cyclic group, therefore if α has order
m then the order of ak is given by

ord(ak) =
m

GCD(m,k)
.

In particular a conjugates of α has the form αqi . If α has order m then m divides q− 1,
which is coprime with any power of q. Therefore m is coprime with qi and aqi has the
same order of α.

Remark. This explain why in the previous example all the roots of f1, f2 were primitive
elements. Now we can also determine the order of the roots of f3. As elements of
F∗
16 they can have order 1, 3, 5 or 15, we know that they don’t have order 1 or 15.

But now we know that all the roots have the same order, therefore it cannot be 3 as
x3 − 1 has at most 3 roots and f3 has 4 roots. Thus the order of the roots is 5.

Corollary. Let α be a primitive element of Fq, then all its conjugates are also
primitive elements of Fq.

Definition 1.20 – Fq-automorphism
Let Fqm be an extension of Fq. A map σ is said to be an automorphism of Fqm over
Fq if is an automorphism of Fqm that fixes the elements of Fq.

Notation. From now on we will refer to Fq-automorphism simple with automor-
phism.
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Theorem 1.21 – Characterization of automorphism
The distinct automorphism of Fqm over Fq are exactly the mappings
σ, σ2, . . . , σm−1, id, where

σ : Fqm −→ Fqm , α 7−→ αq. (Frobenius Map)

Proof. First we prove that σ is an automorphism. Let α,β ∈ Fqm , then

σ(a+ b) = (a+ b)q = aq + bq = σ(a) + σ(b)

σ(ab) = (ab)q = aqbq = σ(a)σ(b)

so σ is an endomorphism of Fqm . Now

σ(α) = 0 ⇐⇒ aq = 0 ⇐⇒ α = 0,

thus Ker(σ) = {0} and so σ is injective. Since Fqm is finite and σ is an injective endomor-
phism, σ is an automorphism of Fqm . Moreover if α ∈ Fq, by [1.7], we have σ(α) = α.
So σ is an automorphism of Fqm over Fq. As the composition of automorphism is still an
automorphism, the same follows for σ2, . . . , σm−1. These are all distinct as the primitive
element is mapped in distinct primitive elements.
Conversely suppose that σ is an arbitrary automorphism of Fqm over Fq. Let β be a
primitive element of Fqm and let f be its minimal polynomial over Fq. If we are able to
show that σ(β) is a root of f, then, from [1.17], would follow that σ(β) = βqj for some
0 ⩽ j ⩽ m − 1. And since σ is an homomorphism, we would get that σ(α) = αqj for all
α ∈ Fqm . Now write f(x) = a0 + a1x+ . . .+ am−1x

m−1 + xm, then

f
(
σ(β)

)
=

m∑
i=0

aiσ(β)
i =

m∑
i=0

aiσ(β
i) =

m∑
i=0

σ(aiβ
i)

= σ
( m∑

i=0

aiβ
i
)
= σ(0) = 0,

hence σ(β) is a root of f in Fqm .

1.3 traces, norms and bases
Definition 1.22 – Trace

Consider Fqm ⊃ Fq, we define the trace TrFqm/Fq
of Fqm over Fq as

TrFqm/Fq
: Fqm −→ Fq, α 7−→ α+ αq + αq2

+ . . .+ αqm−1

.

Definition 1.23 – Characteristic polynomial
Let K be a finite field and let α ∈ F ⊃ K, with [F : K] = m. Let f(x) ∈ K[x] be the
minimal polynomial of α over K with degree d, a divisor of m. The polynomial

g(x) = f(x)m/d ∈ K[x]

is called the characteristic polynomial of α over K.
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Remark. The roots of f are the d distinct conjugates of a. It is clear that the roots
of g are all the conjugates of a, therefore

g(x) = a0 + a1x+ . . .+ am−1x
m−1 + xm = (x− α)(x− aq) · . . . · (x− αqm−1

),

hence
α+ αq + . . .+ αqm−1

= TrF/K(α) = −am−1 ∈ K.

This shows that TrF/K(α) is always an element of K.

Theorem 1.24 – Trace properties
Let Tr be the trace of Fqm over Fq. Then Tr satisfies the following properties:

1. Tr(α+ β) = Tr(α) + Tr(β) for all α, b ∈ Fqm .

2. Tr(cα) = c Tr(α) for all c ∈ Fq, α ∈ Fqm .

3. Tr is a linear transformation from Fqm onto Fq.

4. Tr(c) = mc for all c ∈ Fq.

5. Tr(αq) = Tr(α) for all α ∈ Fqm .

Proof. 1. In a field of characteristic q we know that (a+ b)q = aq + bq, therefore

Tr(α+ β) = α+ β+ (α+ β)q + . . .+ (α+ β)q
m−1

= α+ β+ αq + βq + . . .+ αqm−1

+ βqm−1

= Tr(α) + Tr(β).

2. Trivial as cq = c for all c ∈ Fq.

3. The properties (1) and (2) and the previous observation, show that Tr is a linear
transformation. If we view Fqm and Fq as vectorial spaces, Tr is a map from a
space of dimension m to a space of dimension 1. Therefore, if we show that Tr isn’t
the zero map, then it is onto. Now let α ∈ Fqm , Tr(α) = 0 if and only if α is a
root of xqm−1

+ . . . + xq + x ∈ Fq[x], but this polynomial has at most qm−1 roots
in Fqm , which has qm element.

4. Trivial as aq = a for all a ∈ Fq.

5. It follows from αqm

= α for all α ∈ Fqm .

Theorem 1.25 – Linear transformation over extension field
Let F be a finite extension over a finite field K and let Tr be the trace of F over K.
The linear transformation of F into K, considered as vector spaces, are exactly the
mappings

Lβ : F −→ K,α 7−→ Tr(βα) with β ∈ F.

Moreover Lβ ̸= Lγ if β, γ are distinct elements of F.

Proof. Let Lβ be the map from F to K defined as Lβ(α) = Tr(βα) for all α ∈ F. From
the property (3) of the previous theorem, follows that Lβ is a linear transformation from
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F into K. Now let β, γ ∈ F with β ̸= γ, by definition

Lβ(α) − Lγ(α) = Tr(βα) − Tr(γα) = Tr
(
(β− γ)α

)
,

which is not always zero as Tr is distinct from the zero map, therefore Lβ and Lγ are
different.
Now we have to prove that every linear transformation form F into K can be expressed
as Lβ for a suitable β ∈ F. Observe that every linear transformation can be obtained if
we assign to each element of a basis of F over K to an arbitrary element of K. As a basis
of F over K has m elements, this can be done in qm different ways. But we already have
qm different linear maps given by Lβ when varying β ∈ F, therefore those maps already
exhaust all possible linear transformation.

Proposition 1.26 – Characterization of trace equal to zero
Let Tr be the trace of Fqm over Fq. If α ∈ Fqm then

Tr(α) = 0 ⇐⇒ α = βq − β,

for some β ∈ Fqm .

Proof.” ⇐ ” It follows form [1.24], in fact

Tr(α) = Tr(βq − β) = Tr(βq) − Tr(β) = Tr(β) − Tr(β) = 0.

” ⇒ ” Consider the polynomial xq − x − α and suppose Tr(α) = 0. Let β be a root of the
polynomial over some extension field of Fqm , if we can prove β ∈ Fqm then we are done
as βq − β = α. Now

0 = Tr(α) = Tr(βq − β) = (βq − β) + (βq − β)q + . . .+ (βq − β)q
m−1

= (βq − β) + (βq2

− βq) + . . .+ (βqm

− βqm−1

)

= βqm

− β,

therefore β ∈ Fqm by the field equation.

Proposition 1.27 – Transitivity of Trace
Let K be a finite field, let F be a finite extension of K and E a finite extension of F.
Then

TrE/K(α) = TrF/K
(
TrE/F(α)

)
for all α ∈ E.

Proof. Suppose that [E : F] = n and [F : K] = m, so that

[E : K] = [E : F][F : K] = mn.

Let α ∈ E, then we have

TrF/K
(
TrE/F(α)

)
=

m−1∑
i=0

TrE/F(α)
qi

=

m−1∑
i=0

(n−1∑
j=0

αqjm
)qi

=

m−1∑
i=0

n−1∑
j=0

αqjm+i

=

mn−1∑
k=0

αqk

= TrE/K(α).
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Definition 1.28 – Norm
Consider Fqm ⊃ Fq, we define the norm NFqm/Fq

of Fqm over Fq as

NFqm/Fq
: Fqm −→ Fq, α 7−→ ααq · . . . · αqm−1

.

Remark. With the same reasoning as the observation about the trace, we see that
the norm of α can be read off from the characteristic polynomial g of α over Fq. In
particular

NFqm/Fq
(α) = (−1)ma0.

It follows that the norm of every element of Fqm is always an element of Fq.

Theorem 1.29 – Norm properties
Let N be the trace of Fqm over Fq. Then N satisfies the following properties:

1. N(αβ) = N(α) N(β) for all α,β ∈ Fqm .

2. N is a map from Fqm onto Fq and from F∗
qm onto F∗

q.

3. N(a) = am for all a ∈ Fq.

4. N(αq) = N(α) for all α ∈ Fqm .

Proof. DA FINIRE.

Definition 1.30 – Dual bases
Let F be a finite extension over K. Let A = {α1, . . . , αm}, B = {β1, . . . , βm} be two
bases of F over K. A and B are said to be dual bases if we have

TrF/K(αiβj) =

{
0 for i ̸= j
1 for i = j

for 1 ⩽ i, j ⩽ m.

Remark. If {α1, . . . , αm} is a basis of F over K, then for all α ∈ F we have

α = c1(α)α1 + c2(α)α2 + . . .+ cm(α)αm.

Where we can consider cj as a linear transformation from F into K:

cj : F −→ K,α 7−→ cj(α).

According to [1.25], there exists βj ∈ F such that

cj(α) = TrF/K(βjα) for all α ∈ F.

Therefore, putting α = αi, we get

TrF/K(αiβj) = cj(αi) =

{
0 for i ̸= j
1 for i = j

It follows that {β1, . . . , βm} is another basis of F over K, in fact suppose
m∑
j=1

λjβj = 0 with λj ∈ K,
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then if we multiply the sum for a fixed αi and apply the trace, we get

m∑
j=1

λjαiβj = 0 =⇒ Tr
( m∑

j=1

λjαiβj

)
= 0 =⇒

m∑
j=1

λj Tr(αiβj) = λi = 0

=⇒ λi = 0 for all 1 ⩽ i ⩽ m.

So we have proven that {α1, . . . , αm} is a basis if and only if {β1, . . . , βm} is a basis.

Notation. If {α1, . . . , αm} = {β1, . . . , βm}, then {α1, . . . , αm} is called a self-dual
basis.

Definition 1.31 – Normal basis
Consider Fqm ⊃ Fq. A basis of the form

{α,αq, αq2

, . . . , αqm−1

},

consisting of an element α ∈ Fqm and its conjugates with respect to Fq, is called a
normal basis of Fqm over Fq.

Remark. There are many distinct bases of Fqm over Fq. In addition to the normal
basis, another one of particular importance is the polynomial basis given by the powers
of a defining element α of Fqm over Fq:

{1, α, α2, . . . , αm−1}.

Definition 1.32 – Discriminant
Let F ⊃ K be an extension of degree m and let α1, . . . , αm ∈ F. The discriminant of
those elements is defined by the determinant of order m given by

∆F/K(α1, . . . , αm) =

∣∣∣∣∣∣∣∣∣
TrF/K(α1α1) TrF/K(α1α2) · · · TrF/K(α1αm)
TrF/K(α2α1) TrF/K(α2α2) · · · TrF/K(α2αm)

...
...

. . .
...

TrF/K(αmα1) TrF/K(αmα2) · · · TrF/K(αmαm)

∣∣∣∣∣∣∣∣∣
Remark. As the trace of α ∈ F is always an element of K, it follows from the definition
that ∆F/K(α1, . . . , αm) is an element of K.

Theorem 1.33 – Characterization of basis by discriminant
Let F ⊃ K be an extension of degree m and let α1, . . . , αm ∈ F. Then {α1, . . . , αm}

is a basis of F over K if and only if

∆F/K(α1, . . . , αm) ̸= 0.

Proof.” ⇒ ” Let {α1, . . . , αm} be a basis of F over K. In order to prove that the discriminant
of α1, . . . , αm is distinct from zero, we’ll prove that the rows of the matrix defining the
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determinant are linearly independent. Suppose that there exists c1, . . . , cm ∈ K such that

c1 TrF/K(α1αj) + . . .+ cm TrF/K(αmαj) = 0 for 1 ⩽ j ⩽ m.

Let β = c1α1 + . . . cmαm, then

TrF/K(βαj) = 0 for all 1 ⩽ j ⩽ m =⇒ TrF/K(βα) = 0 for all α ∈ F,

as α1, . . . , αm generate F. As TrF/K is distinct form the zero map, this is only possible if

β = 0 ⇐⇒ c1α1 + . . . cmαm = 0 =⇒ c1 = . . . = cm = 0.

” ⇐ ”Conversely suppose that the discriminant is distinct from zero and let c1, . . . , cm ∈ K
such that c1α1 + . . . + cmαm = 0. Then, if we multiply this identity by a fixed αj, we
get

c1α1αj + . . .+ cmαmαj = 0 for all 1 ⩽ j ⩽ m.

Applying the trace to each identity, we obtain

c1 TrF/K(α1αj) + . . .+ cm TrF/K(αmαj) = 0 for all 1 ⩽ j ⩽ m,

which is a linear relation over the rows of the discriminant’s matrix. But as
∆F/K(α1, . . . , αm) ̸= 0, those rows are linearly independent, therefore

c1 = . . . = cm = 0

and α1, . . . , αm is a basis of F over K.

Remark. With the same purpose, we can also consider another matrix, whose entries
are in F, given by

Λ =


α1 α2 · · · αm

αq
1 αq

2 · · · αq
m

...
...

. . .
...

αqm−1

1 αqm−1

2 · · · αqm−1

m


It is easy to show that tΛΛ = ∆. Therefore, from the previous theorem, follows that
{α1, . . . , αm} is a basis of F over K if and only if detΛ ̸= 0.

Theorem 1.34 – Characterization of normal basis
Let F ⊃ K an extension of degree m. Let α ∈ F and let

f(x) = xm − 1 and g(x) = αxm−1 + αqxm−2 + . . .+ αqm−2

x+ αqm−1

polynomials in F[x]. Then {α,αq, . . . , αqm−1

} is a normal basis of F over K if and
only if the resultant R(f, g) of f and g is distinct from zero.

Proof. Consider the determinant of the matrix given in the previous remark with α1 =
α,α2 = αq, . . . αm = αqm−1 . After a suitable permutation of the rows we get the
following:

±

∣∣∣∣∣∣∣∣∣∣∣∣

α αq αq2 · · · αqm−1

αqm−1

α αq · · · αqm−2

αqm−2

αqm−1

α · · · αqm−3

...
...

