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T | STRUCTURE OF FINITE
FIELDS

These notes follow [REF]. In the following, we will assume many concepts contained in the
first chapter of [REF]. For this chapter we will assume the following notions and notations:

Notation. With F E,K we will always refer to a field.

Definition 1.1 — Algebraic Variety

Let f € F[x], the variety of f is the set of all the roots of f over an extension of F:

Vf)={axeE|fla) =0} with E D F.

Property 1.2.
x¢—1|xP—1 < a]|b.

Property 1.3.
V()] < of.

Definition 1.4 — Perfect Field .

Let K be a field. K is a perfect field if given f € K[x] an irreducible polynomial, then
f has no multiple roots.

Remark. A field with characteristic zero or a finite field is always a perfect field.

1.1 CHARACTERIZATION OF FINITE FIELDS

Lemma 1.5. Let F,K be finite fields with F D K and |[K| = q. Then F has q™

elements, where
m = [F: K].

Proof. Let m = [F : K], F is a vector space of degree m over K. Therefore F has a basis

over K of m elements
X1y...,0m €F

Then every element 3 € F can be uniquely represented as
Ao + A0 + .o+ A with A1,...,An € K.

Since |K| = ¢, we can choose A; among q elements for each 1, therefore

[Fl=q™. O
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N\

Theorem 1.6 — Cardinality of a Finite Field

Let F be a finite field. Suppose that
CharF=p and [F:Fpl =m,

then F has p™ elements.

J

Proof. As CharF = p then its prime subfield is isomorphic to F,, and thus contains p
elements. By [1.5] follows that F has p™ elements. O

Lemma 1.7 (Field equation). Let F be a finite field with q elements, then

al=q for all a € F.

Proof. If a =0 then it is obvious that a9 = a. Suppose a is a nonzero element of F. We
can now think a as an element of F* which is a group of order q — 1 under multiplication.
By group theory it is well known that

a9 =1 = a9=q. m}

Lemma 1.8. Let F be a finite field with q elements and K a subfield of F. Then F is
a splitting field of x9 — x over K and the polynomial in K[x] factors in F[x] as

xq—x:H(x—a).

acF

Proof. We know that
V(x9—x)| <9(x9—x) =q.

By previous lemma we know that a9 = a for all a € F, therefore we know exactly q such
roots, which are all the distinct elements of F. Thus x9 — x splits as indicated and it
cannot split in any smaller field. O

z

Fields

Theorem 1.9 — Existence and Uniqueness of Finite

For every prime p and every integer m, there exists a finite field F with p™ elements.
Moreover any finite field with g = p™ elements is isomorphic to the splitting field
of x4 —x over Fy,.

Proof. Let F be the splitting field of x9—x over FF,. Since q = p™ and F,, has characteristic
p, the derivative of x4 —x is qx9~ ' —1 = —1 in Fp [x]; therefore the polynomial has q
distinct roots in F. Let

S={aeF|la9—a=0}=V(x9—x),

then S is easily proven as a subfield of F with q elements. But x9 — x splits in S since it
contains all its root, therefore F = § is a finite field with q elements.

Let F, E be finite fields with ¢ = p™ elements. Then both F and E has I, as a subfield.
From previous lemma it follows that they are both splitting fields of x9 —x over IF,,. Thus
F and E are isomorphic, and the uniqueness is proven (up to isomorphism). |
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Notation. We denote with [Fp,» a finite field with p™ elements.

Remark. Rather than acting this way, we might be tempted to build F,» adjoining
a root of f to I, where f € F,[x] is an irreducible polynomial of degree n. However,
with our current knowledge, we cannot be sure about the existence of such f.

\. J

C Theorem 1.10 — Subfield criterion

Let ¢ = p™ and consider the finite field Fy. Then every subfield of F is of the
form Fpm with m | n. Conversely, if m [ n, then there is exactly one subfield of Fgq
with p™ elements.

- J

Proof. Let K be a subfield of Fy. By [1.5], K has order p™ for some m < n. From the
same lemma we get that p™ must be a power of p™, hence m is a divisor of n.
Suppose m | n, then

L N I )

hence xP™ —x | xP" —x in Fp[x]. Therefore all the roots of xP™ — x are roots of xP" —x
and are thus elements of Fy. It follows that a splitting field of xP™ — x is a subfield of
Fq, and by [1.9] such splitting field has order p™.

Suppose Fq,F2 are both subfields of Fy with order p™. If they were distinct, F; would
contain more than p™ roots for xP" — x, which is a contradiction. O

Definition 1.11 — Primitive Element .

Let Fq a finite field. A generator « € Fy of the multiplicative group Fy is called a
primitive element of IFq.

\. J

‘g Theorem 1.12 — Primitive element \

Let Fq a finite field, then the multiplicative group Fg is cyclic. Therefore there
exists at least one primitive element of Fy.

- J

Proof. We assume q > 3, otherwise it’s trivial. Let h = ¢ — 1 the order of F and let
h=pi'"py ... P

be its prime factorization. We know that the polynomial x"/P+ — 1 has at most h/p;
roots in Fy for every 1 < i < m. Since % < h, there is at least one nonzero element in
F which is not a root of this polynomial. Let a; be such an element and consider

h/pit
b; = (li/.pL .

As bf‘l = 1, the order of b; must divide p;* and therefore it is of the form p;* with
0 <si <r;i. But
PTii] h/pi
[ =aq; #1,

as a; is not a root of x"/Pt — 1. Therefore the order of b; is exactly pl'. Now consider

b=bbs-... b,

5
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we claim that b has order h and it is therefore a primitive element of IFy. Suppose, by
contradiction, that the order of b divides h. Thus it must divide at least one of h/p;
with T <1< m, suppose it does divide h/py. It follows

h h
1=bMPr =pl/Prpl/Pr Ll
Remember that the order of b; is pi*, and, for 2 < i< m, p;* divide h/p;. Hence
bt =T forall2<i<m — b/ =1,

This would implies that the order of by divides h/p1, which is impossible as the order of
by is p? . O

Remark. We know that in cyclic group there are @(d) elements of order d, with d
a divisor of the group’s order. Therefore Fq has @(q — 1) primitive elements. In
particular, if « is a primitive element of Fq, then &” is a primitive element of F iff
T and q — 1 are coprime.

Remark. The reason why this does not hold for every group is that, in general, the
property
IV(f)| < of

is false. For example in Zf ={1,2,3,4 } we know that the order of an element could
be 1,2 or 4. Moreover

ford(e) =T} =1 and  [{ord(a) =2} =[V(x* —1)| <2,

therefore there is at least one element with order 4, which is a generator of Zg.

Definition 1.13 — Defining element

Let Fq be a finite field and F, an extension field of Fq. o € F, is called a defining
element of F.. over Fg if

Proposition 1.14 — Primitive element as defining element

Let I be a finite field and . an extension field of Fy. Then [F, is a simple algebraic
extension of F and every primitive element of I, are defining element of F, over Fy.

Proof. Let « be a primitive element of F;. As o € F; we have Fq(x) C F,. But «is a
generator of of I}, therefore

F,={0,0,0,...,a" " } CFq(a).

Therefore Fq () = F,. O

Corollary. Let F,m be a finite field and n a positive integer. Then there exists an
irreducible polynomial f in Fpm [x] of degree n.

Proof. Let Fynm be the extension field of F,m. By previous theorem we know that
Fprnm = Fpm(a) with « € Fynm. Let f € Fpm[x] be the minimal polynomial of . We



1.2 ROOTS OF IRREDUCIBLE POLYNOMIALS |
know that f exists and is irreducible, moreover
[F-an :]Fpm] =N

implies that f has degree n. O

Example (Anatomy of Fis). Fi1g = F,4, by the subfield criterion, the subfield of
Fq6 are all of the form F,« with k | 4. Therefore F,, F4 are the only proper subfield
of Fi6. We know that

V(X16 —X) = F16.

As 1|2 |4 we have that x* —x | x* —x | x'® —x, where x* —x splits in F, and x* —x
has a factor of degree 2 as [F4 is an extension of degree 2 over F,. What remains is a
polynomial of degree 12 which factors in three polynomial of degree 4, as the degree

of the extension Fi¢ over F5:
X' —x =x (x = 1)(x* + x + 1)1 (x)f2(x)f3(x).

The following is a graphical representation of Fy4 decomposition:

F4
Fi6

Moreover Fj. has order 15, therefore F16 has ¢(15) = 8 primitive elements. It is also
possible to compute the other factors of x'® —x:

f1=x*+x+1 f=x*+x3+1 fa=x*+x>+x>+x+1.

Later we will understand why all the roots of f1, f, are the primitive elements of Fy¢.
The roots of f3 are defining elements, but not primitive.

1

.2 ROOTS OF IRREDUCIBLE POLYNOMIALS

Lemma 1.15. Let Fy be a finite field, f € Fq[x] an irreducible polynomial and « a
root of f in an extension field of Fy. Let h € Fq[x], then h(«) = 0 if and only if f
divides h.

Proof. Let g be the minimal polynomial of « over IFy. By definition if « is a root of f,
then g divides f; but both f and g are irreducible in Fq[x], therefore they are associate:

f(x) = ag(x) with a € Fyq.

The lemma follows from the property of the minimal polynomial. O

Lemma 1.16. Let Fy be a finite field and f € Fq[x] an irreducible polynomial of
degree m. Then f(x) divides x4" — x if and only if m divides n.

7
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Proof. Suppose f(x) | x9" —x, then the set of roots of f is contained in that of x9" — x,
which is isomorphic to Fqn. But f is irreducible, therefore V(f) is isomorphic to Fqm and
from [1.10] we know that

]qu CFqn <~ m|TL.

Suppose m | n, then Fqm C Fgn. Let « be a root of f in the splitting field of f over Fy.
As f is irreducible
[Fq(x) :Fgl =m = Fq(a) =Fgm.

Therefore o € Fqn and ad" = «, thus « is a root of x4" —x € Fqlx]. From previous
lemma we deduce that f divides x9" — x. a

Proposition 1.17 — Root of an irreducible polynomial

Let Fg be a finite field and f € Fq [x] an irreducible polynomial of degree m. Then f
has a root o € Fqm and the set of roots is

V(f) = { oo, ot L el },

which are all distinct in Fgm.

Proof. Let o be a root of f in the splitting field of f over Fq. Then [Fq(x) : Fql = m,
hence Fq(x) = Fqm and o € Fgm. Now suppose 3 is a root of f, we want to show that
39 is also a root of f. Write

f(x) =ap+arx+...+amx™ with a; € Fy.

Then, using [1.7] we get

(B9 =Y aipii=3 (aip)= (> apt)’ =f(p)9 =0,
i=0 i=0 i=0

Therefore o, x9,..., «9™ " are roots of f. We are left to prove that these element are
distinct. A A

Suppose, by contradiction, that o9 = a9’ for some 0 < i < j < m — 1. By raising this
identity to the power g™, we get

qm j+i _ (qu = o
From [1.15] follows that f(x) divides x4™ """ —x and by [1.16] this is possible only if
m | m— ] + i»

which is a contradiction as 0 < m —j +1< m. O

Corollary. Let Fq be a finite field and let f € Fq[x] an irreducible polynomial of
degree m. Then the splitting field of f over Fy is Fqm.

Proof. From the previous theorem follows that f splits in Fqm. Moreover, from the proof
of the theorem follows that

2 m—1
Fqlo, .. 09 ) =Fg(a) =Fgm,

where « is a root of f in Fgm. O
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Corollary. Let Fy be a finite field and let f,g € Fq[x] irreducible polynomials with
the same degree. Then the splitting fields of f, g are isomorphic.

| Proof. Follows from the previous lemma. O

Definition 1.18 — Conjugates of an element .

Let Fgm be an extension of Fq and let « € Fgm. Then the elements

m—1

2
o, o9, o9«

are called conjugates of o with respect to Fyq.

\. J

C Theorem 1.19 — Order of conjugates 3\

Let Fq be a finite field and « € Fy. The conjugates of o have the same order in
the group Fy.

N\ J

Proof. Let a € Fy, from [1.12] we know that Fy is a cyclic group, therefore if o has order
m then the order of a¥ is given by

m
d(a*) = .
ord(e™) = =D i
In particular a conjugates of « has the form «d'. If o has order m then m divides q — 1,
which is coprime with any power of q. Therefore m is coprime with q* and a9 has the
same order of o. O

Remark. This explain why in the previous example all the roots of f1, f> were primitive
elements. Now we can also determine the order of the roots of f3. As elements of
Fis they can have order 1,3,5 or 15, we know that they don’t have order 1 or 15.
But now we know that all the roots have the same order, therefore it cannot be 3 as
x3 — 1 has at most 3 roots and f3 has 4 roots. Thus the order of the roots is 5.

Corollary. Let o be a primitive element of Fy, then all its conjugates are also
primitive elements of IFy.

Definition 1.20 — F;-automorphism

Let Fgm be an extension of Fy. A map o is said to be an automorphism of Fqm over
Fq if is an automorphism of Fym that fixes the elements of Fy.

Notation. From now on we will refer to [Fg-automorphism simple with automor-
phism.
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C Theorem 1.21 — Characterization of automorphism

The distinct automorphism of Fgqm over Fy are exactly the mappings

o,02,...,0™ 1 id, where

0:Fgm — Fgm,a+— a9, (Frobenius Map)

& J

Proof. First we prove that o is an automorphism. Let o, 3 € Fqm, then

ola+b)=(a+b)9=a9+b9=0(a)+ o(b)
o(ab) = (ab)9 = a9 = g(a)o(b)

so 0 is an endomorphism of Fym. Now
o) =0 <= a9=0 < =0,

thus Ker(o) = {0} and so o is injective. Since Fym is finite and o is an injective endomor-
phism, o is an automorphism of Fqm. Moreover if x € Fq, by [1.7], we have o(«) = a.
So 0 is an automorphism of Fym over Fq. As the composition of automorphism is still an
automorphism, the same follows for o2, ...,0™ '. These are all distinct as the primitive
element is mapped in distinct primitive elements.

Conversely suppose that o is an arbitrary automorphism of Fgm over Fq. Let 3 be a
primitive element of Fqm and let f be its minimal polynomial over Fy. If we are able to
show that o(P) is a root of f, then, from [1.17], would follow that o(B) = B9" for some
0 <j <m-—1. And since ¢ is an homomorphism, we would get that o(ct) = 9" for all
« € Fgm. Now write f(x) = ao + a1x + ...+ am_1x™" ' +x™, then

f(o(B)) =) aio(B) =) ao(p)) =) olaip)
i=0 i=0 i=0
— o(Z aiBi) — 0(0) =0,
i=0
hence o() is a root of f in Fym. m|

1.3 TRACES, NORMS AND BASES

Definition 1.22 — Trace .

