

Security of Fixed-Weight Repetitions of Special-Sound Multi-Round Interactive Proofs

Edoardo Signorini Joint work with Michele Battagliola, Riccardo Longo, Federico Pintore and Giovanni Tognolini

November 13, 2024

A binary relation is a set $R = \{(x, w)\}\$ of statement-witness pairs.

 Verifier (w)

Goal

Prove the knowledge of a witness w for a public statement x .

We consider interactive proofs where the challenges c_i are sampled uniformly at random.

1

Completeness

Honest provers (almost) always succeed in convincing a verifier.

Soundness

A dishonest prover (almost) never convince a verifier that a false statement $x \notin L_R$ = { $x \mid \exists w : (x, w) \in R$ } is true.

Zero-knowledge

No information about w is revealed.

Completeness

Honest provers (almost) always succeed in convincing a verifier.

Soundness

A dishonest prover (almost) never convince a verifier that a false statement $x \notin L_R$ = { $x \mid \exists w : (x, w) \in R$ } is true.

Zero-knowledge

No information about w is revealed.

Soundness does not mean the prover knows a witness!

Informally, a dishonest prover \mathcal{P}^* (almost) never succeed without the knowledge of a witness **w**.

Knowledge soundness \iff exists a knowledge extractor \mathcal{E} .

Knowledge Extractor Input: Statement x, rewindable oracle access to a prover \mathcal{P}^* . **Output:** A witness w such that $(x, w) \in R$.

Consider any (dishonest) prover \mathcal{P}^* against the protocol on statement **x** and a knowledge extractor E.

- ε(x, \mathcal{P}^*) is the success probability of \mathcal{P}^* on input x.
- $K(|X|)$ is the *knowledge error* of the protocol.

Consider any (dishonest) prover \mathcal{P}^* against the protocol on statement **x** and a knowledge extractor \mathcal{E} .

- ε(x, \mathcal{P}^*) is the success probability of \mathcal{P}^* on input x.
- $\kappa(|x|)$ is the *knowledge error* of the protocol.

Knowledge Soundness

If $\varepsilon(x,\mathcal{P}^*)$ > $\kappa(|x|)$, then $\mathcal E$ extracts a witness w such that $(x,w)\in R$ in expected running time at most

 $poly(|x|)$ $\frac{1}{\varepsilon(x,\mathcal{P}^*)-\kappa(|x|)}$.

Consider any (dishonest) prover \mathcal{P}^* against the protocol on statement **x** and a knowledge extractor \mathcal{E} .

- ε(x, \mathcal{P}^*) is the success probability of \mathcal{P}^* on input x.
- $\kappa(|x|)$ is the *knowledge error* of the protocol.

Knowledge Soundness

If $\varepsilon(x,\mathcal{P}^*)$ > $\kappa(|x|)$, then $\mathcal E$ extracts a witness w such that $(x,w)\in R$ in expected running time at most

 $poly(|x|)$ $\frac{1}{\varepsilon(x,\mathcal{P}^*)-\kappa(|x|)}$.

Knowledge Soundness is hard to prove in general!

From now on we restrict to Σ-protocols (i.e, 3-move protocols) with challenge space $Ch = \{0, 1, \ldots, N - 1\}.$

2-out-of-N special-soundness

There exists an efficient algorithm to extract a witness w from 2 *colliding* accepting protocol transcripts (a, c, z) and (a, c', z') with $c \neq c' \in Ch$.

From now on we restrict to Σ -protocols (i.e. 3-move protocols) with challenge space $Ch = \{0, 1, \ldots, N - 1\}.$

2-out-of-N special-soundness

There exists an efficient algorithm to extract a witness w from 2 *colliding* accepting protocol transcripts (a, c, z) and (a, c', z') with $c \neq c' \in Ch$.

(2-out-of-N) special-soundness implies knowledge soundness with $\kappa = 1/N$.