...
. . .

...
αq αq2

αq3 · · · α

∣∣∣∣∣∣∣∣∣∣∣∣
(*)
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Now consider the resultant R(f, g), which is given by a determinant of order 2m − 1.
Performing linear operation over the matrix of the resultant we obtain a matrix whose
determinant is, apart from the sign, equal to the determinant in (∗). In particular we
need to add the (m+1)st column to the first column, the (m+2)nd column to the second
column, and so on, finally adding the (2m − 1)st column to the (m − 1)st column, in
order to get a determinant which factorized into the determinant of the diagonal matrix
of order m− 1 with entries −1 along the main diagonal and the determinant in (∗). The
theorem then follows from the previous remark.

Lemma 1.35 (Artin). Let φ1, . . . , φt be distinct homomorphism from a group (G, ·)
into the multiplicative group (F∗, ·) of an arbitrary field F. Let a1, . . . , at ∈ F that
are not all zeros and consider

ψ : G −→ F, g 7−→ a1φ1(g) + . . .+ atφt(g).

Then ψ is not the zero map.

Proof. We prove it by induction on t.

• For t = 1 it is trivial as ψ = a1φ1 and φ1 is not the zero map.

• Suppose it holds for t− 1, we prove it for t. Assume by contradiction that

ψ(g) =

t∑
i=1

aiφi(g) = 0 for all g ∈ G.

Then ai ̸= 0 for all i, as if it exists aj = 0 for 1 ⩽ j ⩽ t, then ψ is a linear
combination of at most t− 1 φi, which leads to a non-zero map by induction. Now
as g, h ∈ G implies gh ∈ G and φi are homomorphism, it follows that

ψ(gh) =

t∑
i=1

aiφi(gh) =

t∑
i=1

aiφi(g)φi(h) = 0 for all g, h ∈ G.

Now multiplying φt(h) to ψ(g) and subtracting from the previous identity, we
obtain

0 =

t∑
i=0

aiφi(g)φi(h) −
[
a1φ1(g)φt(h) + . . .+ atφt(g)φt(h)

]
= a1

[
φ1(h) −φt(h)

]
φ1(g) + . . .+ at−1

[
φt−1(h) −φt(h)

]
φt−1(g),

which is a linear combination over the first t − 1 φi. Therefore, by induction and
αi ̸= 0,

ai
[
φi(h)−φt(h)

]
= 0 =⇒ φi(h)−φt(h) = 0 ⇐⇒ φi(h) = φt(h) for all h ∈ G.

But this is impossible as the φi are distinct.

Remark. For the next proof we need to recall some concepts and facts from linear
algebra. Let V be a finite-dimensional vector spaces over a field K with [V : K] = n.
Let

T : V −→ V,

be a linear operator on V.

• Let f(x) = anxn + . . .+ a1x+ a0 ∈ K[x], we say that f(T) = 0 if and only if

f
(
T
)
(v) = 0 ⇐⇒

(
anT

n + . . .+ a1T + a0I
)
(v) for all v ∈ V.
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• The uniquely determined monic polynomial MT of least positive degree such
that MT (T) = 0 is called the minimal polynomial for T .

• If MT is the minimal polynomial and f is a polynomial such that f(T) = 0, then
MT divides f.

• g(x) = det(T − x I) is called the characteristic polynomial for T and is a monic
polynomial of degree equal to the dimension of V. In particular MT divides g.

• A vector v ∈ V is called a cyclic vector for T if

{v, T v, T2v, . . . , Tn−1v}

is a basis for V.

Lemma 1.36. Let T be a linear operator on the finite-dimensional vector space V.
Then T has a cyclic vector if and only if the characteristic and minimal polynomial
of T are identical.

Theorem 1.37 – Normal Basis Theorem
Let F be a finite extension of a finite field K. Then there exists a normal basis of F
over K

Proof. Consider the Frobenius morphism

T : Fqm −→ Fqm , α 7−→ αq.

By [1.21], we know that all the distinct automorphism of Fqm over Fq are given by

{T, T2, . . . , Tn−1, Tm = I}.

Because of the definition of T , these may also be considered as linear operators on the
vector space Fqm over Fq. As Tm = I, we have that the minimal polynomial of T divides
xm − 1. As xm − 1 is monic, if we are able to prove that MT has degree at least m, then
we would have that MT = xm−1. Suppose by contradiction that MT has degree at most
m− 1, then

MT (x) =

m−1∑
i=0

aix
i =⇒ MT (T) =

m−1∑
i=0

aiT
i = 0.

But T i, T j are distinct for i ̸= j and

T i : (F∗
q, ·) −→ (F∗

q, ·)

are group homomorphism for all i. So MT is a linear combination of distinct group
homomorphism, then, by Artin’s lemma, MT (T) can not be the zero map, which is a
contradiction. Therefore xm − 1 is the minimal polynomial for the linear operator T .
Now consider the characteristic polynomial for T , given by g(x) = det(T−x I). Remember
that g is a monic polynomial with degree equal to the dimension of Fqm over Fq, which
is m, moreover MT divides g. As MT = xm − 1 is also a monic polynomial of degree m,
it follows that

g(x) =MT (x) = x
m − 1.

So the previous lemma implies that it exists an element α ∈ Fqm such that α is a cyclic
vector, that is

{α, T α, T2α, . . . , Tm−1α}
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is a basis for Fqm over Fq. But applying T to α we have

{α, T α, T2α, . . . , Tm−1α} = {α,αq, αq2

, . . . , αqm−1

},

which is a normal basis.

Remark. It is possible to prove that α can be chosen to be primitive.

1.4 roots of unity and cyclotomic
polynomials
In this section we analyse the splitting field of xn− 1 over a field K. First we will deduct the
primitive element theorem from a more general fact.

Lemma 1.38. Let G a finite abelian group of order N, with N = pe1

1 · . . . · pet
t .

Suppose that for all 1 ⩽ i ⩽ t it exists αi ∈ G such that αN/pi

i ̸= 1. Then G is cyclic
and

G = ⟨g⟩ with g =

t∏
i=1

βi, βi = α
N/p

ei
i

i .

Proof. We want to prove that βi has order pei

i . Now

b
p

ei
i

i = (α
N/p

ei
i

i )
p

ei
i

= αN
i = 1,

then the order τ of βi divides pei

i . Suppose that it is strictly less: τ ⩽ pei−1
i , then

1 = (βi)
p

ei−1

i = (α
N/p

ei
i

i )
p

ei−1

i

= α
N/pi

i ,

which is impossible for the initial hypothesis. Therefore ord(βi) = p
ei

i . We know that

ord(gh) = mcm
(
ord(g), ord(h)

)
for all g, h ∈ G.

Then, as ord(βi) are coprime for all i, it follows

ord
( t∏

i=1

βi

)
= mcmi

(
ord(βi)

)
=

t∏
i=1

pei

i = N.

Lemma 1.39. Let K be a finite field and let G be a subgroup of the multiplicative
group (K∗, ·) with order N. Then G is cyclic.

Proof. It is enough to show that the hypotheses of the previous lemma hold for G. Sup-
pose N = pe1

1 · . . . · pet
t and fix 1 ⩽ i ⩽ t, then the set of elements αi in K such that

α
N/pi

i = 1 corresponds to the set of roots of xN/pi − 1. As K is a field and xN/pi − 1 lies
in K[x], we have ∣∣V(xN/pi − 1)

∣∣ ⩽ N

pi
< N =⇒ G \ V(xN/pi − 1) ̸= ∅.

Therefore it exists αi ∈ G such that αN/p1

i ̸= 1.
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Corollary (Primitive element theorem). Let Fq be a finite field, then the multiplica-
tive group F∗

q is cyclic.

Proof. We can consider F∗
q as a subgroup of the multiplicative group (F∗

q, ·), which is
finite and therefore has order N. Then F∗

q is cyclic by previous lemma.

Definition 1.40 – Cyclotomic field
Let K be a finite field and let n be a positive integer. The splitting field of xn−1 ∈ K[x]
is called the n-th cyclotomic field over K and is denoted by K(n).

Notation. The set of roots of xn − 1 in K(n) is denoted by E(n).

Remark. E(n) is an abelian group. In fact if α,β ∈ E(n), then

(αβ−1)n = αnb−n = 1 =⇒ (αβ−1) ∈ E(n).

In particular E(n) is a cyclic group.

Theorem 1.41 – Structure of E(n)

Let K be a finite field of characteristic p and let n ∈ N+. Then

1. If p ∤ n, then E(n) is a cyclic group of order n with respect to multiplication
in K(n).

2. If p | n, write mpe with p ∤ m. Then

K(n) = K(m) and E(n) = E(m).

Moreover, the roots of xn−1 in K(n) are them elements of E(m), each attained
with multiplicity pe.

Proof. ”1”Suppose p ∤ n and n > 1 (otherwise is trivial), then xn − 1 has derivative nxn−1

whose only root is 0 in K(n). Therefore GCD(xn − 1, n xn−1) = 1 and xn − 1 has only
simple roots. Hence E(n) has n elements and is a cyclic multiplicative group as we proved
in the last remark.

”2”Follows from
xn − 1 = xmpe

− 1 = (xm − 1)p
e

and part (1).

Definition 1.42 – Primitive n-th root of unity
Let K be a field of characteristic p and n ∈ N+ with p ∤ n. A generator of the cyclic
group E(n) is called a primitive n-th root of unity over K.
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Definition 1.43 – Cyclotomic polynomial
Let K be a field of characteristic p and n ∈ N+ with p ∤ n. Let α be a primitive n-th
root of unity over K. The polynomial

Qn(x) =

n∏
s=1

GCD(s,n)=1

(x− αs)

is called the n-th cyclotomic polynomial over K.

Remark. V(Qn) is clearly the set of all n-th primitive root of unity and |V(Qn)| =
φ(n).

Theorem 1.44 – xn − 1 as product of cyclotomic polynomials
Let K be a field of characteristic p and n ∈ N+ with p ∤ n. Then

xn − 1 =
∏
d|n

Qd(x).

Proof. First observe that xn − 1 and the product of Qd(x) have both simple roots. We
know that

|V(xn − 1)| = n and |V
(
Qt(x)

)
| = φ(t).

Furthermore Qt(x) and Qs(x) has no common roots for t ̸= s, therefore∣∣∣V(∏
d|n

Qd(x)
)∣∣∣ = ∑

d|n

φ(d) = n.

Now is enough to show that the two polynomials have the same roots. Let α be a root
of xn − 1, then αn = 1 and the order d of α must divide n. Therefore α is a primitive
d-th root of unity and is a root of Qd(x) by definition.
Conversely if α is a root of Qd(x) for some d a divisor of n, then, in particular, α is a
root of xd − 1 and of xn − 1 as d | n.

Remark. Suppose r is prime, then by previous theorem we can easily get the r-th
cyclotomic polynomial, as

xr − 1 =
∏
d|r

Qd(x) = Q1(x)Qr(x) =⇒ Qr(x) =
xr − 1

x− 1
= 1+ x+ x2 + . . .+ xr−1.

That as we expected is a polynomial of degree r− 1 = φ(r). In the same way we get

Qrk(x) = 1+ x
rk−1

+ x2r
k−1

+ . . .+ x(r−1)rk−1

.

Theorem 1.45 – Coefficient of a cyclotomic polynomial
Let K be a field of characteristic p and n ∈ N+ with p ∤ n. Then the coefficient of
Qn(x) belong to the prime subfield of K.
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Proof. Let P be the prime subfield of K. We prove this by induction on n.

• If n = 1 then Q1(x) = x− 1 and clearly Q1(x) ∈ P[x].

• Let n > 1 and suppose the claim is valid for all Qd(x) with 1 ⩽ d < n. By previous
theorem we have

xn − 1 =
∏
d|n

Qd(x) =⇒ Qn(x) =
xn − 1∏
d|n
d<n

Qd(x)
.

But xn − 1 ∈ P[x] and Qd(x) ∈ P[x] for d < n. Therefore Qn(x) ∈ P[x].

Theorem 1.46 – Cyclotomic field as extension field
Let K = Fq be a finite field and n ∈ N+ with GCD(n, q) = 1. Then the cyclotomic
field K(n) is a simple algebraic extension of K of degree d, where d is the least
positive integer such that

qd ≡ 1 (mod n).

Moreover Qn factors into φ(n)/d distinct monic irreducible polynomials in K[x] of
degree d and K(n) is the splitting field of any such irreducible factor over K.

Proof. Let α be a primitive n-th root of unity, in particular αn = 1. Now α ∈ Fqs for
some s, but, by field equation,

α ∈ Fqs ⇐⇒ αqs−1 = 1 ⇐⇒ n | qs − 1 ⇐⇒ qs ≡ 1 (mod n).

By definition d is the minimum of such s, therefore α lies in Fqd and in no smaller subfield.
In particular the minimal polynomial of α over Fq has degree d. Since this holds for any
root of Qn, the result follows.

Remark. If K = Q, then the cyclotomic polynomial Qn is irreducible over K and
[K(n) : K] = φ(n)

Example. F(5)
2 is the splitting field of x5 − 1. In particular F(5)

2 is an extension over
F2 of degree d. To compute d we need to find the minimum s such that 2s ≡ 1
modulo 5 or the order of 2 in Z∗

5. We know that d must divide |Z∗
5| = 4, therefore

d ∈ {1, 2, 4}.

21 ≡ 2 (mod 5) 22 ≡ 4 (mod 5) 24 ≡ 1 (mod 5).

Hence [F(5)
2 : F2] = 4 and F(5)

2 = F16. Recall what we know about F16 from previous
examples:

x16 − x = x(x− 1)(x2 + x+ 1)f1f2f3,

with f1, f2, f3 irreducible polynomials of degree 4. Let α be a 5-th primitive root of
unity, now we know that α ∈ F16, but it is not a primitive element as it should have
order 15 and α5 = 1. Now α is a root of x5 − 1 and

x5 − 1 =
∏
d|5

Qd(x) = Q1(x)Q5(x).

Moreover we know that F16 has φ(15) = 8 primitive elements, which are the roots of
f1, f2, therefore

f3(x) = Q5(x) = 1+ x+ x
2 + x3 + x4.
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Observe that, by previous theorem, Q5 factors in φ(5)/d = 1 polynomial of degree
d = 4, and it is therefore irreducible.
We can also observe that in the factorization of x16−x there is also Q3(x) = x

2+x+1,
whose roots lies in F4. In fact it is easy to check that [F(3)

2 : F2] = 2.



2 P O LY N O M I A L S O V E R F I N I T E
F I E L D S
2.1 order of polynomial and primitive
polynomials

Lemma 2.1. Let f ∈ Fq[x] be a polynomial of degree m ⩾ 1 with f(0) ̸= 0. Then
there exists e ∈ N+, e ⩽ qm − 1 such that

f(x) | xe − 1.