Consider Fqm D F, we define the trace Trqu /Fq of Fym over Fy as

m—1

Trp, /iy Fqm — Fgy 00— o+ + a8 + ..+ o

\. J

Definition 1.23 — Characteristic polynomial .

Let K be a finite field and let « € F D K, with [F: K] = m. Let f(x) € K[x] be the
minimal polynomial of & over K with degree d, a divisor of m. The polynomial

g(x) = f(x)™* € Kix]

is called the characteristic polynomial of x over K.
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Remark. The roots of f are the d distinct conjugates of a. It is clear that the roots
of g are all the conjugates of a, therefore

m—1

gx)=ao+arx+...+amx™ T H+x"M=x—a)(x—a¥) ... (x—ad" ),

hence
1

a4ad ... +ad" = Tre/k (o) = —am—1 € K.

This shows that Trg/k («) is always an element of K.

\. J

C Theorem 1.24 — Trace properties \

Let Tr be the trace of Fqm over Fg. Then Tr satisfies the following properties:

1. Tr(a+B) = Tr(x) + Tr(P) for all ¢, b € Fgm.
2. Tr(ca) =c Tr(x) for all c € Fgq,x € Fgm.

Tr is a linear transformation from Fgm onto Fy.

> 88

Tr(c) =mc for all c € Fy.

5. Tr(a9) = Tr(a) for all ox € Fgm.

- J

Proof. 1. In a field of characteristic q we know that (a 4+ b)9 = a9 + b9, therefore

Tr(a+B) =a+PB+ (c+P)4+...+ (ax+p)d" "

—oaBat BTl I
= Tr(a) + Tr(B).

2. Trivial as ¢9 =c for all ¢ € Fyq.

3. The properties (1) and (2) and the previous observation, show that Tr is a linear
transformation. If we view Fqm and Fq as vectorial spaces, Tr is a map from a
space of dimension m to a space of dimension 1. Therefore, if we show that Tr isn’t
the zero map, then it is onto. Now let o« € Fqm, Tr(a) = 0 if and only if o is a
root of x4™ ' 4 ... +x9+x € Fq[x], but this polynomial has at most g™ ! roots
in Fgm, which has q™ element.

4. Trivial as a9 = a for all a € Fy.

5. It follows from a9™ = o for all o« € Fgm. O

C Theorem 1.25 — Linear

transformation over extension field

Let F be a finite extension over a finite field K and let Tr be the trace of F over K.
The linear transformation of F into K, considered as vector spaces, are exactly the
mappings

Lg: F— K, o0 — Tr(p ) with 3 € F.

Moreover Lg # L, if 3,y are distinct elements of F.

- J

Proof. Let Lg be the map from F to K defined as Lg(x) = Tr(p «) for all « € F. From
the property (3) of the previous theorem, follows that Lg is a linear transformation from

"
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F into K. Now let 3,y € F with 3 # v, by definition

Lp(a) =Ly () = Tr(B o) — Tr(y &) = Tr (B — ) «),

which is not always zero as Tr is distinct from the zero map, therefore Lg and L, are
different.

Now we have to prove that every linear transformation form F into K can be expressed
as Lg for a suitable B € F. Observe that every linear transformation can be obtained if
we assign to each element of a basis of F over K to an arbitrary element of K. As a basis
of F over K has m elements, this can be done in q™ different ways. But we already have
q™ different linear maps given by Lg when varying 3 € F, therefore those maps already
exhaust all possible linear transformation. O

Proposition 1.26 — Characterization of trace equal to zero

Let Tr be the trace of Fqm over Fq. If o € Fgm then
Tr() =0 <= a=p9-7,

for some 3 € Fgm.

Proof. Tt follows form [1.24], in fact

Tr(a) = Tr(B9 — B) = Tr(BY) — Tr(B) = Tr(B) — Tr(p) = 0.

Consider the polynomial x4 —x — & and suppose Tr(x) = 0. Let B be a root of the
polynomial over some extension field of Fym, if we can prove € Fym then we are done
as B9 —p = Now

0="Tr(a) =Tr(BY —B) = (B4 —B) + (B —B)I +... + (B9 — p)9"
=(BY—B)+ (BT — B ...+ (BT BT )
:qu*(%

therefore B € Fqm by the field equation. O

Proposition 1.27 — Transitivity of Trace

Let K be a finite field, let F be a finite extension of K and E a finite extension of F.
Then
TI‘E/K(CX) = TrF/K (TI'E/F(CX)) for all & € E.

Proof. Suppose that [E: F] =n and [F: K] = m, so that
[E:K]=[E:F[F:K]=mn.

Let o € E, then we have

i — j m qi
TI‘F/K (TI‘E/]:((X)) = TrE/F((x)q = Z (Z ot )
i—o i—0  j—o
m—1n—1 mn—1
= Z Cqum+i Z Cqu
i=0 j=0 k=0



Definition 1.28 — Norm .

1.3 TRACES, NORMS AND BASES \

Consider Fqm D g, we define the norm N]qu/]Fq of Fgm over Fq as

m—1

: a.. . . .qd
NE m/Fq: Fqm — Fgya— a9 ..o

\.

Remark. With the same reasoning as the observation about the trace, we see that
the norm of & can be read off from the characteristic polynomial g of & over Fq. In
particular

Np m/Fy (&) = (=1)"ao.

It follows that the norm of every element of Fqm is always an element of .

[

N\

Theorem 1.29 — Norm properties

Let N be the trace of Fqm over Fq. Then N satisfies the following properties:
1. N(aB) = N(a) N(B) for all &, 3 € Fgm.
2. Nis a map from Fgm onto Fq and from Fyw onto Fy.
3. N(a) =a™ for all a € Fyq.

4. N(a9) = N(«) for all o € Fgm.

Definition 1.30 — Dual bases .

Proof. DA FINIRE. O

Let F be a finite extension over K. Let A = {a1,...,m}, B ={f1,...,Pm} be two
bases of F over K. A and B are said to be dual bases if we have

0 fori#j
1 fori=j

Tre/k (oiBy) = {

for 1 <1i,j <m.

Remark. Tf {1,...,x;m} is a basis of F over K, then for all « € F we have
a=ci(o)org +ca(x)og + ...+ ().
Where we can consider c; as a linear transformation from F into K:
cj: F— K ot — cj(ax).
According to [1.25], there exists 35 € F such that
¢j(a) = Trp/k(PBjx) for all @ € F.
Therefore, putting o« = ¢y, we get

0 fori#j
1 fori=j

Tre/k (o Bs) = cjlog) = {
It follows that {B1,...,Bm} is another basis of F over K, in fact suppose

m
D> ABj=0  with Aj €K,
j=1

13
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then if we multiply the sum for a fixed o; and apply the trace, we get

m m m
Z)\jocifﬁjzo - TI‘(Z}\jOCiE)j) =0 = Z?\jTI'(OCiBj):?\iZO
j=1 j=1 j=1

— A =0 foralll<i<m.

So we have proven that {&1,...,&m} is a basis if and only if {B1,...,Pm} is a basis.

Notation. If {«1,...,0m} = {B1y...,Pm}, then {o1,..., 0} is called a self-dual
basis.

Definition 1.31 — Normal basis .

Consider Fqm D Fq. A basis of the form

2 m—1
A N S

consisting of an element x € Fym and its conjugates with respect to Fq, is called a
normal basis of Fym over Fyq.

Remark. There are many distinct bases of Fqm over Fy. In addition to the normal
basis, another one of particular importance is the polynomial basis given by the powers
of a defining element o of Fgqm over Fyg:

2 -1
Loyt oo™

Definition 1.32 — Discriminant

Let F D K be an extension of degree m and let oy, ..., € F. The discriminant of
those elements is defined by the determinant of order m given by

Tresk (o) Trel(onoz) - Trek(ogom)

Trejk (o) Trel(oeoz)  --- 0 Trek(ogonm)
AF/K(“h'-')(xm): . . .

Trr/k(amoa)  Trek(omon) o Trex(otmom)

Remark. As the trace of « € F is always an element of K, it follows from the definition
that Ag/k(ot1,...,&m) is an element of K.

\

N

C Theorem 1.33 — Characterization of basis by discriminant

Let F D K be an extension of degree m and let oq,...,m € F. Then {otq, ..., otm}
is a basis of F over K if and only if

Apjx(oay...yoem) #0.

\§ J

Proof. Let {at1,...,0m} be a basis of F over K. In order to prove that the discriminant
of a1,..., 0y is distinct from zero, we’ll prove that the rows of the matrix defining the
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determinant are linearly independent. Suppose that there exists cy,...,cm € Ksuch that
Cq TI‘]:/K((X]O()')+...+CmTI‘F/K((XmO(j):0 for 1 <j<m.
Let B =cio¢1 +...Cn0m, then

Trek(Boay) =0forall 1 <j<m = Trgk(Pax) =0forall x € F

as &1,...,&m generate F. As Trg g is distinct form the zero map, this is only possible if
=0 <<= ciy+...cnot;m, =0 = ¢c1=...=c¢cm =0.
Conversely suppose that the discriminant is distinct from zero and let cq,...,c;p € K

such that cioy + ... 4+ cmam = 0. Then, if we multiply this identity by a fixed o, we
get
Cl1o10G + oo+ Crn&ma =0 forall T <j < m.

Applying the trace to each identity, we obtain
Cq TI“]:/K(O(1 O(j) +...+Cm TI‘F/K(O(m(X]') =0 forall T <j < m,

which is a linear relation over the rows of the discriminant’s matrix. But as

Ak (x1,y...y&m) # 0, those rows are linearly independent, therefore
ci=...=¢m =0
and &1,..., &y is a basis of F over K. O

Remark. With the same purpose, we can also consider another matrix, whose entries
are in F, given by

(x] az e (Xm
o o ad
/\ =
m—1 m—1 m—1
o o c ¥

It is easy to show that *AA = A. Therefore, from the previous theorem, follows that
{t1,...,m} is a basis of F over K if and only if det A # 0.

. J

T Theorem 1.34 — Characterization of normal basis \

Let F D K an extension of degree m. Let « € F and let

f(x) =x™—1 and glx) = ax™ "+ adx™ 24 4" Cxad™

polynomials in F[x]. Then {«, a9,..., «9™ '} is a normal basis of F over K if and
only if the resultant R(f, g) of f and g is distinct from zero.

- J

Proof. Consider the determinant of the matrix given in the previous remark with o =
m—1 . .
ooy = ol oo = ad After a suitable permutation of the rows we get the

following:
o ad i’ od™ !
qm! o xd ... gd™?
m—2 m—1 m—3
+ q o4 X Ce ol (*)
2 3
aq (Xq (xq PR (x
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Now consider the resultant R(f,g), which is given by a determinant of order 2m — 1.
Performing linear operation over the matrix of the resultant we obtain a matrix whose
determinant is, apart from the sign, equal to the determinant in (x). In particular we
need to add the (m+1)st column to the first column, the (m-+2)nd column to the second
column, and so on, finally adding the (2m — 1)st column to the (m — 1)st column, in
order to get a determinant which factorized into the determinant of the diagonal matrix
of order m — 1 with entries —1 along the main diagonal and the determinant in (x). The

theorem then follows from the previous remark. m|
Lemma 1.35 (Artin). Let @1,..., @ be distinct homomorphism from a group (G, -)
into the multiplicative group (F*,-) of an arbitrary field F. Let aj,...,a; € F that

are not all zeros and consider

P: G — FKgr— ar1e1(g) +...+ ar@(g).

Then 1 is not the zero map.

Proof. We prove it by induction on t.
e For t =1 it is trivial as Y = a; @7 and @1 is not the zero map.

e Suppose it holds for t — 1, we prove it for t. Assume by contradiction that

t
P(g) = Z a;@i(g) =0 for all g € G.
i1

Then a; # 0 for all i, as if it exists aj = 0 for 1 < j < t, then { is a linear
combination of at most t —1 ¢4, which leads to a non-zero map by induction. Now
as g,h € G implies gh € G and ¢; are homomorphism, it follows that

t t
P(gh) =) aieilgh) =) aigi(g)ei(h)=0  forall g,heG.
i=1 i=1

Now multiplying @+(h) to P(g) and subtracting from the previous identity, we
obtain

0=> aii(g)ei(h)— [a191(g)ee(h) +...+ ar@i(g) @i (h)]
1i=0

ar[@1(h) —ec(W)]@i(g) + ...+ a1 [@e—1(h) — ¢ (h)] @e—1(g),

which is a linear combination over the first t — 1 @;. Therefore, by induction and

& 7é Oa
ai[@i(h)—@¢(h)] =0 = @i(h)—p(h) =0 < @i(h) =@¢(h) forallheG.

But this is impossible as the @; are distinct. [}

Remark. For the next proof we need to recall some concepts and facts from linear
algebra. Let V be a finite-dimensional vector spaces over a field K with [V : K] = n.
Let

T:V—YV,

be a linear operator on V.
o Let f(x) = anx™+ ...+ a1x + ap € K[x], we say that f(T) = 0 if and only if

f(M(V) =0 <= (anT"+...+ a1T+ aol)(v) for all v e V.
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e The uniquely determined monic polynomial Mt of least positive degree such
that M1(T) = 0 is called the minimal polynomial for T.

e If My is the minimal polynomial and f is a polynomial such that f(T) = 0, then
M divides f.

e g(x) =det(T —x1) is called the characteristic polynomial for T and is a monic
polynomial of degree equal to the dimension of V. In particular My divides g.

e A vector v € V is called a cyclic vector for T if
WV, Ty, T?v,..., T v}

is a basis for V.

Lemma 1.36. Let T be a linear operator on the finite-dimensional vector space V.
Then T has a cyclic vector if and only if the characteristic and minimal polynomial
of T are identical.