From now on we restrict to Σ -protocols (i.e. 3-move protocols) with challenge space $Ch = \{0, 1, \ldots, N - 1\}.$

2-out-of-N special-soundness

There exists an efficient algorithm to extract a witness w from 2 *colliding* accepting protocol transcripts (a, c, z) and (a, c', z') with $c \neq c' \in Ch$.

(2-out-of-N) special-soundness implies knowledge soundness with $\kappa = 1/N$.

k-out-of-N special-soundness

There exists an efficient algorithm to extract a witness w from k colliding accepting protocol transcripts $(a, c_1, z_1), ..., (a, c_k, z_k)$ with pairwise distinct challenges $c_1, ..., c_k \in$ Ch.

k-out-of-N special-soundness implies knowledge soundness with $\kappa = (k - 1)/N$.

- In many applications we need the knowledge error to be negligible.
- The t-fold *parallel repetition* $\boldsymbol{\Pi}^t$ of a 2-out-of-**N** special-sound Σ-protocol **Π** is still a proof of knowledge with knowledge error $1/N^t$.

^{1&}lt;br>Attema and Fehr. "Parallel Repetition of (**k₁, … , k_µ)-**Special-Sound Multi-round Interactive Proofs". CRYPTO 2022, Part I.

- In many applications we need the knowledge error to be negligible.
- The t-fold *parallel repetition* $\boldsymbol{\Pi}^t$ of a 2-out-of-**N** special-sound Σ-protocol **Π** is still a proof of knowledge with knowledge error $1/N^t$.

^{1&}lt;br>Attema and Fehr. "Parallel Repetition of (**k₁, … , k_µ)-**Special-Sound Multi-round Interactive Proofs". CRYPTO 2022, Part I.

- In many applications we need the knowledge error to be negligible.
- The t-fold *parallel repetition* $\boldsymbol{\Pi}^t$ of a 2-out-of-**N** special-sound Σ-protocol **Π** is still a proof of knowledge with knowledge error $1/N^t$.

Basic reasoning for $k = 2$ is to observe that Π^t is still *l*-special sound with $l = (k - 1)^t + 1$.

^{1&}lt;br>Attema and Fehr. "Parallel Repetition of (**k₁, … , k_µ)-**Special-Sound Multi-round Interactive Proofs". CRYPTO 2022, Part I.

- In many applications we need the knowledge error to be negligible.
- The t-fold *parallel repetition* $\boldsymbol{\Pi}^t$ of a 2-out-of-**N** special-sound Σ-protocol **Π** is still a proof of knowledge with knowledge error $1/N^t$.

Basic reasoning for $k = 2$ is to observe that Π^t is still *l*-special sound with $l = (k - 1)^t + 1$. This reasoning does not apply in general, since l grows exponentially in t for $k > 2$.

^{1&}lt;br>Attema and Fehr. "Parallel Repetition of (**k₁, … , k_µ)-**Special-Sound Multi-round Interactive Proofs". CRYPTO 2022, Part I.

- In many applications we need the knowledge error to be negligible.
- The t-fold *parallel repetition* $\boldsymbol{\Pi}^t$ of a 2-out-of-**N** special-sound Σ-protocol **Π** is still a proof of knowledge with knowledge error $1/N^t$.

Basic reasoning for $k = 2$ is to observe that Π^t is still *l*-special sound with $l = (k - 1)^t + 1$. This reasoning does not apply in general, since l grows exponentially in t for $k > 2$.

Theorem 2 [AF22]¹

If Π has knowledge error **κ**, then Π^t has knowledge error κ^t .

^{1&}lt;br>Attema and Fehr. "Parallel Repetition of (**k₁, … , k_µ)-**Special-Sound Multi-round Interactive Proofs". CRYPTO 2022, Part I.

- When we build signature schemes from interactive protocols, the size of the signature is typically dominated by the length of the responses.
- Some challenges may be matched by much smaller responses.
- When we build signature schemes from interactive protocols, the size of the signature is typically dominated by the length of the responses.
- Some challenges may be matched by much smaller responses.

There is a standard optimization for this scenario:

Unbalanced Challenges

Use a challenge string with a fixed small weight on unfavorable challenges.