Proof. Consider the residue class ring

R =
Fq[x]

(f)
=

{
a0 + a1α+ . . .+ am−1α

m−1
∣∣ ai ∈ Fq, α root of f

}
.

R has qm − 1 nonzero elements. Now consider the qm residue classes

xj + (f) with 0 ⩽ j ⩽ qm − 1,

which are all nonzero because f(0) ̸= 0. In particular there exists r, s ∈ N+, 0 ⩽ r < s ⩽
qm − 1 such that

xr + (f) = xs + (f) ⇐⇒ xr ≡ xs (mod f),

hence f divides xs − xr = xr(xs−r − 1). Moreover GCD(x, f) = 1 as f(0) ̸= 0, and so

f | xr(xs−r − 1) =⇒ f | xs−r − 1.

Now define e = s− r and f divides xe − 1 with 0 < e ⩽ qm − 1.

Definition 2.2 – Order of polynomial
Let f(x) ∈ Fq[x] with f ̸≡ 0. If f(0) ̸= 0, we define the order of f as the least positive
integer e such that f divides xe − 1:

ord(f) = min
{
i ∈ N+

∣∣ f(x) | xi − 1 } .
If f(0) = 0, write f(x) = xhg(x) with h ∈ N+ and g(x) ∈ Fq[x] such that g(0) ̸= 0.
Then define the order of f as the order of g.

Example. Let f(x) = xk, k ⩾ 0, f ∈ Fq[x]. In this case

f(x) = xkg(x) with g(x) = 1.

Therefore the order of f is ord(f) = ord(g) = 1.
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Example. Let f(x) = x2 + x+ 1 ∈ F2[x]. It is necessary to compute ord(f) by hand.
Observe that ord(f) ⩾ ∂f = 2. Clearly f does not divide x2 + 1, but is easy to show
that f(x) | x3 + 1 (As f = Q3 and x3 + 1 = Q1Q3). Therefore ord(f) = 3.

Theorem 2.3 – Order of polynomial equal to the order of its roots
Let f ∈ Fq[x] be an irreducible polynomial of degree m with f(0) ̸= 0 and let α be
any root of f. Then the order of f is equal to the order of α in F∗

qm .

Proof. As f is an irreducible polynomial of degree m, Fqm is the splitting field of f over
Fq. By [1.19], any root of f has the same order in F∗

qm . Let α be any root of f, from
[1.15] we know that

αe = 1 ⇐⇒ f(x) | xe − 1.

The claim follows if we take e the least positive integer with this property.

Corollary. Let f ∈ Fq[x] be an irreducible polynomial of degree m. Then

ord(f) | qm − 1.

Proof. If f(0) ̸= 0, then, by previous theorem,

ord(f) = ordF∗
qm

(α) | qm − 1,

as F∗
qm is a group of order qm − 1. If f(0) = 0, then f irreducible implies

f(x) = c x with c ∈ Fq.

Therefore ord(f) = 1 | q− 1.

Example. Let f(x) = x3 − x2 + 1 ∈ F3[x] which is irreducible as it does not have
roots in F3. By previous theorem, we can find the order of f computing the order of
one of its roots α in F∗

33 . Now

ord(α) | 33 − 1 = 26 =⇒ ord(α) ∈ {1, 2, 13, 26}.

Moreover ord(α) ⩾ ∂f = 3, hence ord(α) ∈ {13, 26}. Then it is enough to compute
α13 = α8α4α, with α3 = α2 − 1. Now

α4 = α (α2 − 1) = α3 − α = α2 − α− 1 = α2 + 2α+ 2

And

α8 = (α4)2 = (α2 + 2α+ 2)2 = α4 + α2 + 1+ α3 + α2 + 2α

= α4 + α3 + 2α2 + 2α+ 1 = α2 + 2α+ 2+ α2 + 2+ 2α2 + 2α+ 1

= α2 + α+ 2

Therefore

α13 = α8α4α = (α2 + α+ 2)(α2 + 2α+ 2)α = α (α4 + 1)

= α (α2 + 2α+ 2+ 1) = α (α2 + 2α) = α3 + 2α2

= α2 − 1+ 2α = −1.

Hence ord(f) = ord(α) = 26.
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Theorem 2.4
Let Am,e be the set of polynomials in Fq[x] which are monic, irreducible, with
degree m and order e. Then

|Am,e| =


φ(e)
m

if e ⩾ 2 and m = ordZe
(q)

2 if e = m = 1

0 otherwise

Proof. Let f ∈ Fq[x] be a monic irreducible polynomial of degree m. If α is a root of f,
by previous theorem we know that

ord(f) = ordF∗
qm

(α) = e ⇐⇒ αe = 1.

This is equivalent to saying that all roots of f are primitive e-th root of unity over Fq. In
particular f must divide Qe. But from [1.46] we also know that each monic irreducible
factor of Qe has as a degree the least positive integer such that qs ≡ 1 modulo e, hence
m = ordZe

(q). From the same theorem we also know that there are φ(e)/m of such
factors.
If m = e = 1 the only possibilities for f are given by

f(x) = x− 1 and f(x) = x.

Therefore |A1,1 = 2|.

Lemma 2.5. Let c ∈ N+ and f ∈ Fq[x] with f(0) ̸= 0. Then

f(x) | xc − 1 ⇐⇒ ord(f) | c.

Proof. ” ⇐ ”Let e = ord(f) and suppose e | c. Then

e = ord(f) ⇐⇒ f(x) | xe − 1 and e | c ⇐⇒ xe − 1 | xc − 1,

therefore f divides xc − 1.
” ⇒ ”Suppose that f divides xc − 1, then c ⩾ e. We can write

c = me+ r with m, r ∈ N+ and 0 ⩽ r < e.

Then

xc − 1 = xme+r − 1 = xme+r − 1+ xr − xr = xr(xme − 1) + (xr − 1).

Now f divides xe − 1, hence it divides xme − 1, therefore

f(x) | xc − 1, xme − 1 =⇒ f(x) | xr − 1.

But r < e, so r = 0 by definition of order. Hence e | c.

Corollary. Let e1, e2 ∈ N+. Then, in Fq[x],

GCD(xe1 − 1, xe2 − 1) = xd − 1,

with d = GCD(e1, e2).
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Proof. Let f be the GCD(xe1 − 1, xe2 − 1). Now d = GCD(e1, e2) implies

xd − 1 | xe1 − 1 and xd − 1 | xe2 − 1,

hence xd − 1 divides f(x). On the other hand, as f divides xe1 − 1 and xe2 − 1, from
previous lemma we have

ord(f) | e1 and ord(f) | e2.

Therefore ord(f) divides GCD(e1, e2) = d and so f divides xd − 1.

Theorem 2.6 – Order of powers of a polynomial
Let g ∈ Fq[x] be an irreducible polynomial of order e with g(0) ̸= 0 and let f = gb
with b ∈ N+. Then f has order pte, where p is the characteristic of Fq and

t = min
{
i ∈ N+

∣∣ pi ⩾ b } .
Proof. Let c be the order of f, so that f divides xc − 1. Then

g(x) |
(
g(x)

)b
= f(x) | xc − 1 ⇐⇒ e | c,

by [2.5]. Now g divides xe − 1 so gb divides (xe − 1)b; by definition of t

pt ⩾ b =⇒ (xe − 1)b | (xe − 1)p
t

.

But Fq has characteristic p, therefore

(xe − 1)p
t

= xept

− 1 =⇒ f(x) =
(
g(x)

)b
| xept

− 1,

hence c | e pt. Now observe that e | c so we can write c = k e, then

c | e pt ⇐⇒ k e | e pt =⇒ k | pt,

so k = pj with 0 ⩽ j ⩽ t and c = e pj. Note that, by [2.1], e divides qm − 1, with m the
degree of g, therefore e does not divide p and xe − 1 has only simple roots. Therefore

xc − 1 = xepj

− 1 = (xe − 1)p
j

has e distinct roots, each of them with multiplicity pj. But every root of f = gb has
multiplicity b and

f(x) | (xe − 1)p
j

=⇒ b ⩽ pj.

However, by construction, the least positive j for this to happen is t. But we have already
seen that j ⩽ t, so

j = t and c = pte.

Theorem 2.7 – Computing the order of a polynomial
Let g1, . . . , gk ∈ Fq[x] be pairwise relatively prime nonzero polynomial and let
f = g1 · . . . · gk. Then

ord(f) = lcm
(
ord(g1), . . . , ord(gk)

)
.
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Proof. Let ei = ord(gi) and e = lcm(e1, . . . , ek). By [2.5]

gi(x) | x
ei − 1 | xe − 1 for all i.

Therefore lcm(g1, . . . , gk) = f | x
e − 1. Now let c = ord(f), then c | e. As gi are factors

of f, we have

f(x) | xc − 1 =⇒ gi(x) | x
c − 1 =⇒ ei | c for all i.

Therefore e | c.

Example. Consider the following polynomial in F2[x]:

f(x) = (x2 + x+ 1)3(x4 + x+ 1) = g(x)3h(x).

We know by previous examples that g is primitive, therefore g has order ord(α) = 3
with α a root of g. h is also primitive and has order 15 as its roots. The order
of g3 is ord(g)pt, with t the least positive integer such that pt ⩾ 3. Therefore
ord(g3) = ord(g)22 = 12. By the previous theorem we have

ord(f) = lcm(12, 15) = 60.

Corollary. Let Fq be a finite field with characteristic p and let f ∈ Fq[x] with
f(0) ̸= 0. Suppose f = a fb1

1 · . . . · fbk

k , where a ∈ Fq and fi ∈ Fq[x] irreducible and
distinct polynomials with bi ⩾ i for all i. Then

ord(f) = lcm
(
ord(f1), . . . , ord(fk)

)
pt,

with t the least positive integer such that pt ⩾ max{b1, . . . , bk}.

Remark. In general, factorize f could be difficult, so we want another method of
determining the order of f. Recall that the order of f is defined as the least positive
integer e such that f divides xe − 1. Hence, in general, we can reduce xi modulo f or
compute the order of x in Fq[x]/(f) (which is not always a field).
Now assume that f is irreducible with degree m and order e. By [2.1] we know that
e divides qm − 1, which can be easily factored even for big values of q and m. Say

qm − 1 = pri1 · . . . · prss ,

then we can check if
x

qm−1
pi ̸≡ 1 (mod f).

In this case e is a multiple of prii . If instead it reduces to 1 modulo f, then e is not a
multiple of prii and we can check whether e is a multiple of pri−1

i , pri−2
i , . . . , pi, by

calculating the residues modulo f of

x
qm−1

p2
i , x

qm−2

p3
i , . . . , x

qm−1

p
ri
i .

We can repeat this computation for each prime factor of qm − 1 to obtain the factor-
ization of e.
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Definition 2.8 – Reciprocal polynomial
Let f(x) = a0+a1x+ . . .+an−1x

n−1+anx
n be a polynomial in Fq[x]. The reciprocal

polynomial f∗ of f is defined as

f∗(x) = xnf

(
1

x

)
= a0x

n + a1x
n−1 + . . .+ an−1x+ an.

Remark. If f(0) ̸= 0, then α ∈ V(f) if and only if 1/α ∈ V(f∗). Conversely, if f(0) = 0,
write f(x) = xhg(x) with g(0) ̸= 0, then

f∗(x) = xn
1

xh
g

(
1

x

)
= xn−hg

(
1

x

)
= g∗(x).

Theorem 2.9 – Order of the reciprocal polynomial
Let f ∈ Fq[x] be a nonzero polynomial and f∗ be its reciprocal polynomial. Then

ord(f) = ord(f∗).

Proof. Suppose f(0) ̸= 0 and let e = ord(f). If α is a root of f, then ae = 1 and also
(1/α)e = 1, where 1/α is a root of f∗, therefore

f | xe − 1 =⇒ f∗ | xe − 1.

In the same way we can prove that if f∗ divides xe− 1 then also f does. If f(0) = 0, write
f(x) = xhg(x), then by definition of order and from the previous observation, we have

ord(f) = ord(g) = ord(g∗) = ord(f∗).

Notation. Let f be a polynomial in Fq[x]. We say that f is even if all irreducible
factors of f have even order. Otherwise we say that f is odd.

Theorem 2.10 – Order of f(−x)
Consider Fq with q odd, let f ∈ Fq[x] be a polynomial with f(0) ̸= 0 and let
F(x) = f(−x). Let e = ord(f) and E = ord(F), then

E = e e ≡ 0 (mod 4)

E = 2e e ≡ 1 (mod 4) or e ≡ 3 (mod 4)

E = e/2 e ≡ 2 (mod 4) and f even
E = e e ≡ 2 (mod 2) and f odd

Proof. Since ord(f) = e, then by [2.5], f divides x2e − 1, hence

F | (−x)2e − 1 = x2e − 1 =⇒ E | 2e.

But we can easily invert the role of f and F to obtain that e divides 2E. Therefore

E/e ∈ { 1, 2, 1/2 } .
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• Suppose e ≡ 0 (mod 4), then e is even, therefore

f | xe − 1, F | (−x)e − 1 = xe − 1 =⇒ E | e.

Moreover E is even, as e = 4k and E/e ∈ {1, 2, 1/2}. Therefore

F | xE − 1, f | (−x)E − 1 = xE − 1 =⇒ e | E,

hence E = e.

• Suppose e ≡ 1, 3 (mod 4), then

f | xe − 1, F | (−x)e − 1 = −(xe + 1).

Clearly F can not divide also xe − 1, otherwise

F | GCD(xe − 1, xe + 1) = 1.

Hence E ∤ e, and knowing E/e ∈ {1, 2, 1/2} implies E = 2e.

• Suppose e ≡ 2 (mod 4), hence e = 2h with h odd. Consider f = gb with g an
irreducible polynomial in Fq[x]. Note that

f | x2h − 1 = (xh − 1)(xh + 1),

so g divides either xh − 1 or xh + 1, but not both as they do not have common
factors. Now if g | xh − 1, then gb | xh − 1 which is impossible as f has order 2h.
Therefore

g | xh + 1 =⇒ gb = f | xh + 1 =⇒ F | (−x)h + 1 = −(xh − 1),

hence E = e/2. Note that we are necessarily in the case of f even as, by [2.6],
the power of an irreducible polynomial has even order if and only if the irreducible
polynomial itself has even order (and Char(Fq) ̸= 2).
In general we have f = g1 · . . . · gk with gi is a power of an irreducible polynomial
and g1, . . . , gk are pairwise relatively prime. By [2.7]

ord(f) = 2h = lcm
(
ord(g1), . . . , ord(gk)

)
.