Theorem 1.37 — Normal Basis Theorem

Let F be a finite extension of a finite field K. Then there exists a normal basis of F
over K

Proof. Consider the Frobenius morphism
T: ]qu — ]qu, X —> (Xq.
By [1.21], we know that all the distinct automorphism of Fqm over Fq are given by
(T,7%,..., TV, T =1

Because of the definition of T, these may also be considered as linear operators on the
vector space Fqm over Fgq. As T™ = I, we have that the minimal polynomial of T divides
x™ —1. As x™ —1 is monic, if we are able to prove that Mt has degree at least m, then
we would have that Mt = x™ —1. Suppose by contradiction that Mt has degree at most
m — 1, then

m—1 ) m—1 )
Mr(x) =) ax' = Mg(T)= ) aT'=0.
i=0 i=0

But T', TV are distinct for 1 # j and
Ti: (]FZ)) — (Ft]))

are group homomorphism for all i. So My is a linear combination of distinct group
homomorphism, then, by Artin’s lemma, M+(T) can not be the zero map, which is a
contradiction. Therefore x™ — 1 is the minimal polynomial for the linear operator T.
Now consider the characteristic polynomial for T, given by g(x) = det(T—xI). Remember
that g is a monic polynomial with degree equal to the dimension of Fgqm over Fq, which
is m, moreover Mt divides g. As M1 =x™ — 1 is also a monic polynomial of degree m,
it follows that
g(x) =Mg(x) =x"—1.

So the previous lemma implies that it exists an element & € Fqm such that « is a cyclic
vector, that is
(o, Tot, T?0ty..., T™ T}

17
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is a basis for Fqm over Fq. But applying T to o« we have

(o, To, T20, .. T o) = {ox, %, ..., 8™ ),
which is a normal basis. O
Remark. Tt is possible to prove that « can be chosen to be primitive. ]

1.4 ROOTS OF UNITY AND CYCLOTOMIC
POLYNOMIALS

In this section we analyse the splitting field of x™ — 1 over a field K. First we will deduct the
primitive element theorem from a more general fact.

Lemma 1.38. Let G a finite abelian group of order N, with N = p7' - ... pg*.
Suppose that for all 1 <1 < t it exists oy € G such that cx}?vpi # 1. Then G is cyclic
and

¢ s
G={(g) withg=]]BuBi=0o;""".

i=1

Proof. We want to prove that (; has order p5*. Now

St N/p P N _
bi = (‘Xi ) i 1,
then the order T of ;i divides p{*. Suppose that it is strictly less: T < pfﬁ], then

i1

_ (XN/Pi

e
e;—1 _ N/P-lci )‘Pi
= i s

1= (B = (o
which is impossible for the initial hypothesis. Therefore ord(B;) = p;*. We know that
ord(gh) = mem (ord(g), ord(h)) for all g,h € G.

Then, as ord(p;) are coprime for all i, it follows

ord(HB ) —mcm1 ord Hp O

Lemma 1.39. Let K be a finite field and let G be a subgroup of the multiplicative
group (K*,-) with order N. Then G is cyclic.

Proof. 1t is enough to show that the hypotheses of the previous lemma hold for G. Sup-

pose N = pJ' - ... p{* and fix 1 < i < t, then the set of elements o in K such that
oc]i\l/pi =1 corresponds to the set of roots of xN/Pt —1. As K is a field and xN/Pt —1 lies
in K[x], we have

[VEN/Pe—1)| < ; <N = G\ VNPt —1)£0.

Therefore it exists o; € G such that oc]i\]/ Pr£1. O
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Corollary (Primitive element theorem). Let Fq be a finite field, then the multiplica-
tive group Fg is cyclic.

Proof. We can consider g as a subgroup of the multiplicative group (IF’:], -), which is
finite and therefore has order N. Then [y is cyclic by previous lemma. O

Definition 1.40 — Cyclotomic field

Let K be a finite field and let n be a positive integer. The splitting field of x™—1 € K[x]
is called the n-th cyclotomic field over K and is denoted by K(™).

Notation. The set of roots of x™ — 1 in K™ is denoted by E(™).

Remark. EM™) is an abelian group. In fact if , 3 € E(™)| then
(ap M =a"b =1 = (ap ') e EM,

In particular E(™) is a cyclic group.

( Theorem 1.41 — Structure of E(™ \

Let K be a finite field of characteristic p and let n € N*. Then

1. If ptn, then E( is a cyclic group of order n with respect to multiplication
in KM,

2. If p | m, write mp€ with p f m. Then
K™ =k and EM =g(m),

Moreover, the roots of x™—1 in K(™) are the m elements of E(™) each attained
with multiplicity p®.

- J

Proof. Suppose p {n and n > 1 (otherwise is trivial), then x™ — 1 has derivative nx™~!

whose only root is 0 in K™, Therefore GCD(x™ — 1,nx™ ') = 1 and x™ — 1 has only
simple roots. Hence E(™ has n elements and is a cyclic multiplicative group as we proved
in the last remark.

Follows from
XM —1=x"P" 1= (x™—1)P°

and part (1). O

Definition 1.42 — Primitive n-th root of unity

Let K be a field of characteristic p and n € N* with p f n. A generator of the cyclic
group E(M) is called a primitive n-th root of unity over K.

19
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Definition 1.43 — Cyclotomic polynomial

Let K be a field of characteristic p and n € N with p { n. Let « be a primitive n-th
root of unity over K. The polynomial

is called the n-th cyclotomic polynomial over K.

Remark. V(Qq) is clearly the set of all n-th primitive root of unity and [V(Qn)| =
e(n).

\. J

T Theorem 1.44

—x™ — 1 as product of cyclotomic polynomials

Let K be a field of characteristic p and n € Nt with p { n. Then

Xt —1= HQd(X).

din

N\ J

Proof. First observe that x™ — 1 and the product of Qq4(x) have both simple roots. We
know that

V" =Nl=n  and  [V(Q:(x))l = o(t).

Furthermore Q¢ (x) and Qs(x) has no common roots for t # s, therefore

V(TTQaw)| =Y el@ =n.

din dn

Now is enough to show that the two polynomials have the same roots. Let « be a root
of x™ — 1, then ™ = 1 and the order d of & must divide n. Therefore « is a primitive
d-th root of unity and is a root of Qq(x) by definition.

Conversely if « is a root of Qq(x) for some d a divisor of n, then, in particular, « is a
root of x4 —1 and of x™ — 1 as d | n. O

Remark. Suppose 1 is prime, then by previous theorem we can easily get the r-th
cyclotomic polynomial, as
T x' =1 2 r—1
X =1=]]Qax) =Qi(x)Q:(x) = Q.(x) = 7 I T
d|r

That as we expected is a polynomial of degree 1 —1 = @(r). In the same way we get

1 (r—1)rk—1

Que(x) =1+x""+x¥" "4+ . +x

\

C Theorem 1.45 — Coefficient of a cyclotomic polynomial

Let K be a field of characteristic p and n € N* with p f n. Then the coefficient of
Qn (x) belong to the prime subfield of K.

J
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Proof. Let P be the prime subfield of K. We prove this by induction on n.
e If n =1 then Q(x) =x—1 and clearly Q;(x) € P[x].

e Let n > 1 and suppose the claim is valid for all Q4(x) with 1 < d < n. By previous
theorem we have

xt—1
"—1= X)) = =——-——.
x de(x) = Qu(¥) T Quf
But x™ — 1 € P[x] and Qq(x) € P[x] for d < n. Therefore Q,(x) € P[x]. O

V7

N\

Theorem 1.46 — Cyclotomic field as extension field

Let K =Fq be a finite field and n € N* with GCD(n, q) = 1. Then the cyclotomic
field K™ is a simple algebraic extension of K of degree d, where d is the least
positive integer such that

4 =1 (mod n).

q

Moreover Qy, factors into ¢@(n)/d distinct monic irreducible polynomials in K[x] of
degree d and K™ is the splitting field of any such irreducible factor over K.

J

Proof. Let o be a primitive n-th root of unity, in particular a™ = 1. Now o € Fys for
some s, but, by field equation,

x€Fg: = a? '=1 <= n|q°—1 < q*=1 (mod n).

By definition d is the minimum of such s, therefore o lies in F ;a and in no smaller subfield.
In particular the minimal polynomial of o over Fy has degree d. Since this holds for any
root of Qqn, the result follows. O

Remark. If K = Q, then the cyclotomic polynomial Q, is irreducible over K and
KM K] = o(n)

Example. IF;S) is the splitting field of x> — 1. In particular IE"&S) is an extension over
F, of degree d. To compute d we need to find the minimum s such that 2% = 1
modulo 5 or the order of 2 in Zf. We know that d must divide |Z%| = 4, therefore
de{1,2,4}.

2! =2 (mod 5) 22 =4 (mod 5) 2 =1 (mod 5).

Hence [IE‘(ZS] :F;] =4 and ]F;S] = Fy6. Recall what we know about Fi¢ from previous
examples:
x1® —x =x(x — 1)(x? +x + 1)f1f2f3,

with fq, fz,f3 irreducible polynomials of degree 4. Let o be a 5-th primitive root of
unity, now we know that « € Fy¢, but it is not a primitive element as it should have
order 15 and o® = 1. Now o is a root of x> — 1 and

x> —1=]]Qax = Q1(x)Qs(x).

d|5

Moreover we know that 16 has @(15) = 8 primitive elements, which are the roots of
f1, 2, therefore
f3(x) = Qs5(x) = T4+ x +x% +x3 +x*.

21
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Observe that, by previous theorem, Qs factors in @(5)/d = 1 polynomial of degree

d =4, and it is therefore irreducible.
We can also observe that in the factorization of x'® —x there is also Q3(x) = x> +x+1,

whose roots lies in F4. In fact it is easy to check that []F;‘?’) :Fy] = 2.
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21 ORDER OF POLYNOMIAL AND PRIMITIVE
POLYNOMIALS

Lemma 2.1. Let f € Fq[x] be a polynomial of degree m > 1 with f(0) # 0. Then
there exists e € Nt e < q™ — 1 such that

f(x) | x€—1.

Proof. Consider the residue class ring

F
ﬂ:{ao—l—awc—&-...—l—amqocm_] | ai € Fg, o root of  }.

(f)

R has ¢™ — 1 nonzero elements. Now consider the q™ residue classes

R =

() with0<j<q™—T,

which are all nonzero because f(0) # 0. In particular there exists r,s € Nt,0 < v < s <
g™ — 1 such that
X'+ (f) =x° + (f) <= x" =x® (mod f),

hence f divides x* —x" = x"(x*~" — 1). Moreover GCD(x,f) =1 as f(0) # 0, and so
fIx"(x*"—1) = f|x*T"—1.

Now define e =s —r and f divides x* — 1 with 0 <e < q™ — 1. O

Definition 2.2 — Order of polynomial

Let f(x) € Fqlx] with f # 0. If f(0) # 0, we define the order of f as the least positive
integer e such that f divides x¢ — 1:

ord(f) =min {i e N* | f(x)[x' —1}.

If (0) = 0, write f(x) = x"g(x) with h € N* and g(x) € Fq[x] such that g(0) # 0.
Then define the order of f as the order of g.

Example. Let f(x) =x*,k>0,f € Fqlx]. In this case
f(x) = x*g(x) with g(x) = 1.

Therefore the order of f is ord(f) = ord(g) = 1.
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Example. Let f(x) =x2 4+ x+ 1 € F,[x]. It is necessary to compute ord(f) by hand.
Observe that ord(f) > 0f = 2. Clearly f does not divide x? + 1, but is easy to show
that f(x) [ x> +1 (As f = Q3 and x*> + 1 = Q1Q3). Therefore ord(f) = 3.

\.

C Theorem \

2.3 — Order of polynomial equal to the order of its roots

Let f € Fq[x] be an irreducible polynomial of degree m with f(0) # 0 and let & be
any root of f. Then the order of f is equal to the order of & in Fgm.

- J

Proof. As f is an irreducible polynomial of degree m, Fym is the splitting field of f over
Fq. By [1.19], any root of f has the same order in F}m. Let a be any root of f, from
[1.15] we know that

=1 < f(x)|x®—1.

The claim follows if we take e the least positive integer with this property. O

Corollary. Let f € Fq[x] be an irreducible polynomial of degree m. Then

ord(f) | g™ — 1.

Proof. If £(0) # 0, then, by previous theorem,
ord(f) = orde: () | q™ — 1,
as Fgm is a group of order ¢™ — 1. If f(0) = 0, then f irreducible implies
f(x) =cx with ¢ € Fg.

Therefore ord(f) =1]q—1. O

Example. Let f(x) = x> —x? + 1 € F3[x] which is irreducible as it does not have
roots in F3. By previous theorem, we can find the order of f computing the order of
one of its roots o in F3;. Now

ord(a) |33 —1=26 = ord(a) € {1,2,13,26}.

Moreover ord(a) > 0f = 3, hence ord(«) € {13,26}. Then it is enough to compute
a3 = adata, with &3 = x? — 1. Now
d=a(—N=—a=c—a—1=0o?+2x+2
And
=" =(?+20+2 =" +0?+ 1+ >+ o + 2
=at+ o +20% + 20+ 1= + 200+ 2+ a® + 2+ 20* + 20+ 1
=ol+a+2
Therefore
a'3=adata = (a® + a+2)(® + 200+ 2)x = & (x* + 1)
=a(a®+2a+2+1) =a(a?+2a) = &> + 2a?
=o?—1+20=—1.

Hence ord(f) = ord(a) = 26.
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C Theorem 2.4 \

Let Am,e be the set of polynomials in Fq[x] which are monic, irreducible, with
degree m and order e. Then

% if e > 2 and m = ordyz_(q)

[Am,el =<2 ife=m=1

0 otherwise

- J

Proof. Let f € Fq[x] be a monic irreducible polynomial of degree m. If « is a root of f,
by previous theorem we know that

ord(f) = ordﬂrzm(oc) —e < «a°=1.

This is equivalent to saying that all roots of f are primitive e-th root of unity over Fq. In
particular f must divide Q.. But from [1.46] we also know that each monic irreducible
factor of Q. has as a degree the least positive integer such that q° = 1 modulo e, hence
m = ordz,(q). From the same theorem we also know that there are @(e)/m of such
factors.

If m = e =1 the only possibilities for f are given by

f(x) =x—1 and f(x) = x.

Therefore |Aq1 = 2|. O

Lemma 2.5. Let ¢ € N* and f € Fqlx] with (0) # 0. Then

f(x) [ x¢ =1 < ord(f) | c.

Proof. Let e = ord(f) and suppose e | ¢c. Then
e =ord(f) < f(x)|x®—1 and elc < x®*—1|x°—1,

therefore f divides x¢ — 1.
Suppose that f divides x¢ — 1, then ¢ > e. We can write

c=me+r with m,r e NT and0<r<e.
Then
XC—1=xMeT" ] =xMeTT T4 x" —x" =x"(xM¢—1)+ (x" —1).
Now f divides x¢ — 1, hence it divides x™ € — 1, therefore
flx) [ x¢—=1,xm¢—1 = f(x)|x"—1.