- \hat{O} Fewer large responses to be sent \implies smaller signature.
- \bigcirc More repetitions \implies less efficient signing and verification.
- When we build signature schemes from interactive protocols, the size of the signature is typically dominated by the length of the responses.
- Some challenges may be matched by much smaller responses.

There is a standard optimization for this scenario:

Unbalanced Challenges

Use a challenge string with a fixed small weight on unfavorable challenges.

- \triangle Fewer large responses to be sent \implies smaller signature.
- \bigcirc More repetitions \implies less efficient signing and verification.

Research Question

Does a fixed-weight repetition of a -special-sound public-coin interactive proof enjoy knowledge soundness?

Let **Π** be a **k**-out-of-**N** special sound **Σ**-protocol, and let \mathcal{P}^* be a *deterministic* prover attacking **Π** on input a statement x

- \mathcal{P}^{*} 's first message a is fixed.
- \mathcal{P}^* : Ch \rightarrow {0, 1}^{*}, c \mapsto z.
- \mathcal{P}^* is successful if (a, c, z) is an accepting transcript.

Let **Π** be a **k**-out-of-**N** special sound **Σ**-protocol, and let \mathcal{P}^* be a *deterministic* prover attacking **Π** on input a statement x

- \mathcal{P}^{*} 's first message a is fixed.
- \mathcal{P}^* : Ch \rightarrow {0, 1}^{*}, c \mapsto z.
- \mathcal{P}^* is successful if (a, c, z) is an accepting transcript.

 \mathcal{P}^{*} 's behavior can be described by a binary vector $\pmb{\mathsf{H}}(\mathcal{P}^{*})$ indexed by the challenges $\pmb{\mathsf{c}}_i$.

$$
H(\mathcal{P}^*) = \begin{pmatrix} c_0 & c_1 & c_2 & \dots & c_{N-2} & c_{N-1} \\ 0 & 1 & 1 & \dots & 1 & 0 \end{pmatrix}
$$

- $H(P^*)[c_i]$ = 1 corresponds to \mathcal{P}^* succeeding on input c_i
- $H(\mathcal{P}^*)[c_i] = 0$ corresponds to \mathcal{P}^* failing on input c_i
- The success probability $\varepsilon(x, \mathcal{P}^*)$ of \mathcal{P}^* on input x is fraction of 1-entries.

1. Samples random challenges c_1 until $H(\mathcal{P}^*)[c_1] = 1 \implies$ Expected time:

 $1/\varepsilon(x,\mathcal{P}^*)$.

1. Samples random challenges c_1 until $H(\mathcal{P}^*)[c_1] = 1 \implies$ Expected time:

 $1/\varepsilon(x,\mathcal{P}^*)$.

2. Samples random challenges $c_2 \neq c_1$ until $H(\mathcal{P}^*)[c_2] = 1 \implies$ Expected time:

$$
\leq \frac{1}{\varepsilon(x,\mathcal{P}^*)-1/N}.
$$

1. Samples random challenges c_1 until $H(\mathcal{P}^*)[c_1] = 1 \implies$ Expected time:

 $1/\varepsilon(x,\mathcal{P}^*)$.

2. Samples random challenges $c_2 \neq c_1$ until $H(\mathcal{P}^*)[c_2] = 1 \implies$ Expected time:

$$
\leq \frac{1}{\varepsilon(x,\mathcal{P}^*)-1/N}.
$$

k. Samples random challenges $c_k \neq c_1, ..., c_{k-1}$ until $H(\mathcal{P}^*)[c_k] = 1 \implies$ Expected time:

$$
\leq \frac{1}{\varepsilon(x,\mathcal{P}^*)-(k-1)/N}.
$$

⋮

1. Samples random challenges c_1 until $H(\mathcal{P}^*)[c_1] = 1 \implies$ Expected time:

 $1/\varepsilon(x,\mathcal{P}^*)$.