We reorganize g1, . . . , gk in such a way that gi has even order 2hi for 1 ⩽ i ⩽ m
and gj has odd order hj for m + 1 ⩽ j ⩽ k. Note that hi are odd integers with
lcm(h1, . . . , hk) = h. By what we already show in the previous point

ord(Gi) =

{
hi 1 ⩽ i ⩽ m

2hi m+ 1 ⩽ i ⩽ k

Then, by [2.7],

ord(F) = E = lcm(h1, . . . , hm, 2hm+1, . . . 2hk).

Hence E = h = e/2 if m = k and E = 2h = e if m < k.

Theorem 2.11 – Characterization of a primitive polynomial by its order
Let f ∈ Fq[x] be a monic polynomial of degree m with f(0) ̸= 0. Then f is primitive
over Fq if and only if f has order qm − 1.
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Proof.” ⇒ ” If f is primitive then it is irreducible over Fq and, by [2.3], its order is the order of
one of its roots α over Fqm , which is qm − 1 as α is a primitive element of Fqm over Fq.

” ⇐ ” Suppose ord(f) = qm−1 and suppose, by contradiction, that f is reducible over Fq. Then
either f = gb, with g ∈ Fq[x] irreducible, or f = f1f2 with GCD(f1, f2) = 1.

• Suppose f = gb, then ord(f) = pt ord(g), then p | ord(f), which is impossible as
p ∤ qm − 1.

• Suppose f = f1f2. f1 and f2 are monic polynomials in Fq[x] with degree m1,m2

and order e1, e2, respectively. In particular

e1 ⩽ qm1 − 1 and e2 ⩽ qm2 − 1.

Therefore

(qm − 1) = ord(f) ⩽ (qm1 − 1)(qm2 − 1) = qm1+m2 − 1− (qm1 + qm2)

= qm − 1− (qm1 + qm2) < qm − 1,

which is impossible.

Lemma 2.12. Let f ∈ Fq[x] be a polynomial of degree m with f(0) ̸= 0. Let r be
the least positive integer such that xr ≡ a modulo f, with a ∈ F∗

q. Then

ord(f) = h r,

with h the order of a in F∗
q.

Proof. Let e = ord(f). We have e ⩾ r as xe ≡ 1 modulo f. If we perform the division
with reminder between e and r we get

e = s r+ t with 0 ⩽ t < r.

Therefore
1 ≡ xe ≡ xsr+t ≡ (xr)sxt ≡ asxt (mod f).

Hence xt ≡ 1/as modulo f, where 1/as ∈ Fq. But t < r contradicts the minimality of r
unless t = 0. Therefore e = s r. Moreover as ≡ 1 and s is the order of a in F∗

q.

Theorem 2.13
Let f ∈ Fq[x] be a monic polynomial of degree m ⩾ 1 with f(0) ̸= 0. Then f is
primitive over Fq if and only if{

(−1)mf(0) is a primitive element of Fq

x
qm−1
q−1 ≡ a (mod f) with a ∈ Fq

(∗)

where (qm − 1)/(q − 1) is the least positive integer such that xr ≡ a modulo f.
Moreover, if f is primitive over Fq, we have

xr ≡ (−1)mf(0) (mod f).

Proof.” ⇒ ” Suppose f primitive, consider α ∈ V(f) which is a primitive element of Fqm ,
therefore ord(α) = qm − 1. Now if we compute the norm of α we get

NFqm/Fq
(α) = (−1)mf(0) = α

qm−1
q−1 .
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Then (−1)mf(0) is an element of Fq with order q − 1, hence it is a primitive element of
Fq. Since f is the minimal polynomial of α and α is a root of x(qm−1)/(q−1)−(−1)mf(0),
we get

f | x
qm−1
q−1 − (−1)mf(0) ⇐⇒ x

qm−1
q−1 ≡ (−1)mf(0) (mod f),

then r ⩽ (qm − 1)/(q− 1). We know that ord(f) = qm − 1 and, by previous lemma, that
ord(f) is equal to ord(a)r, where a ∈ Fq. Therefore

qm − 1 = ord(f) = ord(a)r ⩽ (q− 1)r =⇒ r =
qm − 1

q− 1
.

” ⇐ ”Suppose (∗) holds. DA FINIRE!!

2.2 irreducible polynomials
Theorem 2.14 – Factorization of xqm

− x

Consider xqm

−x ∈ Fq[x] and let f ∈ Fq[x] be a generic monic irreducible polynomial
of degree d, with d | m. Then

xq
m

− x =
∏

f.

Proof. By [1.16], we know that

f | xq
m

− x ⇐⇒ d | m.

Moreover (xq
m

− x) ′ = qmxq
m−1 − 1 = −1, therefore

GCD
(
xq

m

− x, (xq
m

− x) ′
)
= 1

and xqm

− x has only simple roots. Hence

xq
m

− x =
∏

f,

where f are monic irreducible polynomials of degree d | m.

Notation. Consider the set of monic irreducible polynomials of degree d in Fq[x],
we define

Nq(d) = # { f ∈ Fq[x] | f monic, irreducible, ∂f = d } .

Corollary. Consider Nq(d) the number of monic irreducible polynomial of degree d
in Fq[x]. Then

qm =
∑
d|m

dNq(d).
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Definition 2.15 – Möbius function
The Möbius function µ is an arithmetic function defined as

µ(n) =


1 n = 1

(−1)k n = p1 · . . . · pk, pi ̸= pj primes
0 p2 | n, p prime

Lemma 2.16. The Dirichlet transformation of µ is given by

∑
d|n

µ(d) =

{
1 n = 1

0 n > 1

Proof. Suppose n > 1, then∑
d|n

µ(d) =
∑
d|n

p2|d

µ(d) +
∑
d|n

p2∤d,∀ p

µ(d) =
∑
d|n

p2∤d,∀ p

µ(d).

Consider p1, . . . , pk primes such that pi | n, then∑
d|n

p2∤d,∀ p

µ(d) = µ(1) +
∑
d|n

d=pi

µ(d) +
∑
d|n

d=pipj

µ(d) + . . .+
∑
d|n

d=p1·...·pk

µ(d)

= 1+

(
k

1

)
(−1) +

(
k

2

)
(−1)2 + . . .

(
k

k

)
(−1)k =

(
1+ (−1)

)k
= 0k = 0.

Theorem 2.17 – Möbius inversion formula
Let h and H be two function from N to an additive abelian group G. Then

H(n) =
∑
d|n

h(d) ⇐⇒ h(n) =
∑
d|n

µ(d)H
(n
d

)
=

∑
d|n

µ
(n
d

)
H(d).

Proof.” ⇒ ” We have ∑
d|n

µ(d)H
(n
d

)
=

∑
d|n

µ(d)
∑
δ|n

d

h(δ) =
∑
d,δ

n=dδm
m⩾1

µ(d)h(δ)

=
∑
δ|n

h(δ)
∑
d|n

δ

µ(d),

where, by previous lemma,∑
d|n

δ

µ(d) =

{
1 n

δ
= 1 ⇐⇒ δ = n

0 n
δ
> 1

Hence, the last identity becomes∑
δ|n

h(δ)
∑
d|n

δ

µ(d) = h(n) · 1 = h(n).

” ⇐ ” Similar to the other direction.
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Remark. If G is a multiplicative group, the thesis becomes

H(n) =
∏
d|n

h(d) ⇐⇒ h(n) =
∏
d|n

H
(n
d

)µ(d)

=
∏
d|n

H(d)µ(n/d).

The proof is identical.

Theorem 2.18 – Number of monic irreducible polynomial of given de-
gree

The number Nq(n) of monic irreducible polynomial of degree n in Fq[x] is given
by

Nq(n) =
1

n

∑
d|n

µ(d)qn/d.

Proof. Consider h,H : Z −→ Z with

h(n) = nNq(n) and H(n) = qn.

By [2.2] we know that

qn =
∑
d|n

dNq(d) ⇐⇒ H(n) =
∑
d|n

h(d).

Then, using the inversion formula we get

h(n) =
∑
d|n

µ(d)H
(n
d

)
⇐⇒ nNq(n) =

∑
d|n

µ(d)qn/d,

from which the thesis.

Theorem 2.19 – Factors of nth cyclotomic polynomial
Let Qn ∈ Fq[x] be the nth cyclotomic polynomial, with p ∤ n. Then

Qn(x) =
∏
d|n

(xd − 1)µ(n/d).

Proof. Consider h,H : Z −→ Fq(x) with

h(n) = Qn(x) and H(n) = xn − 1.

By [1.44] we know that

xn − 1 =
∏
d|n

Qd(x) ⇐⇒ H(n) =
∏
d|n

h(d).

Then, using the inversion formula for the multiplicative case, we get

h(n) =
∏
d|n

H(d)µ(n/d) ⇐⇒ Qn(x) =
∏
d|n

(xd − 1)µ(n/d).
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Theorem 2.20 – Product of monic irreducible polynomials of given de-
gree

Let I(q, n) be the product of all monic irreducible polynomial of degree n in Fq[x].
Then

I(q, n) =
∏
d|n

(xq
d

− x)µ(n/d).

Proof. From [2.14] we know
xq

n

− x =
∏
d|n

I(q, d).

Then it is enough to apply the multiplicative case of the inversion formula to obtain the
thesis.

Example. We want to compute the product of all irreducible polynomials of degree
2 in Fq[x]. By previous theorem we have

I(q, 2) = (xq − x)µ(2)(xq
2

− x)µ(1) = (xq − x)−1(xq
2

− x) =
xq

2

− x

xq − x

=
xq

2−1 − 1

xq−1 − 1
=

(xq−1 − 1)(xq (q−1) + x(q−1)(q−1) + . . .+ xq−1 + 1)

xq−1 − 1

= xq (q−1) + x(q−1)(q−1) + . . .+ xq−1 + 1.

For example, if q = 2, then
I(2, 2) = x2 + x+ 1,

which is then the only irreducible polynomial of degree 2 in F2[x].

Theorem 2.21
Let I(q, n) be the product of all monic irreducible polynomial of degree n in Fq[x].
Then

I(q, n) =
∏
m

Qm(x),

for all m for which m | qn − 1 and n is the order of q modulo m.

The following are the main result we can easily deduce from this sections: Let α ∈ Fqm

and let g be the minimal polynomial of α over Fq. Suppose g has degree d, then

Property 2.22. g is irreducible over Fq and d | m.

Property 2.23. Let f ∈ Fq[x], then f(α) = 0 if and only if g | f.

Property 2.24. Let f ∈ Fq[x] be a monic irreducible polynomial with f(α) = 0, then
f = g.
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Property 2.25. g divides xqd

− x and xqm

− x.

Property 2.26. V(g) = {α,αq, . . . , αqd−1

} and g is the minimal polynomial of all
these elements over Fq.

Property 2.27. If α ̸= 0, then ord(g) = ordF∗
qm

(α).

Property 2.28. g is a primitive polynomial over Fq if and only if α is a primitive
element in Fqd if and only if a has order qd − 1 in F∗

qm .



3 L I N E A R R E C U R R I N G
S E Q U E N C E S
Let k ∈ N and let f : (Fq)

k → Fq. A sequence S of elements s0, s1, . . . ∈ Fq satisfying the
relation

sn+k = f(sn, sn+1, . . . , sn+k−1) for all n

is called a k-th order recurring sequence.

3.1 feedback shift registers
In this section we are interested in linear recurring sequence.

Definition 3.1 – Linear recurring sequence
Let k ∈ N and let a, a1, . . . , ak−1 ∈ Fq. A sequence S of elements s0, s1, . . . ∈ Fq

satisfying the relation

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . .+ a0sn + a for all n

is called a k-th order linear recurring sequence.

Notation. S is called homogeneous if a = 0, otherwise is called inhomogeneous.

Example. A 3-rd linear recurring sequence is a sequence satisfying the relation

sn+3 = a2sn+2 + a1sn+1 + a0sn + a.

Definition 3.2 – Ultimately periodic sequence
Let s0, s1, . . . be a sequence. Let r > 0 and n0 ⩾ 0 such that

sn+r = sn for all n ⩾ n0,

then the sequence is called ultimately periodic and r is called a period of the sequence.

Notation. The least positive period of the sequence is called the least period of the
sequence.

Lemma 3.3. Consider an ultimately periodic sequence s0, s1, . . .. Let r be the least
period of the sequence and let R be a period. Then r divides R.

Proof. By definition r ⩽ R. Then we can perform division with remainder to obtain

R = q r+ t with 0 ⩽ t < r.
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Then
sn = sn+R = sn+qr+t = s(n+t)+r+...+r = sn+t,

hence t is a period of the sequence, which is a contradiction of the minimality of r unless
t = 0.

Definition 3.4 – Periodic sequence
Let s0, s1, . . . be an ultimately periodic sequence with least period r. The sequence
is called periodic if

sn+r = sn for all n ∈ N.

Remark. Alternatively, s0, s1, . . . is periodic if and only if it exists r > 0 such that

sn+r = sr for all n ∈ N.

Definition 3.5 – Preperiod
Let s0, s1, . . . be an ultimately periodic sequence with least period r. The least non-
negative integer n0 such that

sn+r = sn for all n ⩾ n0

is called the preperiod.

Remark. An ultimately periodic sequence is periodic precisely if the preperiod is zero.

Theorem 3.6 – Bound of least period
Let s0, s1, . . . be a k-th order sequence over Fq. Then it is ultimately periodic with
period

r ⩽ qk.

Moreover, if the sequence is homogeneous, then r ⩽ qk − 1.

Proof. Consider s0 = (s0, s1, . . . , sk−1) ∈ (Fq)
k the initial state of the vector. The next

states are uniquely determined:

s1 = (s1, s2, . . . , sk), s2 = (s2, s3, . . . , sk+1), . . .

where
sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . .+ a0sn + a.

Clearly the set of all states {si}i∈N is a subset of (Fq)
k, in particular∣∣{ si }i∈N

∣∣ ⩽ qk.
Now suppose that the sequence is homogeneous, then

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . .+ a0sn.

Hence
s0 = (0, . . . , 0) =⇒ si = (0, . . . , 0) for all i ∈ N

and r = 1. Therefore, if the initial state is not the zero vector, si ∈ (Fq)
k \ {(0, . . . , 0)}

for all i ∈ N. Hence ∣∣{ si }i∈N

∣∣ ⩽ qk − 1.
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Theorem 3.7 – Periodicity of homogeneous sequence
Let s0, s1, . . . be a k-th order homogeneous sequence over Fq satisfying

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . .+ a0sn.

Suppose a0 ̸= 0, then the sequence is periodic.

Proof. From the recurrence relation

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . .+ a0sn

and a0 ̸= 0 we obtain

sn =
1

a0
(sn+k − ak−1sn+k−1 − . . .− a1sn+1).