But r < e, so v =0 by definition of order. Hence e | c. O

Corollary. Let e,e; € N*. Then, in Fqlx],
GCD(x®' —1,x%2 —1) =x4 —1,

with d = GCD(eq,e2).

25
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Proof. Let f be the GCD(x®' —1,x¢2 —1). Now d = GCD(e1, e2) implies
x4 —1[x® —1 and x4 —1|x —1,

hence x4 — 1 divides f(x). On the other hand, as f divides x®' — 1 and x®2 — 1, from
previous lemma we have

ord(f) | e; and ord(f) | ez.

Therefore ord(f) divides GCD(eq,e;) = d and so f divides x4 — 1. O

C Theorem 2.6 — Order of powers of a polynomial )

Let g € Fq[x] be an irreducible polynomial of order e with g(0) # 0 and let f = g®
with b € N*. Then f has order p'e, where p is the characteristic of Fq and

t=min{ieN"[p'>b}.

- J

Proof. Let ¢ be the order of f, so that f divides x¢ — 1. Then
g(x) | (9(x)" = f(x) [x* =1 < el
by [2.5]. Now g divides x¢ — 1 so g® divides (x¢ — 1)?; by definition of t
pizb = (x* =1 (x* =1,
But Fq has characteristic p, therefore
(x¢ —1)P =xP —1 = f(x) = (g(x))" | xP" —1,
hence ¢ | ep'. Now observe that e | ¢ so we can write ¢ = ke, then
clep' <= kelep' = k|p',

so k=p with 0 <j <tand c=ep’. Note that, by [2.1], e divides q™ — 1, with m the
degree of g, therefore e does not divide p and x® — 1 has only simple roots. Therefore

X —1=xP —1=(x¢—1)P

has e distinct roots, each of them with multiplicity p’. But every root of f = g® has
multiplicity b and _
f(x)| (x*=1)P = b <pl.

However, by construction, the least positive j for this to happen is t. But we have already
seen that j < t, so

j=t and c=pe. O

C Theorem 2.7 — Computing the order of a polynomial \

Let g1,...,9x € Fqlx] be pairwise relatively prime nonzero polynomial and let
f=g1 R ¢ ) ' Then

ord(f) = lem (0rd(g1 Yyu .,ord(gk)).

- J
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Proof. Let e; = ord(gi) and e =lcm(eq,...,ex). By [2.5]
gi(x) [ x® —1[x®—1 for all 1.

Therefore lem(gq,...,9x) = f | x — 1. Now let ¢ = ord(f), then ¢ | e. As g; are factors
of f, we have

fx)|x* =1 = gi(x) [x* =1 = ei]c for all i.

Therefore e | c. O

Example. Consider the following polynomial in F;[x]:
fix) = (x> +x+1)3x* +x+ 1) = g(x)°h(x).

We know by previous examples that g is primitive, therefore g has order ord(a) = 3
with & a root of g. h is also primitive and has order 15 as its roots. The order
of g® is ord(g)pt, with t the least positive integer such that p* > 3. Therefore
ord(g?) = ord(g)2% = 12. By the previous theorem we have

ord(f) = lem(12, 15) = 60.

Corollary. Let Fy be a finite field with characteristic p and let f € Fq[x] with
£(0) # 0. Suppose f = afd' ... 2%, where a € Fq and f; € Fq[x] irreducible and
distinct polynomials with by > 1 for all i. Then

ord(f) = lem (ord(fy),...,ord(fx))p",

with t the least positive integer such that p* > max{bs,...,by}.

Remark. In general, factorize f could be difficult, so we want another method of
determining the order of f. Recall that the order of f is defined as the least positive
integer e such that f divides x® — 1. Hence, in general, we can reduce x* modulo f or
compute the order of x in Fq[x]/(f) (which is not always a field).

Now assume that f is irreducible with degree m and order e. By [2.1] we know that
e divides @™ — 1, which can be easily factored even for big values of q and m. Say

qnt—1=pi-...opg,

then we can check if o
x P %1 (mod f).

In this case e is a multiple of p:*. If instead it reduces to 1 modulo f, then e is not a
multiple of pi* and we can check whether e is a multiple of p{‘_l ,p{i_z, ...y Pi, by
calculating the residues modulo f of

qm—1 qm—2 gmr71
i

2 3
x Pioyx PiogLo0x P

m

We can repeat this computation for each prime factor of ™ — 1 to obtain the factor-
ization of e.
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Definition 2.8 — Reciprocal polynomial

Let f(x) = ap+ajx+...+an_1Xx™ '+ a,x™ be a polynomial in Fqlx]. The reciprocal
polynomial f* of f is defined as

1
*(x) = x"f (x) =ax " +ax™ ... +Fap1x+ an.

Remark. If £(0) # 0, then « € V(f) if and only if 1/« € V(f*). Conversely, if f(0) =0,
write f(x) = x"g(x) with g(0) # 0, then

(x) ZX“X]—hg (l) =x"""g (l) =g*(x).

\. .

C Theorem 2.9 — Order of the reciprocal polynomial )

Let f € Fq[x] be a nonzero polynomial and f* be its reciprocal polynomial. Then

ord(f) = ord(f*).

\§ J

Proof. Suppose f(0) # 0 and let e = ord(f). If « is a root of f, then a® = 1 and also
(1/x)¢ =1, where 1/ is a root of f*, therefore

flx®—1 = f*|[x®—1.

In the same way we can prove that if f* divides x¢ —1 then also f does. If f(0) = 0, write
f(x) = x"g(x), then by definition of order and from the previous observation, we have

ord(f) = ord(g) = ord(g*) = ord(f*). m|

Notation. Let f be a polynomial in Fq[x]. We say that f is even if all irreducible
factors of f have even order. Otherwise we say that f is odd.

C Theorem 2.10 — Order of f(—x) 3\

Consider Fy with q odd, let f € Fq[x] be a polynomial with f(0) # 0 and let
F(x) = f(—x). Let e = ord(f) and E = ord(F), then

E=e e =0 (mod 4)

E=2¢ e=1 (mod4)ore=3 (mod4)
E=¢/2 e=2 (mod4) and f even
E=e e =2 (mod 2) and f odd

N\ J

Proof. Since ord(f) = e, then by [2.5], f divides x*¢ — 1, hence
FI(—x)*¢—1=x**—1 = E]|2e.

But we can easily invert the role of f and F to obtain that e divides 2E. Therefore

E/ec{1,2,1/2}.
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e Suppose e =0 (mod 4), then e is even, therefore
fIx®*—1LF|(—=x)*—1=x*-1 = E|e.
Moreover E is even, as e =4k and E/e € {1,2,1/2}. Therefore
FIxE—1,f| (—x)E—=1=xF—1 = e|F,
hence E =e.
e Suppose e = 1,3 (mod 4), then
fIxe—1,F|(—x)¢—1=—(x°+1).
Clearly F can not divide also x® — 1, otherwise
F|GCD(x® —1,x*+1)=1.
Hence E 1 e, and knowing E/e € {1,2,1/2} implies E = 2e.

o Suppose e = 2 (mod 4), hence e = 2h with h odd. Consider f = g® with g an
irreducible polynomial in Fq[x]. Note that

I —1=xr=1)E"+1),

so g divides either x™ — 1 or x™ + 1, but not both as they do not have common
factors. Now if g | x™ — 1, then g® | x — 1 which is impossible as f has order 2h.
Therefore

gIx"+1 = ¢°=f|x"+1 = Fl(—x)"+1=—(x"—1),

hence E = e/2. Note that we are necessarily in the case of f even as, by [2.6],
the power of an irreducible polynomial has even order if and only if the irreducible
polynomial itself has even order (and Char(Fq) # 2).

In general we have f = g7 - ... gx with g; is a power of an irreducible polynomial
and g1,..., gk are pairwise relatively prime. By [2.7]

ord(f) = 2h = lem (ord(g1 )yenn ,ord(gk)).

We reorganize gi1,...,gk in such a way that g; has even order 2h; for 1 <i<m
and g; has odd order hj for m +1 < j < k. Note that h; are odd integers with
lem(hy,...,h) = h. By what we already show in the previous point

ord(Gy) = {

<1

2h; m+1<i<k
Then, by [2.7],
ord(F) = E =lem(hiy...,himy 2R,y -« . 2hy).
Hence E=h=e¢/2if m=kand E=2h=ceif m<k. O

Theorem 2.11 — Characterization of a primitive polynomial by its order

Let f € F4[x] be a monic polynomial of degree m with f(0) # 0. Then f is primitive
over [Fy if and only if f has order g™ — 1.
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Proof. If f is primitive then it is irreducible over Fq and, by [2.3], its order is the order of
one of its roots o over Fgm, which is q™ — 1 as « is a primitive element of Fqm over Fy.
Suppose ord(f) = g™ —1 and suppose, by contradiction, that f is reducible over F. Then
either f = g°, with g € Fq[x] irreducible, or f = f1f, with GCD(fy,f,) =1.

e Suppose f = g®, then ord(f) = ptord(g), then p | ord(f), which is impossible as
pfqm—1.

e Suppose f = fif,. f; and f, are monic polynomials in Fq[x] with degree my, m;
and order eq, ey, respectively. In particular

mr_ and ex <q™ —1.
Therefore

(@™ —1) =ord(f) < (™ —1)(q™2 — 1) = q™ ™2 —1—(q™ +q™2)
=q"=T—=(q™ +q™) <q™ 1,

which is impossible. m|

Lemma 2.12. Let f € Fq[x] be a polynomial of degree m with f(0) # 0. Let r be
the least positive integer such that x" = a modulo f, with a € Fy. Then

ord(f) =hr,

with h the order of a in IFZ.

Proof. Let e = ord(f). We have e > r as x® = 1 modulo f. If we perform the division
with reminder between e and r we get

e=sr+t with0<t<r.

Therefore
T=xt=x""" = (x")x"' = a®x" (mod f).

Hence x' = 1/a® modulo f, where 1/a® € Fq. But t < r contradicts the minimality of r
unless t = 0. Therefore e = sr. Moreover a® = 1 and s is the order of a in Fz. O

\_

C Theorem 2.13 \

Let f € Fq[x] be a monic polynomial of degree m > 1 with f(0) # 0. Then f is
primitive over Fy if and only if

(%)

(=1)™f(0) is a primitive element of F
X =a (mod f) with a € Fq

where (q™ — 1)/(q — 1) is the least positive integer such that x" = a modulo f.
Moreover, if f is primitive over F, we have

x" = (=1)"™f(0) (mod f).

J

Proof. Suppose f primitive, consider o« € V(f) which is a primitive element of Fgm,
therefore ord(a) = @™ — 1. Now if we compute the norm of & we get

qm—1

Ng /(&) = (=1)™F(0) = o a =T
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Then (—1)™f(0) is an element of Fq with order q — 1, hence it is a primitive element of
Fq. Since f is the minimal polynomial of & and « is a root of x(4™=1)/(a=1) —(—1)mf(0),
we get

FIxTT = (C1)™(0) = x T = (—1)™F(0) (mod f),

then r < (q™—1)/(q—1). We know that ord(f) = q™ — 1 and, by previous lemma, that
ord(f) is equal to ord(a)r, where a € Fy. Therefore

qm -1
q-—1"
Suppose (*) holds. DA FINIRE!! O

g™ —1=ord(f)=ord(a)r< (q—1)r = r=

2.2 IRREDUCIBLE POLYNOMIALS

C Theorem 2.14 — Factorization of x9" — x 3\

Consider x4™ —x € Fq[x] and let f € F[x] be a generic monic irreducible polynomial
of degree d, with d | m. Then

x4™ —X:Hf.
\_ J

Proof. By [1.16], we know that
fixd" —x < d|m.
Moreover (x4" —x)’ = q™x9"~1 —1 = —1, therefore

m

GCD (x4 —x, (x4" —x)') =1

and x9™ — x has only simple roots. Hence

xqm—x:Hf,

where f are monic irreducible polynomials of degree d | m. O

Notation. Consider the set of monic irreducible polynomials of degree d in Fq[x],
we define

Ng(d) = #{f € Fq[x] | f monic, irreducible, of = d }.

Corollary. Consider N4(d) the number of monic irreducible polynomial of degree d
in Fq[x]. Then

g™ =) dNg(d).

dlm

31
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Definition 2.15 — Mabius function .
The Mobius function p is an arithmetic function defined as
1 n=1
pn) =< (=1* n=pi-...-px,pi # pj primes
0 p? | n,p prime

Lemma 2.16. The Dirichlet transformation of p is given by

T n=1
Z“(d):{o n>1

din

Proof. Suppose n > 1, then

dud=) wd+ > uwd= ) .
o pdzlthl pzfcclllyn\f P pzfcclllrtf P

Consider p1,...,px primes such that p; | n, then

> oud=pM+ ) pd+ Y opd++ Y @

din din din din
p2td,v p d=p; d=pipj d=pi-....px
k k k
=1+ (1>(—1)+ <2)(—1)2+... <k>(_1)k — (14 (=1)"
=0k =0. O

C Theorem 2.17 — Mobius inversion formula

Let h and H be two function from N to an additive abelian group G. Then

H) = Y h(d) < hin) = w@H (3) =) r(3)H@.
dn djn

Proof. We have

S W@H(Z) =Y wY nE) = Y wahe)

dn din Sl n—%%m
.
=> h(® ) ud),
Sin dl¥

where, by previous lemma,

1 2=1<= &6=n
Zu(d)={0 o
an 57

Hence, the last identity becomes

> h(d)) u(d)=hn)-1=nh(n).

Sn dl ¥

Similar to the other direction. O
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Remark. If G is a multiplicative group, the thesis becomes

=[Ind) = nn HH( ) = [T He@y /.

din dn

The proof is identical.

\.

C Theorem 2.18 — Number of monic irreducible polynomial of given de-

The number Ng(n) of monic irreducible polynomial of degree n in Fq[x] is given

by

1
=2 Z u(d)g™ .

din

- J

Proof. Consider h,H: Z — Z with
h(n) =nNg4(n) and H(n) =q"™.

By [2.2] we know that

"=Y dNg(d) < Hn) =) h(d)

din din

Then, using the inversion formula we get

=Y W@H () < nNg) =Y u(d)q™?,

din din

C Theorem 2.19 — Factors of nth cyclotomic polynomial

Let Qn € Fq[x] be the nth cyclotomic polynomial, with p { n. Then

Qnu(x) = [(x4 —1)rv/ @,

dn

from which the thesis. O

Proof. Consider h,H: Z — F4(x) with
h(n) = Qn(x) and H(n) =x"—1.