2. Samples random challenges $c_2 \neq c_1$ until $H(\mathcal{P}^*)[c_2] = 1 \implies$ Expected time:

$$
\leq \frac{1}{\varepsilon(x,\mathcal{P}^*)-1/N}.
$$

k. Samples random challenges $c_k \neq c_1, ..., c_{k-1}$ until $H(\mathcal{P}^*)[c_k] = 1 \implies$ Expected time:

$$
\leq \frac{1}{\varepsilon(x,\mathcal{P}^*)-(k-1)/N}.
$$

Expected runtime
$$
\leq \frac{k}{\varepsilon(x,\mathcal{P}^*)-(k-1)/N}
$$
 \implies knowledge error $(k-1)/N$.

EE Telsy **Reference**

⋮

Consider \mathcal{P}^* attacking the t = 2-fold parallel repetition Π^t . We can treat \mathcal{P}^* as a (deterministic) function where the first message (a_1,a_2) is fixed

 \mathcal{P}^* : Ch × Ch → {0, 1}^{*}, (c₁, c₂) → (z₁, z₂).

Consider \mathcal{P}^* attacking the t = 2-fold parallel repetition Π^t . We can treat \mathcal{P}^* as a (deterministic) function where the first message (a_1,a_2) is fixed

$$
\mathcal{P}^* : \mathsf{Ch} \times \mathsf{Ch} \to \{0, 1\}^*, \qquad (c_1, c_2) \mapsto (z_1, z_2).
$$

 \mathcal{P}^* defines two (probabilistic) provers \mathcal{P}^*_1 and \mathcal{P}^*_2 attacking a single invocation of Π

$$
\mathcal{P}_1^* : c_1 \mapsto \begin{bmatrix} c_2 \leftarrow^* \text{Ch} \\ (z_1, z_2) \leftarrow \mathcal{P}^*(c_1, c_2) \end{bmatrix} \mapsto z_1
$$

$$
\mathcal{P}_2^* : c_2 \mapsto \begin{bmatrix} c_1 \leftarrow^* \text{Ch} \\ (z_1, z_2) \leftarrow \mathcal{P}^*(c_1, c_2) \end{bmatrix} \mapsto z_2
$$

Consider \mathcal{P}^* attacking the t = 2-fold parallel repetition Π^t . We can treat \mathcal{P}^* as a (deterministic) function where the first message (a_1,a_2) is fixed

$$
\mathcal{P}^* : \mathsf{Ch} \times \mathsf{Ch} \to \{0, 1\}^*, \qquad (c_1, c_2) \mapsto (z_1, z_2).
$$

 \mathcal{P}^* defines two (probabilistic) provers \mathcal{P}^*_1 and \mathcal{P}^*_2 attacking a single invocation of Π

$$
\mathcal{P}_1^* : c_1 \mapsto \begin{bmatrix} c_2 \leftarrow^* \text{Ch} \\ (z_1, z_2) \leftarrow \mathcal{P}^*(c_1, c_2) \end{bmatrix} \mapsto z_1
$$

$$
\mathcal{P}_2^* : c_2 \mapsto \begin{bmatrix} c_1 \leftarrow^* \text{Ch} \\ (z_1, z_2) \leftarrow \mathcal{P}^*(c_1, c_2) \end{bmatrix} \mapsto z_2
$$

Notice that

$$
\varepsilon(x,\mathcal{P}_i^*) = \Pr[V(c_i,\mathcal{P}_i^*(c_i)) = 1] = \Pr[V(c,\mathcal{P}^*(c)) = 1] = \varepsilon(x,\mathcal{P}^*),
$$

where $c_i \leftarrow^*$ Ch and $c \leftarrow^*$ Ch^t.

EE Telsy **Now Street**

Knowledge Extractor

- Run the extractor $\mathcal E$ for Π for both $\mathcal P_1^*$ and $\mathcal P_2^*.$
- Hope that at least one of them succeed.
- The same analysis as before holds, even though \mathcal{P}^*_1 and \mathcal{P}^*_2 are not deterministic.