By previous theorem we know that {si} is ultimately periodic. Let r be its period and
n0 its preperiod. Suppose by contradiction that n0 ⩾ 1. We know that sn+r = sn for
n ⩾ n0, but if we consider n̄ = n0 − 1, we have

sn̄ =
1

a0
(sn̄+k − ak−1sn̄+k−1 − . . .− a1sn̄+1)

=
1

a0
(sn̄+k+r − ak−1sn̄+k−1+r − . . .− a1sn̄+1+r)

= sn̄+r.

Which is a contradiction of the definition of preperiod. Hence the sequence is periodic.

Definition 3.8 – Associated matrix of a hlrs
Let s0, s1, . . . be a k-th order homogeneous sequence over Fq satisfying

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . .+ a0sn.

The associated matrix A of the sequence is given by

A =


0 0 . . . 0 a0
1 0 . . . 0 a1
0 1 . . . 0 a2
...

...
. . .

...
...

0 0 . . . 1 ak−1

 ∈Mk(Fq)

Remark. Suppose a0 ̸= 0, then

detA = (−1)k−1a0 ̸= 0 =⇒ A ∈ GLk(Fq).

In particular the order of A divides |GLk(Fq)|, where

|GLk(Fq)| = (qk − 1)(qk − q)(qk − q2) · . . . · (qk − qk−1)

= qq2 · . . . · qk−1(q− 1)(q2 − 1) · . . . · (qk − 1)
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Lemma 3.9. Let s0, s1, . . . be a k-th order homogeneous sequence over Fq satisfying

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . .+ a0sn.

Let A be the associated matrix of the sequence. Then

snA = sn+1

Proof. Follows from the definition of A and sn = (sn, sn+1, . . . , sn+k−1) by induction.

Theorem 3.10 – Order of associated matrix
Let s0, s1, . . . be a k-th order homogeneous sequence over Fq satisfying

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . .+ a0sn.

Let A be the associated matrix of the sequence and suppose a0 ̸= 0, then the least
period of the sequence divides the order of A in GLk(Fq).

Proof. By a previous remark we know that detA ̸= 0 so that A ∈ GLk(Fq). By previous
lemma we know that

snA = sn+1; snA
2 = sn+2; . . .

Therefore, if e is the order of A, we have

sn = snA
e = sn+e,

hence r divides e, with r the least period of the sequence.

Remark. If s0, s1, . . . is inhomogeneous, then we can write the state as

sn = 1, sn, sn+1, . . . , sn+k−1.

The associated matrix becomes

C =



1 0 0 . . . 0 a
0 0 0 . . . 0 a0
0 1 0 . . . 0 a1
0 0 1 . . . 0 a2
...

...
...

. . .
...

...
0 0 0 . . . 1 ak−1


=


1 0 . . . 0 a
0
0
... A
0


Again we have snC = sn+1. If e = ord(C), then

snI = snC
e = sn+e.

It is also possible to prove that C ∈ GLk+1(Fq) so that the order of C divides the
order of GLk+1(Fq).
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3.2 impulse response sequences,
characteristic polynomial
From now on, with hlrs we will refer to an homogeneous linear recurring sequence in Fq,
satisfying a given k-th order linear recurrence relation

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . .+ a0sn. (∗)

Definition 3.11 – Impulse response sequence
A hlrs d0, d1, . . . is called an impulse response sequence if its initial state is exactly

d0 = (d0, d1, . . . , dk−2, dk−1) = (0, 0, . . . , 0, 1).

Notation. Sometimes we will refer to impulse response sequences with IR.

Lemma 3.12. Let d0, d1, . . . be an impulse response sequence. Let A be its associ-
ated matrix. Then

dm = dn ⇐⇒ Am = An.

Proof.” ⇐ ” Suppose that Am = An, then from [3.9], we have

dm = d0A
m = d0A

n = dn.

” ⇒ ” Suppose that dm = dn. By the linear recurrence relation we know that dm+t = dn+t

for all t ⩾ 0. Then, again by [3.9], we get

dtA
m = dtA

n for all t ⩾ 0.

But as d0, d1, . . . is an impulse response sequence, the vectors d0, d1, . . . , dk−1 form a
basis for Fk

q over Fq. Therefore Am = An.

Theorem 3.13
The least period of a hlrs divides the least period of the corresponding impulse
response sequence.

Proof. Let s0, s1, . . . be a hlrs, d0, d1, . . . be the corresponding IR and Let A be the matrix
associated with the recurrence relation. Suppose that r̄ is the least period of d0, d1, . . .
and n̄0 the preperiod. Then dn+r = dn for all n ⩾ n0 and by previous lemma and [3.9]
we have

An+r = An, ∀ n ⩾ n0 =⇒ sn+r = sn for all n ⩾ n0.

Hence r̄ is a period of s0, s1, . . . and its least period divides r̄ by [3.3].

Example. Consider the recurrence relation in F2 given by

sn+4 = sn + 2+ sn

If we consider the corresponding impulse response sequence d0 = 0, d1 = 0, d2 =
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0, d3 = 1, we get

d4 = 0 d5 = 1 d6 = 0

d7 = 0 d8 = 0 d9 = 1

hence the least period of the sequence is r̄ = 6. Now, if we consider the sequence with
initial state s0 = 0, s1 = 1, s2 = 1, s3 = 0, we get

s4 = 1 s5 = 1 s6 = 0,

hence the least period is r = 3 and as we expected r divides r̄.

Theorem 3.14
Let d0, d1, . . . be an impulse response sequence and A its associated matrix. Sup-
pose that a0 ̸= 0, then the least period of the sequence is equal to the order of A
in GLk(Fq).

Proof. Let r̄ be the least period of the sequence, according to [3.10] r̄ divides the order
of A. On the other hand we have dr = d0 which implies Ar̄ = A0 by [3.12], hence the
order of A divides r̄.

Theorem 3.15
Let s0, s1, . . . be a hlrs with preperiod n0. Suppose that there exists k state vectors

sm1
, sm2

, . . . , smk
with mj ⩾ n0, 1 ⩽ j ⩽ k,

that are linearly independent over Fq. Then both s0, s1, . . . and its corresponding
impulse response sequence are periodic with the same least period.

Proof. Let r be the least period of s0, s1, . . .. Then

smj
Ar = smj+r = smj

for 1 ⩽ j ⩽ k.

As sm1
, . . . , smk

are linearly independent, we have that Ar is the identity matrix over
GLk(Fq). Hence sr = s0A

r = s0 and s0, s1, . . . is periodic. Now let d0, d1, . . . be
the corresponding impulse response sequence and let r̄ be its least period. We have
dr = d0A

r = d0, then r is a period of d0, d1, . . . and therefore r̄ divides r. But from
[3.13] we also know that r divides r̄.

Definition 3.16 – Characteristic polynomial
Let s0, s1, . . . be a k-th order homogeneous linear recurring sequence in Fq satisfying
the linear recurrence relation

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + . . .+ a0sn for n = 0, 1, . . . ,

with aj ∈ Fq. We define the polynomial

f(x) = xk − ak−1x
k−1 − ak−2x

k−2 − . . .− a0 ∈ Fq[x]

as the characteristic polynomial of the sequence.
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Remark. The characteristic polynomial depends only on the linear recurrence relation.
Moreover, if A is the associated matrix of the sequence, it it easy to see that f is the
characteristic polynomial of A in the sense of linear algebra.

Theorem 3.17 – Representation of a sequence through its characteris-
tic polynomial

Let s0, s1, . . . be a hlrs with characteristic polynomial f(x). Suppose that the roots
α1, . . . , αk of f are all distinct, then

sn =

k∑
j=1

βjα
n
j for n = 0, 1, . . . ,

where β1, . . . , βk are elements of the splitting field of f over Fq which are uniquely
determined by the initial values of the sequence.

Proof. Given the initial state s0, s1, . . . , sk−1 we can determine β1, . . . , βk from the sys-
tem of linear equation

sn =

k∑
j=1

βjα
n
j , n = 0, 1, . . . , k− 1.

The determinant of the system is a Vandermonde determinant, which is nonzero as
α1, . . . , αk are all distinct. Hence β1, . . . , βk are uniquely determined and belong to
Fq(α1, . . . , αk) which is the splitting field of f over Fq. To check if the formula holds
for all n ⩾ 0 we check if the sums, with those values for β1, . . . , βk, satisfy the linear
recurrence relation:

k∑
j=1

βjα
n+k
j − ak−1

k∑
j=1

βjα
n+k−1
j − ak−2

k∑
j=1

βjα
n+k−2
j − . . .− a0

k∑
j=1

βjα
n
j

=

k∑
j=1

βjf(αj)α
n
j = 0.

Example. Consider the following hlrs in F2:

sn+3 = sn+2 + sn with s0 = (0, 0, 1)

The characteristic polynomial is

f(x) = x3 − x2 − 1 = x3 + x2 + 1 ∈ F2[x].

f is irreducible in F2[x] and has simple roots α,α2, α4 ∈ F8 = F2[α], α
3 = α2 + 1. By

the previous theorem we have
s0 = β1α

0
1 + β2α

0
2 + β3α

0
3

s1 = β1α1 + β2α2 + β3α3

s2 = β1α
2
1 + β2α

2
2 + β3α

2
3

where α1 = α,α2 = α2, α3 = α2 + α+ 1. After some computation we get
β1 = α+ 1

β2 = α2 + 1

β3 = α2 + a
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Hence

sn = (α+ 1)αn + (α2 + 1)α2n + (α2 + α)(α2 + α+ 1)n for all n ⩾ 0.

Theorem 3.18
Let s0, s1, . . . be a hlrs with characteristic polynomial f(x). Suppose that f is
irreducible over Fq and let α ∈ Fqk be a root of f. Then there exists a uniquely
determined ϑ ∈ Fqk such that

sn = TrF
qk/Fq

(ϑαn) for n = 0, 1, . . .

Proof. Define the following linear map

L : Fqk −→ Fq, αn 7−→ sn, n = 0, 1, . . . , k− 1.

Since {1, α, . . . , αk−1} constitutes a basis of Fqk over Fq, L is uniquely determined. By
[1.25] there exists a uniquely determined ϑ ∈ Fqk such that

L(β) = Tr(ϑβ) for all β ∈ Fqk .

In particular we have

sn = Tr(ϑαn) for n = 0, 1, . . . , k− 1.

We have to show that the elements Tr(ϑαn), n = 0, 1, . . . form a hlrs with characteristic
polynomial f. If f is defined as

f(x) = xk − ak−1x
k−1 − . . .− a0 ∈ Fq[x],

then, using the properties of the trace, we get

Tr(ϑαn+k) − ak−1 Tr(ϑα
n+k−1) − . . .− a0 Tr(ϑα

n)

=Tr(ϑαn+k − ak−1ϑα
n+k−1 − . . .− a0ϑα

n)

=Tr
(
ϑαnf(α)

)
= 0,

for all n ⩾ 0.

Theorem 3.19 – Characteristic polynomial’s identity
Let s0, s1, . . . be a hlrs and suppose it is periodic with least period r. Let f be the
characteristic polynomial of the sequence, then

f(x)s(x) = (1− xr)h(x),

where
s(x) = s0x

r−1 + s1x
r−2 + . . .+ sr−2x+ sr−1 ∈ Fq[x]

and

h(x) =

k−1∑
j=0

k−1−j∑
i=0

ai+j+1six
j ∈ Fq[x] with ak = −1.
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Lemma 3.20. Let

f(x) = xk − ak−1x
k−1 − ak−2x

k−2 − . . .− a0 ∈ Fq[x]

with k ⩾ 1. Suppose that a0 ̸= 0, then the order of f is equal to the order of its
companion matrix A in GLk(Fq).

Proof. f is the characteristic polynomial of A, therefore

f(x) | xe − 1 ⇐⇒ f(A) | Ae − I,

but f(A) = 0 by Cayley-Hamilton, hence

Ae − I = 0 =⇒ Ae = I.

If we take e the least positive integer for the relation to holds, we get both the definition
of the order of f and of the order of A.

Corollary. Let d0, d1, . . . be an impulse response sequence satisfying (∗). Let f be its
characteristic polynomial and suppose a0 ̸= 0. Then the least order of the sequence
is equal to the order of f.

Proof. It follows from previous theorem and [3.14].

Theorem 3.21
Let s0, s1, . . . be a hlrs with characteristic polynomial f(x) ∈ Fq[x]. Then the least
period of the sequence divides ord(f). If the sequence is impulse response then its
least period is equal to ord(f). Moreover, if f(0) ̸= 0, then the sequence is periodic.

Proof. s0, s1, . . . satisfies the recurrence relation (∗), therefore

f(x) = xk − ak−1x
k−1 − ak−2x

k−2 − . . .− a0.

Suppose f(0) ̸= 0, then a0 ̸= 0 and the periodicity follows from [3.7]. Moreover, from
previous lemma, we know that the order of f is equal to the order of the associated matrix
A. Therefore the least period of the sequence divides ord(A) = ord(f) by [3.10]. And if
the sequence is impulse response, the thesis follows from [3.14]. Now suppose f(0) = 0,
then we write

f(x) = xhg(x) with g(0) ̸= 0, ∂g ⩾ 1.

If we define tn = sn+h for n = 0, 1, . . . then t0, t1, . . . is a hlrs with characteristic
polynomial g and same least period as that of the sequence s0, s1, . . .. Hence the least
period of s0, s1, . . . divides ord(g) = ord(f). With the same argument we can prove the
result for the impulse response sequence.
If f(x) = xh the result is trivial as we would have

sn+k = 0 =⇒ r = 1 and ord(xk) = 1.
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Theorem 3.22 – Irreducible characteristic polynomial
Let s0, s1, . . . be a hlrs with characteristic polynomial f(x) ∈ Fq[x] irreducible and
f(0) ̸= 0. Suppose that the initial state s0 is different from the zero vector. Then
s0, s1, . . . is periodic with least period equal to ord(f).

Proof. Let r be the least period of the sequence. From last theorem we know that the
sequence is periodic and that r divides ord(f). From [3.19] we also know that

f(x)s(x) = (1− xr)h(x) =⇒ f(x) | (1− xr)h(x),

where ∂h = k− 1 while ∂f = k. But f is irreducible, therefore

f(x) ∤ h(x) =⇒ f(x) | 1− xr = −(xr − 1) =⇒ ord(f) | r.

Hence r = ord(f).

Definition 3.23 – Maximal period sequence
Let s0, s1, . . . be a homogeneous linear recurring sequence in Fq with characteristic
polynomial f(x). If f is primitive and the initial state s0 is nonzero, the sequence is
called maximal period sequence.

Theorem 3.24 – Period of a maximal period sequence
Let s0, s1, . . . be a k-th order maximal period sequence in Fq. Then s0, s1, . . . is
periodic and has least period equal to qk − 1.

Proof. f is primitive, hence it is irreducible and by previous theorem s0, s1, . . . is periodic
with least period equal to ord(f). But since f is primitive, we know that ord(f) = qk − 1
by [2.11].