By [1.44] we know that

"—1=]]Qax) = Hm =]Tn@

din dn

Then, using the inversion formula for the multiplicative case, we get

din din

= [[H@*™Y = Qulx) =[x —nrr/a, O
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C Theorem 2.20 — Product of monic irreducible polynomials of given de-
gree

Let I(q,n) be the product of all monic irreducible polynomial of degree n in Fq[x].

Then )
I(q,n) = [ [(x" —x)r(™/9.

dn

- J

Proof. From [2.14] we know
x4 —x = H I(q,d).

din

Then it is enough to apply the multiplicative case of the inversion formula to obtain the
thesis. 0

Example. We want to compute the product of all irreducible polynomials of degree
2 in F4[x]. By previous theorem we have

q* _
1(q,2) = (x4 — %)@ (x* —x)*(1) = (x4 —x) T (x4* —x) = =%
x9 —x
X1 1 (x@ T =) (xa e pxla=Dla= 4 4 xa=T 4 )

CoxaT—1 xd=1 —1
=x40a7) pxla=Dla=h) 4 a7 41,

For example, if q = 2, then
12,2) =x* +x+ 1,

which is then the only irreducible polynomial of degree 2 in F;[x].

\.

C Theorem 2.21 \

Let I(q,n) be the product of all monic irreducible polynomial of degree n in F[x].

Then
I(q,n) =] [ Qm(x),

for all m for which m | q™ — 1 and n is the order of ¢ modulo m.

- J

The following are the main result we can easily deduce from this sections: Let o € Fgqm
and let g be the minimal polynomial of & over Fy. Suppose g has degree d, then

Property 2.22. g is irreducible over Fq and d | m.

Property 2.23. Let f € Fy[x], then f(x) = 0 if and only if g | f.

Property 2.24. Let f € Fq[x] be a monic irreducible polynomial with f(a) = 0, then
f=g.
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Property 2.25. g divides x9* —x and x4™ — x.

Property 2.26. V(g) = {o, a9,..., «x9" '} and g is the minimal polynomial of all
these elements over .

Property 2.27. If o # 0, then ord(g) = ord]Fgm ().

Property 2.28. g is a primitive polynomial over Fq if and only if « is a primitive
element in Fqa if and only if a has order q¢—1in Fgm-



LINEAR RECURRING
SEQUENCES

Let k € N and let f: (Fq)k — Fq. A sequence S of elements sg, s1,... € Fq satisfying the
relation
Snak = T(Stuy StugtyevvySnik_1) for all n

is called a k-th order recurring sequence.

3.1 FEEDBACK SHIFT REGISTERS

In this section we are interested in linear recurring sequence.

Definition 3.1 — Linear recurring sequence

Let k € N and let a,ar,...,ax—1 € Fq. A sequence S of elements sp,s1,... € Fq
satisfying the relation

Snak = 0k—1Snik—1 + Qx_28nik—2+ ...+ aposn+a for all n

is called a k-th order linear recurring sequence.

Notation. S is called homogeneous if a = 0, otherwise is called inhomogeneous.

Example. A 3-rd linear recurring sequence is a sequence satisfying the relation

Sn+3 = A28n42 + A1Sn41 + AoSn + A.

Definition 3.2 — Ultimately periodic sequence

Let sg,s1,... be a sequence. Let r > 0 and ng > 0 such that
Snir = Sn for all n > ny,

then the sequence is called ultimately periodic and r is called a period of the sequence.

Notation. The least positive period of the sequence is called the least period of the
sequence.

Lemma 3.3. Consider an ultimately periodic sequence sg, s1,.... Let T be the least
period of the sequence and let R be a period. Then r divides R.

Proof. By definition v < R. Then we can perform division with remainder to obtain

R=qr+t with0 <t <.



Definition 3.4 — Periodic sequence

3.1 FEEDBACK SHIFT REGISTERS \

Then
Sn = Sn+R = Sntqr+t = S(n4t)+r+..4T = Sn+ty

hence t is a period of the sequence, which is a contradiction of the minimality of r unless
t=0. O

Let sp,s1,... be an ultimately periodic sequence with least period r. The sequence
is called periodic if
Snir = Sn for all n € N.

Remark. Alternatively, so, s1,... is periodic if and only if it exists r > 0 such that

Snir = Sr for all n € N.

Definition 3.5 — Preperiod .

Let so,s1,... be an ultimately periodic sequence with least period r. The least non-
negative integer ng such that

Sntr = Sn for all n > ny

is called the preperiod.

.

Remark. An ultimately periodic sequence is periodic precisely if the preperiod is zero.

J

-

C Theorem 3.6 — Bound of least period \

Let sg,s1,... be a k-th order sequence over Fq. Then it is ultimately periodic with
period
T < qk.

k1.

Moreover, if the sequence is homogeneous, then r < q

J

Proof. Consider so = (80,51,...,5k—1) € (Fq)k the initial state of the vector. The next
states are uniquely determined:
S1=(81,82y+++,5k)y82 = (82,835, Skt 1)y

where
Sntk = Qk—1Sn+k—1+ Qx—2Snyk—2 + ...+ aAoSn + Q.

Clearly the set of all states {si}ien is a subset of (Fq)*

|{ﬁ}ieN|<qk'

Now suppose that the sequence is homogeneous, then

, in particular

Sn+k = Qk—1Sn+k—1 + Qk—2Sn4+k—2 + ...+ AoSn-

Hence
so =(0,...,0) = s =1(0,...,0) foralli e N

and r = 1. Therefore, if the initial state is not the zero vector, s; € (Fq)*\ {(0,...,0)}
for all i € N. Hence

’{ﬁ}iengqk_]' o
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C Theorem 3.7 — Periodicity of homogeneous sequence

Let so,s1,... be a k-th order homogeneous sequence over Fq satisfying

Snt+k = Qk—1Sn+k—1 + AQk—25n+k—2 + ...+ AoSn.

Suppose ap # 0, then the sequence is periodic.

Proof. From the recurrence relation

Snt+k = Qk—1Sn+k—1 + Qk—28n4+k—2 + ...+ QoSn
and ap # 0 we obtain

1
Sn = ?(Sn+k — Ak 1Snik—1 —+--— A1Sny1).
0

By previous theorem we know that {s;} is ultimately periodic. Let r be its period and
no its preperiod. Suppose by contradiction that ng > 1. We know that s, = sy for
n > ng, but if we consider n = np — 1, we have

1

S = ?(sﬁ+k — Ak—1Sa4k—1 —++-— Q15741)
0
1
= ?(Sﬁ+k+r — Ak TSftk—T4r —++-— Q1Srt147)
0
= Sfitr.

Which is a contradiction of the definition of preperiod. Hence the sequence is periodic. [l

Definition 3.8 — Associated matrix of a hlrs .

Let so,s1,... be a k-th order homogeneous sequence over F4 satisfying

Snt+k = Qk—1Sn+k—1 + AQk—25n+k—2 + ...+ AoSn.

The associated matrix A of the sequence is given by

00 ... 0 a
10 0 a

A= |01 0 @ | e My(Fy)
0 0 oo T @

Remark. Suppose ag # 0, then
detA = (—1)"ap #0 = A € GL(Fq).
In particular the order of A divides |GLy(IFq)[, where

IGLk(Fo)l = (¢ = 1)(qg* — q)(q* —q?) - ... (q* —g*")
=qq? ...-q“"q—1)(g*=1)-...-(g"=1)
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Lemma 3.9. Let sg, s1,... be a k-th order homogeneous sequence over F satisfying

Snt+k = Qk—1Sn+k—1 + Qk—28n+k—2 + ...+ AoSn.

Let A be the associated matrix of the sequence. Then

SnA = Sny1

|  Proof. Follows from the definition of A and sy = (Sn,Snt1y---,Snik—1) by induction. [

C Theorem 3.10 — Order of associated matrix \

Let so,s1,... be a k-th order homogeneous sequence over Fy satisfying
Snt+k = Qk—1Sn+k—1 + Qk—28n+k—2 + ...+ AoSn.

Let A be the associated matrix of the sequence and suppose ap # 0, then the least
period of the sequence divides the order of A in GLi(Fq).

- J

Proof. By a previous remark we know that det A # 0 so that A € GLi(Fq4). By previous
lemma we know that

2
SnA = Sni1; SnA” = Sni2;
Therefore, if e is the order of A, we have

e
SizsinA = Sntey

hence r divides e, with r the least period of the sequence. O

Remark. If sg,s1,... is inhomogeneous, then we can write the state as

Sﬁn:]>sn>sn+1)-'-)sn+kf1-

The associated matrix becomes

1 0 a
00 0 0 a (1)0 0 a
01 0 0 0

C=10 0 1 0 a |=
o AT : A
000...101(71 0

Again we have s,C = sn 1. If e = ord(C), then
snl =51C% =sne.

It is also possible to prove that C € GLyy1(Fq) so that the order of C divides the
order of GLy1(FFq).
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3.2 IMPULSE RESPONSE SEQUENCES,
CHARACTERISTIC POLYNOMIAL

From now on, with hlrs we will refer to an homogeneous linear recurring sequence in Fy,
satisfying a given k-th order linear recurrence relation

Snik = Qk—1Sn+k—1 + Qk—28n+k—2 + ...+ AoSn- (*)

Definition 3.11 — Impulse response sequence

A hlrs do, dy,... is called an impulse response sequence if its initial state is exactly

@:(dO)dh-“»dkfzvdkf]) :(030)-“»0)1)-

Notation. Sometimes we will refer to impulse response sequences with IR.

Lemma 3.12. Let do,d;,... be an impulse response sequence. Let A be its associ-
ated matrix. Then
dm =dn <= AT =A".

Proof. Suppose that A™ = A™, then from [3.9], we have

din = doA™ = doA™ = d,,.

Suppose that dm = dn. By the linear recurrence relation we know that dmi¢ = dni¢
for all t > 0. Then, again by [3.9], we get

dA™ = d A" forall t > 0.

But as do, ds,... is an impulse response sequence, the vectors do,d1,...,dx_7 form a
basis for IF‘; over IFy. Therefore A™ = A™. a

C Theorem 3.13

The least period of a hlrs divides the least period of the corresponding impulse
response sequence.

N\

Proof. Let sg,s1,...beahlrs, do, dy,...bethe corresponding IR and Let A be the matrix
associated with the recurrence relation. Suppose that T is the least period of do, dq,...
and 1o the preperiod. Then dnr = dn for all n > ny and by previous lemma and [3.9]
we have o

AT =AM VN >Ny = Snir=Sn for all n > ny.

Hence 7 is a period of sp, s1, ... and its least period divides T by [3.3]. O

Example. Consider the recurrence relation in F, given by
Sn44 =Sn +2+sn

If we consider the corresponding impulse response sequence do = 0,d; = 0,d,; =
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0,ds; =1, we get

d4 =0 ds =1 de =0
d-7:0 d8:0 d9=1

hence the least period of the sequence is ¥ = 6. Now, if we consider the sequence with
initial state so = 0,81 = 1,52 = 1,53 =0, we get

S4:1 55=1 8520,

hence the least period is 1 = 3 and as we expected 1 divides T.

\. J

T Theorem 3.14 \

Let do,dq,... be an impulse response sequence and A its associated matrix. Sup-
pose that ap # 0, then the least period of the sequence is equal to the order of A
in GLi(Fq).

- J

Proof. Let T be the least period of the sequence, according to [3.10] ¥ divides the order
of A. On the other hand we have d, = do which implies AT = A° by [3.12], hence the
order of A divides T. ]

‘4 Theorem 3.15 \

Let sp,81,... be a hlrs with preperiod ng. Suppose that there exists k state vectors
SmiySmay- ey Smy with m; > no, 1 <j <Kk,
that are linearly independent over Fy. Then both sg, s1,... and its corresponding

impulse response sequence are periodic with the same least period.

- J

Proof. Let 1 be the least period of sg,s1,.... Then

Smy AT = Sm4r = Smy for 1 <j<k.
AS Smyy...,Sm, are linearly independent, we have that A" is the identity matrix over
GLk(Fq). Hence s, = soA"™ = so and so,s1,... is periodic. Now let do,d,... be

the corresponding impulg response sequence and let T be its least period. We have
dy = doA" = do, then 7 is a period of do,ds,... and therefore T divides r. But from
[3.13] we also know that r divides T. O

Definition 3.16 — Characteristic polynomial

Let sg,s1,... be a k-th order homogeneous linear recurring sequence in F satisfying
the linear recurrence relation

Sntk = Qk—1Sn+k—1 + Qk—28n+k—2 + ...+ QAoSn forn=0,1,...,

with aj € Fy. We define the polynomial

k—2

fx) =x — a1 x* ' —a_x¥2—...—qo € Fqlx]

as the characteristic polynomial of the sequence.
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Remark. The characteristic polynomial depends only on the linear recurrence relation.
Moreover, if A is the associated matrix of the sequence, it it easy to see that f is the
characteristic polynomial of A in the sense of linear algebra.

\.

C Theorem 3.17 — Representation of a sequence through its characteris-
tic polynomial

Let sg,S1,... be a hlrs with characteristic polynomial f(x). Suppose that the roots
X1,...,0 of f are all distinct, then

k
sn=) Bjoft forn=0,1,...,
j=1

where B1,..., Bk are elements of the splitting field of f over F; which are uniquely
determined by the initial values of the sequence.

& J

Proof. Given the initial state sp,s1,...,5xk—1 we can determine (31,..., Bk from the sys-
tem of linear equation

k
sn=> Bjad, n=01,.. k-1
j=1

The determinant of the system is a Vandermonde determinant, which is nonzero as
*1,...,0 are all distinct. Hence f1,...,x are uniquely determined and belong to
Fq(a1,...,00) which is the splitting field of f over Fy. To check if the formula holds
for all n > 0 we check if the sums, with those values for f31,..., Bk, satisfy the linear
recurrence relation:

k k k k
2 B —aia ) Biod T —aka ) Biod - —a0 ) Byed’
=1 =1 =1 =1
k
= Bjflo)ag =0. O

Example. Consider the following hlrs in F5:

Sn+3 = Sn+2 + Sn with so = (0,0,1)
The characteristic polynomial is

flx) =% —x* —1=x>+x* +1 € F2[x].

f is irreducible in F,[x] and has simple roots &, «?, a* € Fg = F,[ad, «®> = «? + 1. By
the previous theorem we have

so =PB1ad + Brad + B3

s1=PBro + 2oz + P3oz
s2 = Brod + B2 + B3l

where 7 = &, ) = a?, a3 = «? + « + 1. After some computation we get
Br=a+1
B2 = o +1

Bz =a’+a




3.2 IMPULSE RESPONSE SEQUENCES, CHARACTERISTIC POLYNOMIAL \

Hence

sn=(0+ D™+ (& +1a® + (6> + &) (o> +ax+ 1) foralln >0.