Knowledge Extractor

- Run the extractor $\mathcal E$ for Π for both $\mathcal P_1^*$ and $\mathcal P_2^*.$
- Hope that at least one of them succeed.
- The same analysis as before holds, even though \mathcal{P}^*_1 and \mathcal{P}^*_2 are not deterministic.

This does not work!

- The obtained knowledge error is still $(k 1)/N$.
- We hope to reduce knowledge error down to $(k 1)^2 / N^2$.

Solution of [AF22]

- Introduce a more fine-grained quality measure of success.
- Currently the quality of the extractor is expressed in terms of $\varepsilon(x,\mathcal{P}^*)$
- Introduce a more fine-grained quality measure of success.
- Currently the quality of the extractor is expressed in terms of $\varepsilon(x,\mathcal{P}^*)$

Punctured success probability

Define the following measure

$$
\delta_k(x,\mathcal{P}^*) = \min_{S \subset \text{Chi}: |S| = k-1} \Pr[\mathcal{P}^*(C) \text{ succeeds} \mid C \notin S],
$$

where C is a random variable uniformly random in Ch .

 δ_k (x, \mathcal{P}^*) lower bounds the success probability of \mathcal{P}^* when removing k – 1 challenges.

- Introduce a more fine-grained quality measure of success.
- Currently the quality of the extractor is expressed in terms of $\varepsilon(x,\mathcal{P}^*)$

Punctured success probability

Define the following measure

$$
\delta_k(x,\mathcal{P}^*) = \min_{S \subset \text{Chi}: |S| = k-1} \Pr[\mathcal{P}^*(C) \text{ succeeds} \mid C \notin S],
$$

where C is a random variable uniformly random in Ch .

 δ_k (x, \mathcal{P}^*) lower bounds the success probability of \mathcal{P}^* when removing k – 1 challenges.

New Extractor

On a single invocation $\mathcal{E}^{\mathcal{P}^*}$ has expected runtime

$$
\leq \frac{k}{\delta_k(x,\mathcal{P}^*)} \leq \frac{k(1-\kappa)}{\varepsilon(x,\mathcal{P}^*)-\kappa},
$$

where $\kappa = \frac{k-1}{n}$ $\frac{-1}{N}$.

EE Telsy **Reference**

Consider again \mathcal{P}^* attacking the t = 2-fold parallel repetition Π^t . \mathcal{P}^{*} 's behaviour can be described by a binary matrix $H(\mathcal{P}^{*})$:

$$
H(\mathcal{P}^*) = \begin{pmatrix} c_0 & c_1 & c_2 & \dots & c_{N-2} & c_{N-1} \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 1 & 1 & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & 1 & \dots & 1 & 0 \\ 0 & 0 & 1 & \dots & 1 & 0 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{N-2} \\ c_{N-1} \end{pmatrix}
$$

Consider again \mathcal{P}^* attacking the t = 2-fold parallel repetition Π^t . \mathcal{P}^{*} 's behaviour can be described by a binary matrix $H(\mathcal{P}^{*})$:

$$
H(\mathcal{P}^*) = \begin{pmatrix} c_0 & c_1 & c_2 & \dots & c_{N-2} & c_{N-1} \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 1 & 1 & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & 1 & \dots & 1 & 0 \\ 0 & 0 & 1 & \dots & 1 & 0 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{N-2} \\ c_{N-1} \end{pmatrix}
$$

The behavior of \mathcal{P}_1^* (resp. \mathcal{P}_2^*) can be described by looking at the columns (resp. rows) of $H(\mathcal{P}^*).$

W.l.o.g assume $H(P^*)$'s rows and columns are sorted based on fraction of 1-entries.

Refined Parallel Repetition II

W.l.o.g assume $H(P^*)$'s rows and columns are sorted based on fraction of 1-entries.

- $\delta_k(x,\mathcal{P}_1^*)$ is the fraction of 1-entries in blue region.
- $\delta_k(x,\mathcal{P}_2^*)$ is the fraction of 1-entries in red region.