Example. Consider the following hlrs in F2:

sn+4 = sn+3 + sn+2 + sn+1 + sn with s0 = (0, 0, 0, 1).

The characteristic polynomial is

f(x) = x4 − x3 − x2 − x− 1 = x4 + x3 + x2 + x+ 1 ∈ F2[x].

Observe that f(x) = Q5(x). We know that ord(f) = 5 and, since f is irreducible, we
have also that the least period r = 5. Moreover 5 is prime, so every other initial state,
distinct form the zero vector, will have least period equal to 5.

Example. Consider the following hlrs in F3:

sn+3 = sn+2 + sn with s0 = (0, 0, 1).

The characteristic polynomial is

f(x) = x3 + 2x2 + 2 = (x+ 1)(x2 + x+ 2),
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hence
ord(f) = lcm

(
ord(x+ 1), ord(x2 + x+ 2)

)
= lcm(2, 8) = 8.

Since our sequence is impulse response, we have r̄ = 8. Now suppose that the initial
state is s0 = (1, 2, 1), then

s3 = 2, s4 = 1 =⇒ r = 2 | 8 = r̄.

3.3 the minimal polynomial
A linear recurring sequence can satisfies many recurring relation and each polynomial asso-
ciated to such relation is a characteristic polynomial for the sequence. In this section we will
study the relationship between those recurring relation for a homogeneous linear recurring
sequence.

Definition 3.25 – Minimal polynomial
Let s0, s1, . . . be a hlrs in Fq. A monic polynomial m(x) ∈ Fq[x] is called minimal
polynomial for the sequence if is such that for all f(x) ∈ Fq[x], f is a characteristic
polynomial for the sequence if and only if m divides f.

Theorem 3.26 – Uniqueness of the minimal polynomial
Let s0, s1, . . . be a hlrs. Then the minimal polynomial m(x) ∈ Fq[x] is uniquely
determined.

Theorem 3.27 – Order of the minimal polynomial
Let s0, s1, . . . be a hlrs in Fq with minimal polynomial m(x) ∈ Fq[x]. Then the
least period of the sequence is equal to ord(m).

Proof. Let r be the period of the sequence and n0 its preperiod. Then s0, s1, . . . satisfies
the following relations

sn+r = sn, ∀ n ⩾ n0 and sn+n0+r = sn+n0
, ∀ n ⩾ 0

hence
f(x) = xn0+r − xn0 = xn0(xr − 1)

is a characteristic polynomial for the sequence. By the definition of minimal polynomial
we have

m(x) | xn0(xr − 1) =⇒ m(x) = xhg(x)

with h ⩽ n0 and where g(0) ̸= 0, g divides xr−1. By definition of order ord(m) = ord(g)
divides r, but m is also a characteristic polynomial for the sequence, so that r divides
ord(m) by [3.21]. Hence r = ord(m).

Proposition 3.28
Let s0, s1, . . . be a hlrs in Fq with characteristic polynomial f(x) ∈ Fq[x]. Suppose
that f is monic, irreducible and that the terms of the sequence are not all zeros. Then
f is the minimal polynomial of the sequence.
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Proof. Let m(x) be the minimal polynomial of the sequence. By definition of minimal
polynomial, m divides f. But f is monic and irreducible, hence

m(x) = 1 or m(x) = f(x).

But m(x) ̸= 1 as it generates the sequence of all zeros, hence m(x) = f(x).

Theorem 3.29 – Characterization of minimal polynomial
Let s0, s1, . . . be a k-th order hlrs in Fq with characteristic polynomial f(x) ∈ Fq[x].
Then f is the minimal polynomial of the sequence if and only if the state vectors
s0, . . . , sk−1 are linearly independent over Fq.

Proof. We assume that the terms of the sequence are not all zeros, otherwise it is trivial.
” ⇐ ”Suppose s0, . . . , sk−1 are linearly independent over Fq. In particular s0 ̸= 0 implies that

the minimal polynomial m(x) has positive degree. Now suppose f(x) ̸= m(x), then if m
is the degree of m(x), we have m < k. But then s0, s1, . . . would satisfy a recurrence
relation of m-th order with 1 ⩽ m < k, say

sn+m = am−1sn+m−1 + . . .+ a0sn for all n ⩾ 0,

hence, for n = 0, we would have

sm = am−1sm−1 + . . .+ a0s0,

which is a contradiction of the linear independence of s0, . . . , sk−1.
” ⇒ ”Suppose that m(x) = f(x) and suppose, by contradiction, that s0, . . . , sk−1 are linearly

dependent. Then it exists b0, . . . , bk−1 ∈ Fq, not all zeros, such that

b0s0 + b1s1 + . . . bk−1sk−1 = 0

Let A be the companion matrix of f. If we multiply the previous identity by An we get

(b0s0 + b1s1 + . . . bk−1sk−1)A
n = 0.

Recall that siAn = sn+i for all i. Hence

0 = (b0s0 + b1s1 + . . . bk−1sk−1)A
n = b0sn + b1sn+1 + . . .+ bk−1sn+k−1,

which implies, in particular, b0sn + b1sn+1 + . . . + bk−1sn+k−1 = 0. If bj = 0 for
1 ⩽ j ⩽ k− 1, then

b0sn = 0 =⇒ sn = 0 for all n ⩾ 0,

which is a contraction to the fact that f has positive degree. Now let j ⩾ 1 be the largest
index such that bj ̸= 0, then the sequence satisfies a j-th order homogeneous linear
relation with j < k, which contradicts the assumption that f is the minimal polynomial.
Therefore s0, . . . , sk−1 are linearly independent over Fq.

Corollary. Let s0, s1, . . . be an impulse response sequence in Fq with characteristic
polynomial f(x) ∈ Fq[x]. Then f is the minimal polynomial of the sequence.

Proof. It follows from the previous theorem as s0, . . . , sk−1 are clearly linearly indepen-
dent for an impulse response sequence. sono un culetto di scimmia!



48 linear recurring sequences

Theorem 3.30
Let s0, s1, . . . be a hlrs with minimal polynomial m(x) ∈ Fq[x] and let b be a
positive integer. Then the minimal polynomial m1(x) of sb, sb+1, . . . divides m(x).
Moreover, if s0, s1, . . . is periodic, then m1(x) = m(x).

Remark. It is possible to compute the minimal polynomial of a sequence s0, s1, . . .
knowing the characteristic polynomial

f(x) = xk − ak−1x
k−1 − ak−2x

k−2 − . . .− a0

and the initial state s0 = (s0, s1, . . . , sk−1). We will not give the proof of this algo-
rithm, which is part of the proof of [3.26]. We know that

f(x)s(x) = (1− xr)h(x) where h(x) =
k−1∑
j=0

k−1−j∑
i=0

ai+j+1six
j

with ak = −1. Now let ϕ(x) = GCD(f, h), then

m(x) =
f(x)

ϕ(x)
.

Example. Consider the following hlrs in F2:

sn+4 = sn+3 + sn+2 + sn with s0 = 1, 0, 0, 1.

We want to compute the minimal polynomial of the sequence. We know that

f(x) = x4 − x3 − x2 − 1 = x4 + x3 + x2 + 1 = x3(x+ 1) + (x+ 1)2

= (x+ 1)(x3 + x+ 1).

Now h(x) is given by

h(x) =

k−1∑
j=0

k−1−j∑
i=0

ai+j+1six
j,

where ai are the coefficients of f and ak = −1, with k = 4. Therefore

h(x) = x0(a1s0 + a2s1 + a3s2 + a4s3) + x
1(a2s0 + a3s1 + a4s2)

+ x2(a3s0 + a4s1) + x
3(a4s0) = x

3 + x2 + x+ 1 = x2(x+ 1) + (x+ 1)

= (x+ 1)(x2 + 1) = (x+ 1)3.

Hence
ϕ(x) = GCD(f, h) = x+ 1 =⇒ m(x) =

f(x)

ϕ(x)
= x3 + x+ 1.
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3.4 families of linear recurring sequences
Definition 3.31 – Set of hlrs with fixed characteristic polynomial

Let f(x) be a monic polynomial in Fq[x] with ∂f = k ⩾ 1. We define the set of all
homogeneous linear recurring sequences in Fq with characteristic polynomial f as

S(f) = { σ hlrs in Fq | f is a characteristic polynomial for σ } .

Remark. The order of S(f) is qk, as with f fixed, we can only change the initial state.

Remark. Let σ, τ be sequences in Fq with

σ : s0, s1, . . . and τ : t0, t1, . . .

We define the sum between σ and τ as

σ+ τ : s0 + t0, s1 + t1, . . .

Let c ∈ Fq, we define the scalar multiplication between c and σ as

c σ : c s0, c s1, . . .

With these operations, S(f) is a vector space over Fq of dimension k.

Theorem 3.32
Let f, g be two monic and nonconstant polynomials in Fq[x]. Then

S(f) ⊆ S(g) ⇐⇒ f | g.

Proof. ” ⇒ ”Suppose S(f) ⊆ S(g). Let σ be the impulse response sequence in S(f). By definition
f is a characteristic polynomial for σ and, since σ is an impulse response, f is the minimal
polynomial m(x) of σ. But σ ∈ S(g), hence

f(x) = m(x) | g(x).

” ⇐ ”Suppose f divides g. Let σ ∈ S(f) and let m(x) be the minimal polynomial of σ. Then,
by [3.26],

m(x) | f(x) | g(x) =⇒ m(x) | g(x) =⇒ σ ∈ S(g).

Theorem 3.33 – Intersection of S(fi)
Let f1, . . . , fh be monic and noncostant polynomials in Fq[x]. Let d(x) =
GCD(f1, . . . , fh), then

S(f1) ∩ S(f2) ∩ . . . ∩ S(fh) =

{
(0, 0, . . .) if d(x) = 1
S(d) otherwise



50 linear recurring sequences

Proof. Let σ ∈ S(f1)∩ . . .∩S(fh). If m(x) is the minimal polynomial of σ, then m divides
fi for all i = 1, . . . , h. If d(x) = 1, then m(x) = 1 and σ is the zero sequence. Otherwise,
if d(x) > 1, then m divides d and d is a characteristic polynomial for σ, hence σ ∈ S(d).
Conversely, let σ ∈ S(d). By construction d divides fi for all i = 1, . . . , h and, with the
same argument. we get

S(d) ⊆ S(fi), ∀ i =⇒ S(d) ⊆ S(f1) ∩ . . . ∩ S(fh).

Notation. We define S(f) + S(g) to be the set of all sequences σ + τ with σ ∈ S(f)
and τ ∈ S(g).

Theorem 3.34 – Sum of S(fi)
Let f1, . . . , fh be monic and noncostant polynomials in Fq[x]. Then

S(f1) + S(f2) + . . .+ S(fh) = S(c),

where c is the monic least common multiple of f1, . . . , fh.

Proof. We prove the case for h = 2, the general case follows by induction. Let σ ∈ S(f)
and τ ∈ S(g). By definition of c we have

f | c =⇒ S(f) ⊆ S(c) and g | c =⇒ S(g) ⊆ S(c),

hence S(f) + S(g) ⊆ S(c). By Grassman formula we have

dim
(
S(f) + S(g)

)
= dim

(
S(f)

)
+ dim

(
S(g)

)
− dim

(
S(f) ∩ S(g)

)
= dim

(
S(f)

)
+ dim

(
S(g)

)
− dim

(
S(d)

)
,

where d = GCD(f, g). Now

c(x)d(x) = f(x)g(x) =⇒ c(x) =
f(x)g(x)

d(x)
.

Moreover dim
(
S(f)

)
= ∂f, dim

(
S(g)

)
= ∂g and dim

(
S(d)

)
= ∂d. Hence

dim
(
S(f) + S(g)

)
= ∂f+ ∂g− ∂d = ∂c = dim

(
S(c)

)
,

which implies S(f+ g) = S(c).

Theorem 3.35 – Minimal polynomial of the sum of sequences
For i = 1, 2, . . . , h let σi be a hlrs in Fq with minimal polynomial mi(x) ∈ Fq[x].
Suppose that m1, . . . ,mh are pairwise coprime. Then the minimal polynomial of
σ1 + . . .+ σh is

m(x) =

n∏
i=1

mi(x).
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Theorem 3.36 – Least period of the sum of sequences
For i = 1, 2, . . . , h let σi be a hlrs in Fq with minimal polynomial mi(x) ∈ Fq[x].
Suppose that m1, . . . ,mh are pairwise coprime. Then the least period of σ1+ . . .+
σh is

r = lcm(r1, . . . , rh),

where ri is the least period of σi.

Proof. We prove the case for h = 2, the general case follows by induction. Let r be the
least period of σ1 + σ2. We know, by previous theorem, that the minimal polynomial
m(x) of σ1 + σ2 is equal to m1(x)m2(x), where m1,m2 are respectively the minimal
polynomials of σ1, s2. Then

r = ord(m) = ord(m1m2) = lcm
(
ord(m1), ord(m2)

)
= lcm(r1, r2).

Example (mi not coprime). Let σ1, σ2 be two hlrs in F2 defined as

σ1 :

{
sn+4 = sn+3 + sn+1 + sn

s0 = (0, 0, 0, 1)
σ2 :

{
sn+5 = sn+4 + sn

s0 = (0, 0, 0, 0, 1)

As both σ1 and σ2 are impulse response sequences, their minimal polynomial coincides
with their characteristic polynomial:

m1(x) = f1(x) = x
4 + x3 + x+ 1 = x3(x+ 1) + (x+ 1) = (x+ 1)(x3 + 1)

= (x+ 1)2(x2 + x+ 1)

m2(x) = f2(x) = x
5 + x4 + 1 = (x2 + x+ 1)(x3 + x+ 1)

Since m1,m2 are not coprime, we can not apply the last theorem. But, from [3.34],
we know that S(f1) + S(f2) = S(c), where

c(x) = lcm(f1, f2) = (x+ 1)2(x2 + x+ 1)(x3 + x+ 1).

Now the least periods of σ1, σ2 are respectively

r1 = ord(f1) = lcm(2, 3) = 6 and r2 = ord(f2) = lcm(3, 7) = 21.

Moreover ord(c) = lcm(2, 3, 7) = 42, but we only know that the least period r of
σ1+σ2 is a divisor of 42. Let f(x) = c(x), f is a characteristic polynomial for σ1+σ2,
so we can compute the minimal polynomial computing the first 7 terms of σ1 + σ2
and applying the algorithm:

σ1 : 0001110 . . . σ2 : 00001111 . . .

hence σ1 + σ2 : 0001001 . . . and

s0 = 0 s1 = 0 s2 = 0 s3 = 1

s4 = 0 s5 = 0 s6 = 1

then we can compute h(x) and find

m(x) = (x+ 1)2(x3 + x+ 1).