\

C Theorem 3.18 \

Let sp,S1,... be a hilrs with characteristic polynomial f(x). Suppose that f is
irreducible over Fq and let « € Fq«x be a root of f. Then there exists a uniquely
determined 9 € F g« such that

Sn :TrFqk/qu (Do) forn=0,1,...

- J

Proof. Define the following linear map
L: Fqx — Fy, ot —sp,m=0,1,...,k—1.

Since {1, «, ..., %1} constitutes a basis of Fqx over Fgq, L is uniquely determined. By
[1.25] there exists a uniquely determined 9 € Fq« such that

L(B) = Tr(9pB) for all B € Fgx.
In particular we have
$n = Tr(da™) forn=0,1,...,k—1.

We have to show that the elements Tr(8a™),n =0, 1,... form a hlrs with characteristic
polynomial f. If f is defined as

fx)=x*—ar_ix*'—...—ag € Fqlx],
then, using the properties of the trace, we get

Tr(do™ ) — ap_; Tr(@a™ 1) — ... — ap Tr(da™)
=Tr(a™* — a1 da™ 1 — L — agda™)

=Tr (da™f(x)) =0,

for allm > 0. (|

C Theorem 3.19 — Characteristic polynomial’s identity

Let so,$1,... be a hlrs and suppose it is periodic with least period r. Let f be the
characteristic polynomial of the sequence, then

f(x)s(x) = (1 —x")h(x),

where
s(x) =soX" ' + 851X 24+ .. 4 Sp_2X+Sr_1 € Fqlx]
and
k—1k—1—j
h(x) = Aitjr18i%) € Fqlx] with ax = —1.
j=0 i=0
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Lemma 3.20. Let

k—2

f(x) =% — a1 x* T —ap X2 — ... —ap € Fqlx]

with k > 1. Suppose that ap # 0, then the order of f is equal to the order of its
companion matrix A in GLy(Fq).

Proof. f is the characteristic polynomial of A, therefore
flx) | x¢ =1 < f(A) | A° =1,
but f(A) = 0 by Cayley-Hamilton, hence
Af—1=0 = A =1

If we take e the least positive integer for the relation to holds, we get both the definition
of the order of f and of the order of A. O

Corollary. Let do, ds,... be an impulse response sequence satisfying (x). Let f be its
characteristic polynomial and suppose ag # 0. Then the least order of the sequence
is equal to the order of f.

Proof. Tt follows from previous theorem and [3.14]. O

Theorem 3.21

Let so,s1,... be a hlrs with characteristic polynomial f(x) € Fq[x]. Then the least
period of the sequence divides ord(f). If the sequence is impulse response then its
least period is equal to ord(f). Moreover, if f(0) # 0, then the sequence is periodic.

Proof. so,s1,... satisfies the recurrence relation (x), therefore

f(x) =x* — a1 x* T —ap X — ... — ao.
Suppose f(0) # 0, then ap # 0 and the periodicity follows from [3.7]. Moreover, from
previous lemma, we know that the order of f is equal to the order of the associated matrix
A. Therefore the least period of the sequence divides ord(A) = ord(f) by [3.10]. And if
the sequence is impulse response, the thesis follows from [3.14]. Now suppose f(0) = 0,
then we write

f(x) =x"g(x)  with g(0) #0,d9g > 1.

If we define t, = spin for n = 0,1,... then to,t,... is a hlrs with characteristic
polynomial g and same least period as that of the sequence sg,s7,.... Hence the least
period of sp,s1,... divides ord(g) = ord(f). With the same argument we can prove the

result for the impulse response sequence.
If f(x) = x" the result is trivial as we would have

snpk =0 = r=1 and  ord(x*)=1. m|
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C Theorem 3.22 — Irreducible characteristic polynomial

Let so,81,... be a hlrs with characteristic polynomial f(x) € Fq[x] irreducible and
f(0) # 0. Suppose that the initial state sg is different from the zero vector. Then
S0, 81, ... is periodic with least period equal to ord(f).

N

Proof. Let v be the least period of the sequence. From last theorem we know that the
sequence is periodic and that r divides ord(f). From [3.19] we also know that

f(x)s(x) = (1 =x")h(x) = f(x) [ (1 —x")h(x),
where 0h = k — 1 while of = k. But f is irreducible, therefore

f(x)th(x) = f(x)|[1—x"=—=(x"—1) = ord(f) | .

Hence r = ord(f). |
Definition 3.23 — Maximal period sequence .
Let so,s1,... be a homogeneous linear recurring sequence in Fy with characteristic

polynomial f(x). If f is primitive and the initial state sy is nonzero, the sequence is
called mazimal period sequence.

\.

C Theorem 3.24 — Period of a maximal period sequence \

Let so,s1,... be a k-th order maximal period sequence in Fy. Then sg,s7,... is
periodic and has least period equal to g% — 1.

- J

Proof. f is primitive, hence it is irreducible and by previous theorem sg, s1,... is periodic
with least period equal to ord(f). But since f is primitive, we know that ord(f) = q* — 1
by [2.11]. O

Example. Consider the following hlrs in F:
Sn+4 = Sn+43 T Sny2 + Sny1 + Sn with S0 = (0»0) 0,1 Jl

The characteristic polynomial is

fx)=x*—x>—x2 —x—1=x*+x3+x> +x+1 e F,[x].
Observe that f(x) = Qs(x). We know that ord(f) = 5 and, since f is irreducible, we
have also that the least period v = 5. Moreover 5 is prime, so every other initial state,
distinct form the zero vector, will have least period equal to 5.

Example. Consider the following hlrs in F3:
Sn+3 =Snt2+Sn  with so = (0,0,1).
The characteristic polynomial is

fx)=x>+2x* +2 = (x + (x> +x +2),
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hence
ord(f) = lem (ord(x +1),ord(x? + x + 2)) =lem(2,8) = 8.

Since our sequence is impulse response, we have T = 8. Now suppose that the initial
state is so = (1,2, 1), then

s3=2,84=1 —= v=2|8=T.

3.3 THE MINIMAL POLYNOMIAL

A linear recurring sequence can satisfies many recurring relation and each polynomial asso-
ciated to such relation is a characteristic polynomial for the sequence. In this section we will
study the relationship between those recurring relation for a homogeneous linear recurring
sequence.

Definition 3.25 — Minimal polynomial

Let so,81,... be a hlrs in Fq. A monic polynomial m(x) € Fq[x] is called minimal
polynomial for the sequence if is such that for all f(x) € Fq[x], f is a characteristic
polynomial for the sequence if and only if m divides f.

\. J

C Theorem 3.26 — Uniqueness of the minimal polynomial

Let so,s1,... be a hlrs. Then the minimal polynomial m(x) € Fq[x] is uniquely
determined.

J
C Theorem 3.27 — Order of the minimal polynomial )

Let so,s1,... be a hlrs in Fgq with minimal polynomial m(x) € Fq[x]. Then the
least period of the sequence is equal to ord(m).

- J

Proof. Let r be the period of the sequence and ng its preperiod. Then sg, s7,... satisfies
the following relations

Snir =S, Vn=no  and  Spyngir = Sning, VN =0

hence
f(x) = x™otT —x™M0 =x"o(x" — 1)

is a characteristic polynomial for the sequence. By the definition of minimal polynomial
we have
N

m(x) [ x"(x"—=1) = m(x) = xhg(x)

with h < ng and where g(0) # 0, g divides x" —1. By definition of order ord(m) = ord(g)
divides 1, but m is also a characteristic polynomial for the sequence, so that r divides
ord(m) by [3.21]. Hence v = ord(m). O

Proposition 3.28

Let so,s1,... be a hlrs in Fq with characteristic polynomial f(x) € Fq[x]. Suppose
that f is monic, irreducible and that the terms of the sequence are not all zeros. Then
f is the minimal polynomial of the sequence.
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Proof. Let m(x) be the minimal polynomial of the sequence. By definition of minimal
polynomial, m divides f. But f is monic and irreducible, hence

m(x) =1 or m(x) = f(x).

But m(x) # 1 as it generates the sequence of all zeros, hence m(x) = f(x). |

C Theorem 3.29 — Characterization of minimal polynomial

Let sg,s1,... be a k-th order hlrs in Fy with characteristic polynomial f(x) € Fq[x].
Then f is the minimal polynomial of the sequence if and only if the state vectors
S0,...,Sk_1 are linearly independent over .

Proof. We assume that the terms of the sequence are not all zeros, otherwise it is trivial.

Suppose s, ...,Skx_1 are linearly independent over Fy. In particular sg # 0 implies that Y=
the minimal polynomial m(x) has positive degree. Now suppose f(x) # m(x), then if m

is the degree of m(x), we have m < k. But then sg,s7,... would satisfy a recurrence

relation of m-th order with 1 < m < k, say

Sniem = Qm—1Sn+m—1+ ...+ QoSn for all m > 0,
hence, for n = 0, we would have
Sm = Qm-18m—1 + ...+ QoSo,

which is a contradiction of the linear independence of sg,...,sk_1.

Suppose that m(x) = f(x) and suppose, by contradiction, that sg,...,sx_1 are linearly "=
dependent. Then it exists bo,...,bx_1 € Fq, not all zeros, such that

boSﬁo‘Fb]Si]Jr...bk_]Sk_] =0
Let A be the companion matrix of f. If we multiply the previous identity by A™ we get
(bosio + b]ﬂ + ... br_1Sk—1 )An =0.

Recall that s;A™ = s, 4 for all i. Hence

0= (boso +bysy +...bx_18k_1)A™ =bosn +br1sni1 +...+br_18nyk_1,

which implies, in particular, bosy + bisni1 + ...+ br_1snik—1 = 0. If bj = 0 for
1<j<k—1, then
bosn =0 — s, =0 for all m > 0,

which is a contraction to the fact that f has positive degree. Now let j > 1 be the largest
index such that b; # 0, then the sequence satisfies a j-th order homogeneous linear
relation with j < k, which contradicts the assumption that f is the minimal polynomial.
Therefore sg,...,sx_1 are linearly independent over [Fy. O

Corollary. Let sg,s1,... be an impulse response sequence in Fq with characteristic
polynomial f(x) € Fq[x]. Then f is the minimal polynomial of the sequence.

Proof. 1t follows from the previous theorem as so,...,sx—1 are clearly linearly indepen-
dent for an impulse response sequence. sono un culetto di scimmia! O
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C Theorem 3.30 \

Let so,81,... be a hlrs with minimal polynomial m(x) € Fq[x] and let b be a
positive integer. Then the minimal polynomial mq(x) of sp,Spi1,... divides m(x).
Moreover, if s, s1, ... is periodic, then mq(x) = m(x).

N\ J

7

Remark. It is possible to compute the minimal polynomial of a sequence sg,s1,...
knowing the characteristic polynomial

f(x) =% — a1 X — X2 — ... —ao

and the initial state s = (s0,51,...,5xk—1). We will not give the proof of this algo-
rithm, which is part of the proof of [3.26]. We know that

k—1k—1—j
f(x)s(x) = (1 —xDh(x)  whereh(x)=) > aijjr1s¥
j=0 i=0
with a = —1. Now let ¢(x) = GCD(f, h), then
$(x)
Example. Consider the following hlrs in F:
Sn+4 = Sn+3 + Sni2 + Sn with s =1,0,0,1.

We want to compute the minimal polynomial of the sequence. We know that

fx)=x*—x3—x>—1=x*+3+x2+1=x3x+1)+(x+1)?
=Mx+1x+x+1).

Now h(x) is given by

k—1k—1—j
h(x) = Z Z ai+j+1SiX]»
j=0 i=0
where a; are the coefficients of f and ax = —1, with k = 4. Therefore

h(x) = x%(a1so + a281 + azsz + ass3) +x' (azs0 + azs1 + ass2)
+x%(azso + ags1) +x3(ags0) = x>+ x2 +x+1=x*>(x+1)+ (x +1)
= (4 1 == 1) = ot 1P

Hence
f(x)

d(x) =GCD(f,h) =x+1 = m(x) = o) =x>+x+1.
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Definition 3.31 — Set of hlrs with fixed characteristic polynomial

Let f(x) be a monic polynomial in Fq[x] with 0f = k > 1. We define the set of all
homogeneous linear recurring sequences in [y with characteristic polynomial f as

S(f) ={o hlrs in Fq | f is a characteristic polynomial for o }.

Remark. The order of S(f) is g, as with f fixed, we can only change the initial state.

Remark. Let o,T be sequences in Fq with
0 S0ySTyews and T: to, t1,...
We define the sum between o and T as
0+ T:So+to,s1 +t1,...
Let ¢ € Fq, we define the scalar multiplication between ¢ and o as
CO:CS0,CSTy---

With these operations, S(f) is a vector space over Fq of dimension k.

C Theorem 3.32 \

Let f, g be two monic and nonconstant polynomials in Fq[x]. Then

S(f) € S(g) = flg.

N J

Proof. Suppose S(f) C S(g). Let o be the impulse response sequence in S(f). By definition
f is a characteristic polynomial for ¢ and, since o is an impulse response, f is the minimal
polynomial m(x) of . But o € S(g), hence

f(x) =m(x) | g(x).

Suppose f divides g. Let o € S(f) and let m(x) be the minimal polynomial of o. Then,
by [3.26],
m(x) [ f(x) [ g(x) = m(x) [ g(x) = o€ S(g).

O

C Theorem 3.33 — Intersection of S(f;) \

Let fy,...,fn be monic and noncostant polynomials in Fqlx]. Let d(x) =
GCD(fy,...,fn), then

(0,0,...) ifd(x)=1
S(d) otherwise

S(F1)NS(F2) N ...NS(fr) = {
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Proof. Let o € S(f1)N...NS(fr). If m(x) is the minimal polynomial of o, then m divides
fiforalli=1,...,h. If d(x) =1, then m(x) =1 and o is the zero sequence. Otherwise,
if d(x) > 1, then m divides d and d is a characteristic polynomial for o, hence o € S(d).
Conversely, let 0 € S(d). By construction d divides f; for all i = 1,...,h and, with the
same argument. we get

S(d) CS(fi), Vi = S(d) C S(f1)N...NS(fn). O

Notation. We define S(f) + S(g) to be the set of all sequences o + T with o € S(f)
and T € S(g).