Therefore σ1 + σ2 has least period r = lcm(2, 7) = 14.
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Theorem 3.37 – Product of S(fi)
Let f1, . . . , fh be monic and noncostant polynomials in Fq[x]. Then there exists a
noncostant monic polynomial g ∈ Fq[x] such that

S(f1)S(f2) · . . . · S(fh) = S(g).

Remark. In general it is not easy to determine g(x). We will now consider a special
case which allows a simpler determination.

Notation. Let f1, . . . , fh be noncostant polynomial in Fq[x]. We define

f1 ∨ f2 ∨ . . .∨ fh

as the monic polynomial whose roots are the distinct elements of the form

α1α2 · . . . · αh where αi ∈ V(fi),

which are element of the splitting field of f1 · . . . · fh over Fq. Observe that the
conjugates of α1 · . . . · αh over Fq are still elements of this form. Hence f1 ∨ . . .∨ fh
is a polynomial over Fq.

Theorem 3.38 – Product of S(fi) for simple polynomials
Let f1, . . . , fh be monic and noncostant polynomial in Fq[x] without multiple roots.
Then

S(f1)S(f2) · . . . · S(fh) = S(f1 ∨ f2 ∨ . . .∨ fh).



4 B O O L E A N F U N C T I O N
4.1 introduction
In this section we will give the basic definitions on Boolean functions. To lighten the notation
we will use F for F2 and Fn for Fn

2 .

Definition 4.1 – Boolean function
A boolean function is a map

f : Fn −→ F.

Notation. The algebra of all boolean function on Fn is denoted by

Bn := { f : Fn → F | f is a boolean function } .

Clearly |Bn| = 2
2n .

Definition 4.2 – Truth table
Let f ∈ Bn and write Fn = {P1, . . . , P2n }. The truth table f is the evaluation of f in
Pi:

f = ev(f) =
(
f(P1), . . . , f(P2n)

)
∈ F2n

.

Define
xi : Fn −→ F, (a1, . . . , an) 7−→ ai.

Given I ⊂ {1, . . . , n} a square free monomial over I is defined as

XI =
∏
i∈I

xi.

A boolean function can be expressed as a square free polynomial. Namely the algebraic
normal form (ANF) of f ∈ Bn is

f(X) =
∑

aIXI with aI ∈ F.

Definition 4.3 – Hamming distance for boolean functions
Let f, g ∈ Bn. We define the hamming distance between f and g as the usual hamming
distance between their truth tables f, g

d(f, g) = d(f, g).

That is the number of components in which they differ.

Remark. Consequently we can define the hamming weight of f ∈ Bn as

w(f) = w(f) = { P ∈ Fn | f(P) = 1 }
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Notation. Let S ⊂ Bn and f ∈ Bn. The distance between f and S is given by the
minimum distance between f and the elements of S, namely

d(f, S) = min
s∈S

d(f, s).

Example. Consider the following boolean function f ∈ B2:

f : F2 −→ F, (x1, x2) 7−→ x1x2 + x1.

Write F2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. The truth table of f is given by

(0, 0) (0, 1) (1, 0) (1, 1)

x1 0 0 1 1
x1x2 0 0 0 1
f 0 0 1 0

From this we can easily compute the hamming distances

d(f, x1) = d(f, x1) = 1; d f, x1x2 = d(f, x1x2) = 2;

and the hamming weights:

w(f) = 1; w(x1) = 2; w(x1x2) = 1.

What we have seen in this example can be easily generalized.

Lemma 4.4. The hamming weight of a square free monomial XI is given by

w(XI) = 2
n−|I|, where I ⊂ {1, . . . , n}.

Notation. We denote with An the class of affine function on Fn, namely

An = { f ∈ Bn | ∂f ⩽ 1 }

Definition 4.5 – Nonlinearity of a function
Let f ∈ Bn be a boolean function. The nonlinearity of f is defined as the distance
between f and An:

N(f) = d(f,An) = min
α∈An

d(f, α).

Remark. The Reed-Muller code RM(n, r) is a class of code defined by all the boolean
function in Bn with degree less or equal r:

RM(n, r) = { f | f ∈ Bn, ∂f ⩽ r } .

Therefore, given f ∈ Bn, we have

N(f) = d
(
f, RM(n, 1)

)
.



4.1 introduction 55

Lemma 4.6. Let f ∈ Bn be a boolean function. Then

N(f) ⩽ min
(
w(f), 2n − w(f)

)
.

Proof. N(f) is defined as d(f,An), therefore

N(f) ⩽ d(f, α) for all α ∈ An.

Moreover 0, 1 ∈ An and

d(f, 0) = w(f); d(f, 1) = 2n − w(f).

Hence
N(f) ⩽ min

(
w(f), 2n − w(f)

)
.

Definition 4.7 – Balanced function
Let f ∈ Bn be boolean function. f is a balanced function if

w(f) = 2n−1.

Proposition 4.8
Let α ∈ An, α = a1x1 + . . . anxn + a0 = a • x + a0, where a = (a1, . . . , an). If
a ̸= (0, . . . , 0) then α is balanced.

Proof. Without loss of generality we can assume a0 = 0. Then we obtain:

w(α) = |{ x ∈ Fn | α(x) = 0 }| = |{ x ∈ Fn | α · x = 0 }| = |⟨α⟩⊥| = 2n−1.

Definition 4.9 – Dirac symbol
Let a ∈ Fn. We define the Dirac symbol δa as

δa : Fn −→ F, x 7−→

{
1 a = x

0 a ̸= x

Remark. Clearly δa ∈ Bn.

Definition 4.10 – Fourier transform
Let f ∈ Bn be a boolean function. The Fourier transform of f is a linear function

Ff : Fn −→ Z, a 7−→
∑
x∈Fn

f(x)(−1)a
•x.
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Definition 4.11 – Walsh transform
Let f ∈ Bn be a boolean function. The Walsh transform of f is the Fourier transform
of the sign function of f,

Wf : Fn −→ Z, a 7−→
∑
x∈Fn

(−1)f(x)+a•x.

Theorem 4.12 – Relation between Walsh and Fourier transform
Let f ∈ Bn be a boolean function. Then

Wf(a) = 2
nδ0(a) − 2Ff(a).

Corollary.

Ff(a) = 2
n−1δ0(a) −

Wf(a)

2
.

Corollary. Let f ∈ Bn be a boolean function. Then

N(f) = 2n−1 − max
a∈Fn

|Wf(a)|

2
.

Proof. By the last theorem we have

Wf(0) = 2
n − 2Ff(0) = 2

n − 2
∑
x∈Fn

f(x) = 2n − 2w(f).

Now let a ∈ Fn and let α ∈ An be the affine function defined as α(x) = a • x. Then

Wf(a) =
∑
x∈Fn

(−1)f(x)+a•x =
∑
x∈Fn

(−1)f(x)+α(x) =Wf+α(0)

= 2n − 2w(f+ α) = 2n − 2 d(f, α).

Hence
d(f, α) = 2n−1 −

Wf(a)

2
.

Since this holds for every α ∈ An, the thesis follows by the definition of nonlinearity.

Theorem 4.13 – Parseval’s relation
Let f ∈ Bn be a boolean function. Then∑

a∈Fn

Wf(a)
2 = 2n.

Proof. By definition∑
a∈Fn

Wf(a)
2 =

∑
α∈Fn

( ∑
x∈Fn

(−1)f(x)+a•x

)2

=
∑
a∈Fn

( ∑
x∈Fn

(−1)f(x)+a•x

)( ∑
y∈Fn

(−1)f(y)+a•y

)
=

∑
a∈Fn

∑
x,y∈Fn

(−1)f(x)+f(y)+a•(x+y).
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Recall, by previous lemma, that

∑
a∈Fn

(−1)a
•v =

{
2n v = 0

0 v ̸= 0,

hence ∑
a∈Fn

∑
x,y∈Fn

(−1)f(x)+f(y)+a•(x+y) =
∑

x,y∈Fn

(−1)f(x)+f(y)
∑
a∈Fn

(−1)a
•(x+y)

= 2n
∑
x∈Fn

(−1)0 = 2n2n = 22n.

Corollary.
N(f) ⩽ 2n−1 − 2n/2−1.

4.2 bent boolean function
Definition 4.14 – Bent function

Let f ∈ Bn be a boolean function. f is called bent if and only if

N(f) = 2n−1 − 2n/2−1.

Remark. Namely f is bent if and only if its Walsh transform coefficient are all ±2n/2,
in fact

N(f) = 2n−1 − max
a∈Fn

|Wf(a)|

2
= 2n−1 − 2n/2−1,

that is, W2
f is constant.

Definition 4.15 – Derivative of a boolean function
Let f ∈ Bn be a boolean function and let a ∈ Fn. The derivative of f in the direction
of a is given by

Daf(x) = f(x+ a) + f(x).

Remark. It follows ∂Daf < ∂f.

Theorem 4.16
Let f ∈ Bn then

• if f is bent then f is not balanced.

• f is bent if and only if all its derivative Daf are balanced, for all a ∈ Fn, a ̸= 0.

Proof. • If f is bent, we have already observed that

|Wf(a)| = 2
n/2 for all a ∈ Fn.

Now suppose that f is balanced, then w(f) = 2n−1. Therefore

Wf(0) = 2
n − 2Ff(0) = 2

n − 2w(f) = 2n − 22n−1 = 0,
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which is a contradiction.

• Not given.

Definition 4.17 – Equivalent function
Let f, g ∈ Bn be boolean functions. f and g are equivalent if and only if there exists
M ∈ GL(Fn), v ∈ Fn such that

f(x) = g(Mx+ v).

In this case we write f ∼ g.

Remark. If f ∼ g then

∂f = ∂g N(f) = N(g) w(f) = w(g).

In particular f is bent if and only if g is bent.

Theorem 4.18 – Decomposition of bent function
Let h ∈ Bn+m, f ∈ Bn and g ∈ Bm be boolean functions such that

h(x1, . . . , xn, xn+1, . . . , xn+m) = f(x1, . . . , xn) + g(xn+1, . . . , xn+m).

Then h is bent if and only if both f and g are bent.

Remark. This proves that there exists a bent function f ∈ Bn for every n even. As
we can easily prove that x1x2 ∈ B2 is bent and that

x1x2 + x3x4 + . . .+ xn−1xn ∈ Bn

is bent for the previous theorem.

Definition 4.19 – Partially bent function
Let f ∈ Bn be a boolean function. f is called partially bent if there exists U,V ⊆ Fn

such that U⊕ V = Fn and

f
∣∣
U

is bent and f
∣∣
V

is affine.

4.3 correlation immune functions
Definition 4.20 – Correlation immune function

Let f ∈ Bn be a boolean function. f is called k-th correlation immune if, for any
vector x of n independent random variables x = (x1, . . . , xn), the random variable
z = f(x) is independent from any vector

(xi1 , . . . , xik) with 0 ⩽ i1 < . . . < ik < n.
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Remark. In particular if f is k-correlation immune, we will have

P
(
(xi1 , . . . , xik) = v | f(x) = 1

)
=
1

2k
and P

(
f(x) = 1 | (xi1 , . . . , xik) = v

)
=
1

2
.

Example. Let f ∈ B3 be a boolean function defined as

(0, 0, 0) 7−→ 1 (0, 1, 1) 7−→ 0 (1, 1, 0) 7−→ 1

(0, 0, 1) 7−→ 1 (1, 0, 0) 7−→ 0 (1, 1, 1) 7−→ 1

(0, 1, 0) 7−→ 1 (1, 0, 1) 7−→ 1

we can easily check that

P
(
x1 = 1 | f(x) = 1

)
=
3

6
=
1

2
and P

(
(x1, x2) | f(x) = 1

)
=
2

6
=
1

3
.

Theorem 4.21 – Characterization of correlation immune functions
Let f ∈ Bn be a boolean function. f is k-th correlation immune if and only if

Ff(v) = 0 for every v ∈ Fn, 1 ⩽ w(v) ⩽ k.

Corollary. Let f ∈ Bn be a boolean function. f is k-th correlation immune if and
only if

Wf(v) = 0 for every v ∈ Fn, 1 ⩽ w(v) ⩽ k.

Definition 4.22 – Correlation resilient function
Let f ∈ Bn be a boolean function. f is called k-th correlation resilient if and only if
f is k-th correlation immune and balanced.

Theorem 4.23
Let f ∈ Bn be a boolean function. Then

• If f is k-th correlation immune, then deg f ⩽ n− k.

• If f is k-th resilient immune and k ⩽ n− 2, then deg f ⩽ n− k− 1.

Theorem 4.24
Let f ∈ Bn be a boolean function. Suppose that f is k-resilient, then

N(f) ⩽ 2n−1 − 2k+1 where k ⩽ n− 2.
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Theorem 4.25
Let f ∈ Bn be a boolean function. Suppose that f is k-resilient, with k ⩽ n − 2,
then

• deg f = n− k− 1 implies N(f) = 2n−1 − 2k+1.

• deg f < n− k− 1 implies N(f) ⩽ 2n−1 − 2k+1.



5 V E C TO R I A L B O O L E A N
F U N C T I O N

5.1 introduction
Definition 5.1 – Vectorial boolean function

A vectorial boolean function is a map

F : Fn
2 −→ Fm

2 ,

where
F = (f1, . . . , fm), fi : Fn

2 −→ F2 ∈ Bn.

Notation. Where necessary, we’ll denote a vectorial boolean function from Fn to
Fm with (n,m)-vBF.

Notation. The boolean functions fi are called coordinate functions.

Remark. As we are interested in studying the properties of the S-boxes of translation
based block ciphers, we will only consider vectorial boolean functions of the form

F : Fn
2 −→ Fn

2 .

Definition 5.2 – Component of vBF
Let F = (f1, . . . , fn) be a vBF and let α = (α1, . . . , αn) ∈ Fn. Any combinations of
the coordinate of F

g =

n∑
i=1

αifi,

is called a component of F.

Notation. A component

g =

n∑
i=1

vifi,

can also be written as v • F with v ∈ Fn.

Remark. There are 2n − 1 nonzero components of a given vBF.
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Definition 5.3 – Degree of a vBF
Let F = (f1, . . . , fn) be a vBF. We define the degree of F as the maximum degree of
its coordinate:

deg F = max
i

deg(fi).

Definition 5.4 – Pure vBF
A vBF F is called pure if

deg(v • F) = deg(F •w) for all v,w ̸= 0.

Definition 5.5 – Derivative of vBF
Let F be a vBF. We define the derivative of F in the direction f a ∈ Fn, a ̸= 0 as

DaF(x) = F(x+ a) + F(x).

Remark. It is easy to show that

(DaF) • v = Da(v • F),

where the second derivative is made in the sense of boolean functions.

Definition 5.6 – Walsh transform
Let F be a (n−m)-vBF. We define the Walsh transform of F in u ∈ Fn and v ∈ Fm

as
WF(u, v) =

∑
x∈Fn

(−1)v
•F(x)+u•x.

Remark. If v ̸= 0, then
WF(u, v) =Wv•F(u).

5.2 properties on nonlinearity
Definition 5.7 – Nonlinearity of vBF

Let F be a vBF. We define the nonlinearity of F as the minimum nonlinearity of its
components:

N(F) = min
v∈Fn

v ̸=0

N(v • F).

Property 5.8. Let F be a (n,m)-vBF, then

N(F) = 2n−1 −
1

2
max
u∈Fn

v∈Fm\{0}

|WF(u, v)|.
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Proof. By definition of nonlinearity

N(F) = min
v∈Fn

v ̸=0

N(v • F).

Now v • F is a boolean function, and by [4.1] we have

N(v • F) = 2n−1 −
1

2
max
u∈Fn

|Wv•F(u)| = 2
n−1 −

1

2
max
u∈Fn

|WF(u, v)|.

The claim follows.

Theorem 5.9 – Bound of nonlinearity
Let F be a (n,m)-vBF, then

N(F) ⩽ 2n−1 − 2n/2−1.

Proof. Follows from the definition of nonlinearity and [4.1]

Definition 5.10 – Bent vBF
Let F be a (n,m)-vBF. F is called bent if and only if

N(F) = 2n−1 − 2n/2 − 1.

Remark. By definition of nonlinearity, F is bent if only all of its components are bent.

Proposition 5.11
Let F be a (n,m)-vBF. Then F is bent if and only if DaF is balanced for all a ∈ Fn\{0}.

Proof. By definition of bent function and of nonlinearity, F is bent if and only if v • F is
bent for all v ∈ Fn \ {0}. But v • F is a boolean function and by [4.16] v • F is bent if and
only if Da(v • F) is balanced for all a ∈ Fn \ {0}. Now

Da(v • F) = v • F(x) + v • F(x+ a) = v •
(
F(x) + F(x+ a)

)
= v •DaF.

Hence Da(v • F) is balanced if and only if v • DaF is balanced; as this holds for every
v ∈ Fm \ {0} it is equivalent to say that DaF is balanced.

Definition 5.12 – Parseval’s relation
Let F be a (n,m)-vBF, then∑

u∈Fn

v∈Fm\{0}

W2
F(u, v) = (2m − 1)22n

Proof. By definition of Walsh transform, we get

WF(u, v) =Wv•F(u).
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Then we can apply [4.13] to every components of F, which are 2m − 1. Hence∑
u∈Fn

v∈Fm\{0}

W2
F(u, v) =

∑
v∈Fm\{0}

∑
u∈Fn

W2
v•F(u) =

∑
v∈Fm\{0}

22n = (2m − 1)22n.

Theorem 5.13
Let F be (n,m)-vBF with n even. Suppose that F is bent, then

m ⩽
n

2
.

Remark. In particular there are no permutations which are bent functions.

Theorem 5.14 – Sidelnikov bound
Let F be (n,m)-vBF with m ⩾ n− 1. Then

N(F) ⩽ 2n−1 −
1

2

√
3 · 2n − 2− 2

(2n − 1)(2n−1 − 1)

2m − 1
.

Proof. Recall that

N(F) ⩽ 2n−1 −
1

2
max
u∈Fn

v∈Fm\{0}

|WF(u, v)|

and that WF(u, v) =Wv•F(u). Now∑
u∈Fn

v∈Fm

W4
F(u, v) =

∑
u∈Fn

v∈Fm

( ∑
x∈Fn

(−1)(v
•F)(x)+u•x

)( ∑
y∈Fn

(−1)(v
•F)(y)+u•y

)( ∑
z∈Fn

∗
)( ∑

t∈Fn

∗
)

(5.1)

=
∑

x,y,z,t∈Fn

∑
u∈Fn

v∈Fm

(−1)v
•(F(x)+F(y)+F(z)+F(t))(−1)u

•(x+y+z+t) (⋆)

Now recall that ∑
a∈Fn

(−1)a
•x =

{
2n x = 0

0 x ̸= 0

Hence the inner sum of (⋆) is different from zero when

x+ y+ z+ t = 0 and F(x) + F(y) + F(z) + F(t) = 0.

In that case we get 2n2m. Hence

(⋆) = 2n2m
∣∣{ (x, y, z, t) ∈ F4n

∣∣ x+ y+ z+ t = 0 and F(x) + F(y) + F(z) + F(t) = 0
} ∣∣x+ y+ z+ t =

0 =⇒ t =
x+ y+ z = 2n2m

∣∣{ (x, y, z) ∈ F3n
∣∣ F(x) + F(y) + F(z) + F(x+ y+ z) = 0

} ∣∣
⩾ 2n2m

∣∣{ (x, y, z) ∈ F3n
∣∣ x = y or x = z or y = z

} ∣∣
as the vectors which respect the condition F(x) + F(y) + F(z) + F(x + y + z) = 0 are the
only ones of those form. Moreover the last cardinality is equal to

3 |{ (x, x, z) | x, z ∈ Fn }|− 2 |{ (x, x, x) | x ∈ Fn }| = 3 · 22n − 2 · 2n.
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Hence ∑
u∈Fn

v∈Fm

W4
F(u, v) ⩾ 2

n2m(3 · 22n − 2 · 2n).

Now we have to subtract the cases in which v = 0, that is∑
u∈Fn

v=0

W4
F(u, v) =

∑
u∈Fn

W4
F(u, 0).

In particular

WF(u, 0) =
∑
x∈Fn

(−1)u
•x =

{
2n u = 0

0 u ̸= 0

Therefore ∑
u∈Fn

v∈Fm\{0}

W4
F(u, v) ⩾ 2

n2m(3 · 22n − 2 · 2n) − 24n

Finally we observe that

max
u∈Fn

v∈Fm\{0}

W2
F(u, v) ⩾

( ∑
u∈Fn

v∈Fm\{0}

W4
F(u, v)

)/( ∑
u∈Fn

v∈Fm\{0}

W2
F(u, v)

)

so

max
u∈Fn

v∈Fm\{0}

W2
F(u, v) ⩾

2n2m(3 · 22n − 2 · 2n) − 24n

(2m − 1)22n
= 3 · 2n − 2− 2

(2n − 1)(2n−1 − 1)

2m − 1
,

which gives the desired bound.

5.3 bijective vectorial boolean function
In order to study S-boxes, we are particularly interested in bijective vectorial boolean func-
tions. That is functions F which are permutations over Fn.

Theorem 5.15
Let F be a vBF. Suppose that F is a permutation, then

• deg F ⩽ n− 1.

• v • F balanced for all v ̸= 0.

Theorem 5.16 – Bound of nonlinearity
Let F be a vBF. Then

N(F) ⩽ 2n−1 − 2
n−1

2 .

Proof. It follows from [5.14] with m = n.

Remark. In general this is true only for vBF that are permutation, that is when
n = m.
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Definition 5.17 – Almost bent vBF
Let F be a vBF. F is almost bent if

N(F) = 2n−1 − 2
n−1

2 .

Remark. Clearly, in order to be almost bent, n must be odd. Which is the opposite
case to that of bent boolean functions.

Proposition 5.18
Let F be a vBF. Suppose that F is almost bent, then v • F is not bent for all v ̸= 0.

Definition 5.19 – Differentiable δ-uniform vBF
Le F be a vBF. F is said to be differentiable δ-uniform if, for any a ∈ Fn \ {0}, b ∈ Fn,

δF(a, b) =
∣∣ { x ∈ Fn | DaF(x) = b }

∣∣ ⩽ δ where δ = max
a∈Fn\{0}

b∈Fn

δF(a, b).

Remark. δ ⩾ 2 for any F. In fact if x is a solution of F(x) + F(x+ a) = b, so is x+ a.
Moreover δ is even by the same argument

Definition 5.20 – Almost perfect nonlinear vBF
Let F be a differentiable 2-uniform vBF. Then F is said almost perfect nonlinear
(APN).

Proposition 5.21
Let F be a vBF defined as

F : (F2)
n −→ (F2)

n, x 7−→

{
1
x

x ̸= 0
0 x = 0

where (F2)
n ≃ F2n .

Then F is APN if and only if n is odd.

Proof. We know that F is APN if and only if δ = 2 with

δ = max
a,b

∣∣ { x ∈ Fn | F(x) + F(x+ a) = b }
∣∣.

If x+ a ̸= 0, x ̸= 0, then

b = F(x) + F(x+ a) =
1

x
+

1

x+ a
=
x+ a+ x

x(x+ a)
=⇒

0 = bx2 + abx+ a,

which has at most two solutions. Now consider the cases in which x+ a = 0 or x = 0, in
both cases we have 1/a = b. Let’s check if there are other solutions substituting b in the
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previous equation:

0 =
1

a
x2 + x+ a =⇒ 0 = x2 + ax+ a2 =⇒ x2 = a2 + ax =⇒

0 = x4 + a2x2 + a4 =⇒ 0 = x4 + a4 + a3x+ a4 =⇒
0x (x3 + a3) =⇒ (y+ 1)Q3(y) = 0,

with y = x/a. Now
Q3(y) = 0 ⇐⇒ y2 + y+ 1 = 0,

which has two solution in F4 = F22 . We know that F22 is a subfield of F2n if and only if
2 | n, namely if n is even.

Remark. To summarize, if n is odd, then there exist a vBF F that is an APN permu-
tation. Namely the inversion function

F : (F2)
n −→ (F2)

n, x 7−→

{
1
x

x ̸= 0
0 x = 0

where (F2)
n ≃ F2n .

However, if n is even we have

• If n = 4 there are no APN permutations.

• If n = 6 there is at least an APN permutation.

• If n ⩾ 6 we don’t know.

It is possible to prove that, if F is an APN permutation with n even, then

deg(F • v) ⩾ 3.

and v • F can not be partially bent.

Theorem 5.22 – Almost bent implies APN
Let F be a vBF. Suppose that F is almost bent, then F is APN.

Proof. From the proof of [5.14] we can see that F is AB if and only if∣∣{ (x, y, z) ∈ F3n
∣∣ F(x) + F(y) + F(z) + F(x+ y+ z) = 0

} ∣∣
=
∣∣{ (x, y, z) ∈ F3n

∣∣ x = y or x = z or y = z
} ∣∣

Now, if we fix x, y ∈ Fn with y ̸= x then there exists a ̸= 0 such that y = x + a. Hence
if z ̸= x, x+ a we have

F(x) + F(x+ a) + F(z) + F(x+ x+ a+ z) ̸= 0 ⇐⇒ F(x) + F(x+ a) ̸= F(z) + F(z+ a),

for all x,∈ Fn, z ̸= x, x+ a. Which is equivalent to

DaF(x) ̸= DaF(z) for all x, z ∈ Fn, z ̸= x, x+ a,

that implies F APN.



68 vectorial boolean function

Definition 5.23 – Weakly differential d-uniform
Let F be a vBF. F is said to be weakly differential δ-uniform if, for any a ∈ Fn \ {0},

|Im(DaF)| >
2n−1

δ
.

Notation. If δ = 2, then F is said weakly almost perfect nonlinear (w-APN).

Proposition 5.24
Let F be δ-uniform vBF, then F is weakly δ-uniform.

Proof. If we fix a ∈ Fn \ {0} and consider all the counterimages of DaF we get Fn, in
particular

2n =
∑
b∈Fn

|DaF
−1(b)| =

∑
b∈Im(DaF)

|DaF
−1(b)| ⩽

∑
b∈Im(DaF)

δ

= δ|ImDaF|,

where the inequality holds as F is δ-differentiable.

5.4 further properties
Definition 5.25 – Affine equivalence

Let F,G be two vBF. F is said to be affine equivalent to G, F ∼ G, if there exists
M,N ∈ GL(Fn) and a, b ∈ Fn such that

F(x) = N
[
G(Mx+ a)

]
+ b.

Proposition 5.26 – Properties of affine equivalent functions
Let F,G be two affine equivalent vBF. Then

• deg F = degG.

• N(F) = N(G).

• δ(F) = δ(G).

• wδ(F) = wδ(G).

Where δ is the differentiability and wδ is the weak differentiability.

Definition 5.27 – Extended affine equivalent functions
Let F,G be two vBF. F is said to be extended affine equivalent to G, F ∼EA G, if there
exist a vBF F ′ and Λ ∈ AGL(Fn) such that

F ∼ F ′ and G(x) = F ′(x) +Λ(x).
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Definition 5.28
Let F be a vBF. We define

n̂(F) = max
a∈Fn\{0}

∣∣ { v ∈ Fn \ {0} | deg(DaF • v) = 0 }
∣∣.

Remark. We will see that, from a cryptographic point of view, F is a strong function
if and only if n̂ is "small".

Property 5.29. Let F be a vBF. Suppose F is w-APN, then n̂(F) ⩽ 1.

Property 5.30. Let F be a vBF. Then n̂ = 0 implies F w-APN.

Example. Let’s consider the Gold function

F : Fn −→ Fn, x 7−→ x2
k+1.

Let s = GCD(k, n). Then F is 2s-differentiable; in particular, if GCD(k, n) = 1, then
F is APN.

Solution. It is possible to prove that F is a permutation if n/s is odd. Now let a, b ∈ Fn

with a ̸= 0, we have to prove that F(x) + F(x+ a) = b has at most 2s solution:

F(x) + F(x+ a) = b =⇒ x2
k+1 + (x+ a)2

k+1 = b.

Let x1, x2 be two distinct solution of the equation (remember that if x is a solution so is
x+ a), then{
x2

k+1
1 + (x1 + a)

2k+1 = b

x2
k+1

2 + (x2 + a)
2k+1 = b

=⇒ x2
k+1

1 +(x1+a)(x
2k

1 +a2
k

) = x2
k+1

2 +(x2+a)(x
2k

2 +a2
k

);

hence

x2
k+1

1 + x2
k+1

1 + x1a
2k

+ ax2
k

1 + a2
k+1 = x2

k+1
2 + x2

k+1
2 + x2a

2k

+ ax2
k

2 + a2
k+1

=⇒ (x1 + x2)a
2k

+ a (x1 + x2)
2k

= 0 =⇒ a (x1 + x2)
[
a2

k−1 + (x1 + x2)
2k−1

]
= 0

=⇒ a2
k−1 = (x1 + x2)

2k−1 =⇒ y2
k−1 = 1,

where y = (x1 + x2)/a. The last equation has GCD(2k − 1, 2n − 1) solutions, where

GCD(2k − 1, 2n − 1) = 2GCD(k,n) − 1 = 2s − 1.

Hence y is an element of a subgroup of F∗
2n with 2s − 1 elements, therefore the group of the

solutions seen as a subgroup of F2n has 2s elements.
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