N\

C Theorem 3.34 — Sum of S(f;) D)

Let fq,...,fn be monic and noncostant polynomials in Fq[x]. Then

S(f1) +S(f2) + ...+ S(fn) = S(c),

where ¢ is the monic least common multiple of fy,..., f.

J

Proof. We prove the case for h = 2, the general case follows by induction. Let ¢ € S(f)
and T € S(g). By definition of ¢ we have

flec = S(f) C S(c) and glc = S(g) C S(c),
hence S(f) + S(g) C S(c). By Grassman formula we have

dim (S(f) + S(g)) = dim (S(f)) + dim (S(g)) — dim (S(f) N S(g))
= dim (S(f)) + dim (S(g)) —dim (S(d)),

where d = GCD(f, g). Now
c(x)d(x) = f(x)g(x) = c(x) = ———

Moreover dim (S(f)) = of,dim (S(g)) = 0g and dim (S(d)) = 0d. Hence
dim (S(f) + S(g)) =0f+0g —0d = 0dc =dim (S(c)),

which implies S(f + g) = S(c). O

V7

\§

Theorem 3.35 — Minimal

polynomial of the sum of sequences

For i =1,2,...,h let o; be a hlrs in Fq with minimal polynomial m;(x) € Fq[x].
Suppose that my,..., my are pairwise coprime. Then the minimal polynomial of
01 +...+0pn is

m(x) = [ [mi(x).
i=1
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N

C Theorem 3.36 — Least period of the sum of sequences

Fori=1,2,...,h let 0y be a hlrs in Fq with minimal polynomial m;(x) € Fq[x].
Suppose that my,..., my are pairwise coprime. Then the least period of o7 +...+
Oh is

r=lem(rq,...,Th),

where Ty is the least period of oj.

J

Proof. We prove the case for h = 2, the general case follows by induction. Let v be the
least period of o7 + 02. We know, by previous theorem, that the minimal polynomial
m(x) of o7 + 02 is equal to mq(x)my(x), where my, m, are respectively the minimal
polynomials of o7,s2. Then

r =ord(m) = ord(mym;) = lem (ord(m;),ord(m;))

=lem(ry,12). a

Example (m; not coprime). Let 07,02 be two hlrs in F, defined as

o Sn+4 = Sn+3 +Sn+1 +Sn _ Sn+5 = Sn+ta + Sn
5_0:(0>0)0)]) 5_0:(0>an)0)])

Asboth 07 and 0, are impulse response sequences, their minimal polynomial coincides
with their characteristic polynomial:

mix)=fx)=x*+ 3 +x+1=x3x+1)+x+1)=x+1)x>+1)
=(x+12x2+x+1)
ma(x) =f2(x) =X +x*+1=02+x+1)x3 +x+1)

Since mj, m, are not coprime, we can not apply the last theorem. But, from [3.34],
we know that S(f1) + S(f2) = S(c), where

c(x) =lem(f1,f2) = (x + 12 (x2 +x+ D> +x+1).
Now the least periods of 07,0, are respectively
1 = ord(f;) =lem(2,3) =6 and 12 = ord(f;) =lem(3,7) = 21.

Moreover ord(c) = lem(2,3,7) = 42, but we only know that the least period r of
01+ 03 is a divisor of 42. Let f(x) = c(x), f is a characteristic polynomial for o7 + 02,
so we can compute the minimal polynomial computing the first 7 terms of o7 + 0>
and applying the algorithm:

o71:0001110... 02:00001111...
hence o7 + 02: 0001001... and

so=0 s1=0 Sy = s3=1
S4=0 85=0 8621

then we can compute h(x) and find
m(x) = (x+ 123 +x+1).

Therefore 07 + 02 has least period r =lem(2,7) = 14.
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‘8 Theorem 3.37 — Product of S(f;) 3

Let fy,...,fn be monic and noncostant polynomials in Fq[x]. Then there exists a
noncostant monic polynomial g € Fq[x] such that

S(f1)S(f2) - ... - S(fn) = S(g).

\§ J

( Y

Remark. In general it is not easy to determine g(x). We will now consider a special
case which allows a simpler determination.

Notation. Let fi,...,f;, be noncostant polynomial in Fq[x]. We define
fivVi V...V

as the monic polynomial whose roots are the distinct elements of the form

XD vt Ol where o; € V(fy),
which are element of the splitting field of f1 - ... . fy over Fq. Observe that the
conjugates of o7 - ... oy, over Fy are still elements of this form. Hence f; V...V fy

is a polynomial over F.

Theorem 3.38 — Product of S(f;) for simple polynomials

Let fy,...,fn be monic and noncostant polynomial in Fq[x] without multiple roots.
Then

S(f1)S(f2) - ...-S(fn) =S(f1 V2 V...V ).




4 BOOLEAN FUNCTION

4.1 INTRODUCTION

In this section we will give the basic definitions on Boolean functions. To lighten the notation
we will use F for F, and F™ for F%.

Definition 4.1 — Boolean function

A boolean function is a map

f:F* — F.

Notation. The algebra of all boolean function on F™ is denoted by
Bn:={f:F* — F|fis a boolean function }.

Clearly |B,| = 2%".

Definition 4.2 — Truth table

Let f € By, and write F™ ={Py,...,P2n}. The truth table f is the evaluation of f in
Pi:
f=ev(f) = (f(P1),...,f(P2n)) € F".

Define
xi: F* — F, (a1,...,an) — aj.
Given I C {1,...,n} a square free monomial over I is defined as
XI = Hxi.
iel

A boolean function can be expressed as a square free polynomial. Namely the algebraic
normal form (ANF) of f € By, is

f(X)=) aiX;  with a; € F.

Definition 4.3 — Hamming distance for boolean functions

Let f, g € B. We define the hamming distance between f and g as the usual hamming
distance between their truth tables f, g

d(f,g) = dlf, ).

That is the number of components in which they differ.

Remark. Consequently we can define the hamming weight of f € B, as

w(f) =w(f) ={PeF"[f(P)=1}
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Notation. Let S C B,, and f € B;,. The distance between f and S is given by the
minimum distance between f and the elements of S, namely

d(f,S) = mind(f, s).

seS

Example. Consider the following boolean function f € Bj:
f: F?2 — F, (x1,%2) — x1X2 + X1.

Write F, = {(0,0), (0,1),(1,0), (1,1)}. The truth table of f is given by

(0,0) (0,1) (1,0) (1,1)
X1 0 0 1 1
X1X2 0 0 0 1
f 0 0 1 0

From this we can easily compute the hamming distances
d(f,x1) =d(f,x1) =1; df,xixz =d(f,x1x2) = 2;
and the hamming weights:

W(f) = 1; W(X]) = 2; W(X]Xz) =1.

What we have seen in this example can be easily generalized.

Lemma 4.4. The hamming weight of a square free monomial X; is given by

w(X;) =21 where I C {1,...,n}.

Notation. We denote with A, the class of affine function on F™, namely

An={feBylof <1}

Definition 4.5 — Nonlinearity of a function

Let f € B be a boolean function. The nonlinearity of f is defined as the distance
between f and An:

N(f) = d(f, An) = min d(f, ).
xXEAR

Remark. The Reed-Muller code RM(n, 1) is a class of code defined by all the boolean
function in By, with degree less or equal r:

RM(n,r) ={f|fe B, of <r}.
Therefore, given f € B,,, we have

N(f) = d (f,RM(n, 1)).
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Lemma 4.6. Let f € B,, be a boolean function. Then

N(f) < min (w(f),Z“ - w(f)).

Proof. N(f) is defined as d(f, A,,), therefore
N(f) < d(f, o) for all x € A,.
Moreover 0,1 € A, and
d(f,0) = w(f); d(f,1) = 2™ — w(f).

Hence

N(f) < min (w(f),2"™ — w(f)). O

Definition 4.7 — Balanced function

Let f € B, be boolean function. f is a balanced function if

w(f) =21,

Proposition 4.8

Let « € An, @ = a1X7 + ...anXn + Qg = a+Xx + ap, where a = (ay,...,a,). If
a# (0,...,0) then « is balanced.

Proof. Without loss of generality we can assume ag = 0. Then we obtain:

wa) =[x eF* [ a(x) =0} =[{x e F* [ a-x =0} = ()| =2""". O

Definition 4.9 — Dirac symbol .

Let a € F*. We define the Dirac symbol &, as

1 a=x

Sq: F" — F,x —
0 a#x

Remark. Clearly 6, € By,.

Definition 4.10 — Fourier transform

Let f € By, be a boolean function. The Fourier transform of f is a linear function

FeeF™ — Zya— Y f(x)(=1)°.

xeFn
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Definition 4.11 — Walsh transform .

Let f € By, be a boolean function. The Walsh transform of f is the Fourier transform
of the sign function of f,

Wi B — Zya— Y (=1)f0Fex,
xEF™

\. J

T Theorem 4.12 — Relation between Walsh and Fourier

transform
Let f € B,y be a boolean function. Then

W;s(a) =280 (a) — 2F¢(a).

N J

Corollary.
W (a)

Fr(a) =2""80(a) — 5

Corollary. Let f € By, be a boolean function. Then

_on—1 _ [We(a)l
N(f) =2 (Ilré%}é >

Proof. By the last theorem we have

Wi(0) =2™ —2F¢(0) =2" =2 ) f(x) =2" — 2w(f).

xe€Fn

Now let a € F™ and let o € A,, be the affine function defined as «(x) = a+x. Then

Wila) = ) (—1)0Fex = 3 (—)f0Iretd = wy o (0)

xefn xefn

= 2w(f o) =2 —2d(f, ).

Hence

d(f,a) =21 — WfT(“J

Since this holds for every o € Ay, the thesis follows by the definition of nonlinearity. [

C Theorem 4.13 — Parseval’s relation \

Let f € B,, be a boolean function. Then

> Wi(a)? =2m

aclkm

N\ J

Proof. By definition

aefn xefn aefn

= Z Z (—1)FOIHfly)Fatety)

xelFfm™ x€Fm™ yefn

acFn x,ycFn

Y Wia?= Y ( )y (_‘I)f(X]+a-x>2 5 ( y (_])f(x)+a.x>< Y (1)

)
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Recall, by previous lemma, that

acfn
hence
Z Z (_1)f(><)+f(y)+a-(><+y) — Z (_])f(X)H(y) Z (_1)a-(><+y)
acF™ x,yefn x,yefn aclFn
=2" ) (-1)0=2m2n =27 O
x€Fn
Corollary.

N(f) < 2n—1 _zn/2—1.

4.2 BENT BOOLEAN FUNCTION

Definition 4.14 — Bent function
Let f € By, be a boolean function. f is called bent if and only if

N(f) _ anl _zn/271.

Remark. Namely f is bent if and only if its Walsh transform coefficient are all +2™/2,
in fact

_on—1 _ We(a)l
N =ET T

that is, W% is constant.

Definition 4.15 — Derivative of a boolean function

Let f € B, be a boolean function and let a € F™. The derivative of f in the direction
of a is given by
Dqf(x) = f(x + a) + f(x).

Remark. Tt follows 0D f < Of.

\. J

T Theorem 4.16 \

Let f € By, then

e if f is bent then f is not balanced.

e fis bent if and only if all its derivative D ,f are balanced, for all a € F™, a # 0.

N

Proof. o If f is bent, we have already observed that
We(a)] =22  for all a € F™.

Now suppose that f is balanced, then w(f) = 2"~ '. Therefore

Wi(0) = 2™ — 2F¢(0) = 2™ — 2w(f) = 2™ — 221 =0,



58

| BOOLEAN FUNCTION

which is a contradiction.

e Not given.

Definition 4.17 — Equivalent function

Let f,g € Bn be boolean functions. f and g are equivalent if and only if there exists
M € GL(F™),v € F™ such that

f(x) = g(Mx+v).

In this case we write f ~ g.

Remark. If f ~ g then
0f = dg N(f) = N(g) w(f) =w(g).

In particular f is bent if and only if g is bent.

\.

C Theorem 4.18 — Decomposition of bent function

Let h € Byyym,f € B, and g € By, be boolean functions such that

h(xh---)Xn)xn+1)---)xn+m) :f(X1,...,Xn) + g(xn+1)---)xn+m)-

Then h is bent if and only if both f and g are bent.

N

7

Remark. This proves that there exists a bent function f € B, for every n even. As
we can easily prove that x1x, € B, is bent and that

X1X2 +X3X4 + ...+ Xn_1Xn € Bn

is bent for the previous theorem.

Definition 4.19 — Partially bent function

Let f € By, be a boolean function. f is called partially bent if there exists U,V C F™
such that UGV =TF™ and

f’ is bent and f| is affine.

u \%

4.3 CORRELATION IMMUNE FUNCTIONS

Definition 4.20 — Correlation immune function

Let f € By, be a boolean function. f is called k-th correlation immune if, for any
vector x of n independent random variables x = (x1,...,X), the random variable
z = f(x) is independent from any vector

(XiyyeneyXiy) with 0 <11 <.... <1k <n.
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Remark. In particular if f is k-correlation immune, we will have

P((xi],...,xik):vlf(x):1):;—k and P(f(x):1|(xi],...,xik):v):%.

Example. Let f € B3 be a boolean function defined as

(0,0,0) — 1 (0,1,1) — 0 (1,1,0) —> 1
(0,0,1) — 1 (1,0,0) — 0 (1,1,1) — 1
(0,1,0) — 1 (1,0,1) — 1

we can easily check that

P(x; =1/f(x) =1) =

| W
[
|
o
=}
o
~
—
&
=
N
=
[
—
SN—

[
AN
[
|

\. J

T Theorem 4.21 —

Characterization of correlation immune functions

Let f € B, be a boolean function. f is k-th correlation immune if and only if

Fe(v) =0 for every v e F™, 1 < w(v) < k.

N\ J

Corollary. Let f € B,, be a boolean function. f is k-th correlation immune if and
only if
We(v) =0 for every v e F™, 1 < w(v) < k.

Definition 4.22 — Correlation resilient function

Let f € By, be a boolean function. f is called k-th correlation resilient if and only if
f is k-th correlation immune and balanced.

. J

[ Theorem 4.23 \

Let f € B;, be a boolean function. Then

o If f is k-th correlation immune, then degf < n — k.

o If f is k-th resilient immune and k < n — 2, then degf <n—k—1.

\_ J

Let f € By, be a boolean function. Suppose that f is k-resilient, then

N(f) < 21 — 2k+T where k < n — 2.

N\ J
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C Theorem 4.25 \

Let f € B, be a boolean function. Suppose that f is k-resilient, with k < n — 2,
then

o degf=n—k— 1 implies N(f) = 2n—1 — 2k+1,

o degf <n—k—1 implies N(f) < 2n~1 —2k+1,

N\ J




VECTORIAL BOOLEAN
FUNCTION

5.1 INTRODUCTION

Definition 5.1 — Vectorial boolean function

A wectorial boolean function is a map
F: Fy — FYY,

where
F= (f],...,fm),fiZF? — Fy € By,

Notation. Where necessary, we’ll denote a vectorial boolean function from F™ to
F™ with (n, m)-vBF.

Notation. The boolean functions f; are called coordinate functions.

Remark. As we are interested in studying the properties of the S-boxes of translation
based block ciphers, we will only consider vectorial boolean functions of the form

F: Fy — F3.

Definition 5.2 — Component of vBF

Let F = (fy,...,fn) be a vBF and let o« = (x1,...,an) € F™. Any combinations of
the coordinate of F N
g= Z ;i fi,
i=1

is called a component of F.

Notation. A component
n
g= Z vifi,
i=1

can also be written as v+ F with v € F™.

[ Remark. There are 2™ — 1 nonzero components of a given vBF.
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Definition 5.3 — Degree of a vBF

Let F = (fq,...,fn) be a vBF. We define the degree of F as the maximum degree of
its coordinate:
deg F = max deg(f;).
1

\. J

Definition 5.4 — Pure vBF .

A vBF Fis called pure if

deg(v+F) = deg(F-w) for all vyw # 0.

\. J

Definition 5.5 — Derivative of vBF .

Let F be a vBF. We define the derivative of F in the direction f a € F™;a # 0 as

Do F(x) = F(x + a) + F(x).

Remark. 1t is easy to show that
(DqF)+v=Dq(v-F),

where the second derivative is made in the sense of boolean functions.

\.

Definition 5.6 — Walsh transform .

Let F be a (n — m)-vBF. We define the Walsh transform of Fin u € F™ and v € F™
as

Weluv) = 3 (1P,
x€Fm

N

Remark. If v # 0, then
We (LL, V) =W,.r (u)

5.2 PROPERTIES ON NONLINEARITY

Definition 5.7 — Nonlinearity of vBF

Let F be a vBF. We define the nonlinearity of F as the minimum nonlinearity of its
components:
N(F) = min N(v.F).
velfn
v#0

Property 5.8. Let F be a (n, m)-vBF, then

_ 1
N(F) =2" '—z max IWe(u,v)|.
veF™\{0}
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Proof. By definition of nonlinearity

Now v« F is a boolean function, and by [4.1] we have
N(veF) =21 —1max\W (w)| =2n"! —1maX\W (u,v)]
2uern VT 2uern o
The claim follows. O

C Theorem 5.9 — Bound of nonlinearity

Let F be a (n, m)-vBF, then

N(F) S 2n71 _Zn/271'

-

| Proof. Follows from the definition of nonlinearity and [4.1] O

Definition 5.10 — Bent vBF

Let F be a (n, m)-vBF. F is called bent if and only if

N(F) =21 —2v/2 1,

Remark. By definition of nonlinearity, F is bent if only all of its components are bent.

Proposition 5.11

Let F be a (n, m)-vBF. Then F is bent if and only if D 4F is balanced for all a € F™\{0}.

Proof. By definition of bent function and of nonlinearity, F is bent if and only if v« F is
bent for all v € F™ \ {0}. But v-F is a boolean function and by [4.16] v+ F is bent if and
only if Dy (v+F) is balanced for all a € F™ \ {0}. Now

DalveF) =v-F(x) +v-Fx+a) = v- (F(x) + F(x + a))
=v.D4F

Hence Dg (v« F) is balanced if and only if v+ D4F is balanced; as this holds for every
v € F™\ {0} it is equivalent to say that D4F is balanced. O

Definition 5.12 — Parseval’s relation

Let F be a (n, m)-vBF, then

> Wiwv) =(@2m—1)22"

uefm™
veF™\{0}

Proof. By definition of Walsh transform, we get

We(u,v) = Wo.p(u).
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Then we can apply [4.13] to every components of F, which are 2™ — 1. Hence

> Wiwv) = Y > Wiiw= ) 2t =(2m -1 |

FmA\{0 Fm FmA\{0
SR veFm\{0} ue veF™\(0}

‘4 Theorem 5.13 \

Let F be (n, m)-vBF with n even. Suppose that F is bent, then

m <

N

Remark. In particular there are no permutations which are bent functions.

\

‘4 Theorem 5.14 — Sidelnikov bound

Let F be (n, m)-vBF with m > n — 1. Then

N(F)<2n1_1\/3 g2 =D 1)

N\ J

Proof. Recall that

N(F) <2 ' — = max [We(u,v)|
uelf™
veF™\{0}

and that Wg(u,v) = W,.g(u). Now

Z WF u,v) ( )+u-x)< Z (_])(V-F)(y)+u.y> ( Z *) ( Z *)
366]1]?"“‘ L‘Lee]l]?"n‘ xelFm™ yelfn z€Fn teFn

(5.1)

_ Z Z (_])v-(F[x)+F(y)+F(z)+F(t))(_])u-[x+y+z+t) (*)

mn
x,y,z,tefn \L}LGE]P]Fm

Now recall that
w 2" x=0
> -1 { 0 xzo
ackn x
Hence the inner sum of (%) is different from zero when
x+y+z+t=0 and F(x) + F(y) + F(z) + F(t) = 0.
In that case we get 2™2™. Hence
() =2"2"{ (x,y,2,t) € F*"™ | x+y+z+t=0and F(x) + Fy) + F(z) + F(t) =0 } |
=2"2"{ (x,y,2) €F’™ | F(x) + F(y) + F(z) + F(x +y +2) =0 } |
> 22" {(xy,2) €F*" |[x=yorx=zory=z}|

as the vectors which respect the condition F(x) + F(y) + F(z) + F(x +y 4+ z) = 0 are the
only ones of those form. Moreover the last cardinality is equal to

3 (%, %,2) | X,z € F Y —2{ (x,%,x) | x e F* } =3 -22™ —2.2™,
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Hence
> Wiu,v) >2m2m (3271 22",
uelfm™
verm™

Now we have to subtract the cases in which v =0, that is

> Wiav) = Y Wi (w,0)

uelf™ uefFn
v=0

In particular

vwm&ﬁ:ZJ4W“={p w0

0 u#0
Therefore
> Wiwv) =2m2m(3-22m —2.2m) -2
uelkm
veF™\{0}

Finally we observe that

max WE(u,v ( Z Wi (u, v )/( Z W%(u,v))

veF™\{0} uer™ uefm™

veF™\{0} veF™\{0}
S0
2M2m(3.22m 2. 2m) - 24n (DAL DIPALnLI. B
max W) > (2m =122 AR T
veF™\{0}
which gives the desired bound. O

5.3 BHECTIVE VECTORIAL BOOLEAN FUNCTION

In order to study S-boxes, we are particularly interested in bijective vectorial boolean func-
tions. That is functions F which are permutations over F™.

C Theorem 5.15 \

Let F be a vBF. Suppose that F is a permutation, then

o degF<n—1.
e v+ F balanced for all v # 0.

N\ J
C Theorem 5.16 — Bound of nonlinearity \

Let F be a vBF. Then

n—1

N(F) 2™ =277,

N\ J

| Proof. It follows from [5.14] with m =n. O

Remark. In general this is true only for vBF that are permutation, that is when
n=m.

65
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Definition 5.17 — Almost bent vBF .
Let F be a vBF. F is almost bent if

n—1

N(F) =21 —2%7".

Remark. Clearly, in order to be almost bent, n must be odd. Which is the opposite
case to that of bent boolean functions.

\.

Proposition 5.18

Let F be a vBF. Suppose that F is almost bent, then v« F is not bent for all v # 0.

Definition 5.19 — Differentiable d-uniform vBF .
Le F be a vBF. F is said to be differentiable d-uniform if, for any a € F™*\{0},b € F™,

5r(a,b) = |{x € F" |DoF(x) =b}| <&  where 5= max &¢(a,b).
e

Remark. & > 2 for any F. In fact if x is a solution of F(x) + F(x+ a) = b, so is x + a.
Moreover 8 is even by the same argument

Definition 5.20 — Almost perfect nonlinear vBF

Let F be a differentiable 2-uniform vBF. Then F is said almost perfect nonlinear
(APN).

. J

Proposition 5.21

Let F be a vBF defined as

x 70 where (F2)™ ~ Fon.
x=0

O x|=

F: (F2)™ — (F2)™,x —> {

Then F is APN if and only if n is odd.

Proof. We know that F is APN if and only if § = 2 with
5 :m%xi{xelﬁ‘“ | F(x) + F(x+a) =b}|.
a,

If x4+ a # 0,x # 0, then

T x+ta+x
x+a x(x+a)

1
b:F(x)—l—F(x—l—a):;—i—
0=bx*+abx+a,

which has at most two solutions. Now consider the cases in which x + a =0 or x =0, in
both cases we have 1/a = b. Let’s check if there are other solutions substituting b in the




5.3 BIJECTIVE VECTORIAL BOOLEAN FUNCTION \

previous equation:

2 2

1
O:axz—kx-i—a = 0=x’4+ax+a’> = x¥*=a’+ax =

O=x*'+a’’+ad* = 0=x*"+*+*>x+ad* =
ox(x*+a*) = (y+1)Qs(y) =0,
with y = x/a. Now
Qs3(y) =0 <= y*+y+1=0,

which has two solution in F4 =F,.. We know that F,: is a subfield of F,n if and only if
2 | n, namely if n is even. O

Remark. To summarize, if n is odd, then there exist a vBF F that is an APN permu-
tation. Namely the inversion function

x 70 where (F)™ ~ Fon.
x=0

O %=

Fo (F2)" — (F2)™, x — {

However, if n is even we have
e If n =4 there are no APN permutations.
e If n = 6 there is at least an APN permutation.
o If n > 6 we don’t know.
It is possible to prove that, if F is an APN permutation with n even, then
deg(F-v) > 3.

and v+ F can not be partially bent.

\. J

C Theorem 5.22 — Almost bent implies APN \

Let F be a vBF. Suppose that F is almost bent, then F is APN.

- J

Proof. From the proof of [5.14] we can see that F is AB if and only if

| { (x,y,2) € F°™ | F(x) + F(y) + F(z) + F(x +y +2) =0 } |
=[{(x%y,2) €F*" |[x=yorx=zory=z}|

Now, if we fix x,y € F™ with y # x then there exists a # 0 such that y = x + a. Hence
if z # x,x + a we have

F(x)+F(x+a)+Fz)+F(x+x+a+2z) #0 < F(x)+F(x+ a) #F(z) + F(z+ a),
for all x, € F™, z # x,x + a. Which is equivalent to

DF(x) # DyF(z) for all x,z € F™*, z # x,x + a,

that implies F APN. O
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Definition 5.23 — Weakly differential d-uniform

Let F be a vBF. F is said to be weakly differential 6-uniform if, for any a € F™ \ {0},

2n71
Im(DF)| > 5

Notation. If 6 = 2, then F is said weakly almost perfect nonlinear (w-APN).

Proposition 5.24

Let F be 6-uniform vBF, then F is weakly &6-uniform.

Proof. If we fix a € F™ \ {0} and consider all the counterimages of DqF we get F™, in

particular
M=) DF'bI= ) IDFBIS ) 8
befFn beIm(D4F) belm(DF)
= 8[Im D4F|,
where the inequality holds as F is d-differentiable. O

5.4 FURTHER PROPERTIES

Definition 5.25 — Affine equivalence

Let F,G be two vBF. F is said to be affine equivalent to G, F ~ G, if there exists
M, N € GL(F") and a,b € F™ such that

F(x) =N[G(Mx+a)] +b.

Proposition 5.26 — Properties of affine equivalent functions

Let F, G be two affine equivalent vBF. Then

o degF =degG.
o N(F) =N(G).
e O(F) =5(G).

e WH(F) =wd(G).

Where 6 is the differentiability and wbo is the weak differentiability.

Definition 5.27 — Extended affine equivalent functions

Let F, G be two vBF. F is said to be extended affine equivalent to G, F ~ga G, if there
exist a vBF F/ and A € AGL(F™) such that

F~F and G(x) = F/(x) + A(x).
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Definition 5.28 .

Let F be a vBF. We define

n(F) = Jhax [{v e F*\ {0} | deg(DqF-v) =0}|.

Remark. We will see that, from a cryptographic point of view, F is a strong function
if and only if i is "small".

Property 5.29. Let F be a vBF. Suppose F is w-APN, then i(F) < 1.

Property 5.30. Let F be a vBF. Then n = 0 implies F w-APN.

Example. Let’s consider the Gold function

F:F™ — ™, x — x2°H1,
Let s = GCD(k,n). Then F is 25-differentiable; in particular, if GCD(k,n) = 1, then
F is APN.

\. J

Solution. It is possible to prove that F is a permutation if n/s is odd. Now let a,b € F™
with a # 0, we have to prove that F(x) + F(x + a) = b has at most 2° solution:

Fx)+Fx+a)=b = x> "+ (x+a)* " =b.

Let x1,x2 be two distinct solution of the equation (remember that if x is a solution so is
x + a), then

2

2k 41 241
X +(x1+a =b
{ ! Ber ) 2k“+(x1+a)(x1k+a2k) :x§k+1+(xz+a)(x§k+azk);

x Kk — X
X3 T+ (xa+a)? T =b !
hence

k k k k k k k k k k
X7 T xt T hxga? +axd e T =X T g T 4 xpa? axd +a? !

2k 1

— (a +x)a® +ax+x)2 =0 = alx +x2) [a + (x1 +X2)2k71] =0

k_ k_ k__
— T =)t T =yt =,

where y = (x7 +x2)/a. The last equation has GCD(2* — 1,2™ — 1) solutions, where
GCD(2% —1,2™ —1) = 20P0en) 1 =25 1.

Hence y is an element of a subgroup of 5. with 2° —1 elements, therefore the group of the
solutions seen as a subgroup of Fyn has 2° elements.
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