W.l.o.g assume $H(P^*)$'s rows and columns are sorted based on fraction of 1-entries.

- $\delta_k(x,\mathcal{P}_1^*)$ is the fraction of 1-entries in blue region.
- $\delta_k(x,\mathcal{P}_2^*)$ is the fraction of 1-entries in red region.

By running the single instance extractor in parallel on \mathcal{P}^*_1 and \mathcal{P}^*_2 , the extraction probability is given by

$$
\delta_k(x, \mathcal{P}_1^*) + \delta_k(x, \mathcal{P}_2^*) \ge \varepsilon(x, \mathcal{P}^*) - \frac{(k-1)^2}{N^2}
$$

$$
\implies \max(\delta_k(x, \mathcal{P}_1^*), \delta_k(x, \mathcal{P}_2^*) \ge \left(\varepsilon(x, \mathcal{P}^*) - \frac{(k-1)^2}{N^2}\right)/2
$$

Consider \mathcal{P}^* attacking the (t,ω) -fixed-weight repetition $\Pi^{t,\omega}$. The challenge space is given by $Ch^{t,\omega} = \{c \in Ch^t : wt_0(c) = \omega\}.$

$$
\mathcal{P}^* : \mathsf{Ch}^{t,\omega} \to \{0,1\}^*, \qquad c \mapsto (z_1,\ldots,z_t).
$$

$$
\mathcal{P}^* : \mathsf{Ch}^{t,\omega} \to \{0,1\}^*, \qquad c \mapsto (z_1,\ldots,z_t).
$$

We can define t probabilistic provers $\mathcal{P}_1^\ast....$, \mathcal{P}_t^\ast attacking a single invocation of Π

$$
\mathcal{P}^*_i: \: c_i \mapsto \begin{bmatrix} \bar{c} \leftarrow \{ \text{ch}^{t-1,\omega-1} \quad \text{if} \: c_i = 0 \\ \text{Ch}^{t-1,\omega} \quad \text{if} \: c_i \neq 0 \\ (z_1,\ldots,z_t) \leftarrow \mathcal{P}^*(c = (c_i,\bar{c})) \end{bmatrix} \mapsto z_i
$$

$$
\mathcal{P}^* : \mathsf{Ch}^{t,\omega} \to \{0,1\}^*, \qquad c \mapsto (z_1,\ldots,z_t).
$$

We can define t probabilistic provers $\mathcal{P}_1^\ast....$, \mathcal{P}_t^\ast attacking a single invocation of Π

$$
\mathcal{P}_i^* : c_i \mapsto \begin{bmatrix} \bar{c} \leftarrow \{ch^{t-1, \omega-1} & \text{if } c_i = 0\\ Ch^{t-1, \omega} & \text{if } c_i \neq 0\\ (z_1, \dots, z_t) \leftarrow \mathcal{P}^*(c = (c_i, \bar{c})) \end{bmatrix} \mapsto z_i
$$

Notice that, if we take $c_i \leftarrow s$ Ch it does not hold that $\varepsilon(x, \mathcal{P}_i^*) = \varepsilon(x, \mathcal{P}^*)$, since $c = (c_i, \bar{c})$ is not uniformly distributed in $\mathsf{Ch}^{t,\omega}.$

$$
\mathcal{P}^* : \mathsf{Ch}^{t,\omega} \to \{0,1\}^*, \qquad c \mapsto (z_1,\ldots,z_t).
$$

We can define t probabilistic provers $\mathcal{P}_1^\ast....$, \mathcal{P}_t^\ast attacking a single invocation of Π

$$
\mathcal{P}_i^* : c_i \mapsto \begin{bmatrix} \bar{c} \leftarrow \{ch^{t-1, \omega-1} & \text{if } c_i = 0\\ Ch^{t-1, \omega} & \text{if } c_i \neq 0\\ (z_1, \dots, z_t) \leftarrow \mathcal{P}^*(c = (c_i, \bar{c})) \end{bmatrix} \mapsto z_i
$$

Notice that, if we take $c_i \leftarrow s$ Ch it does not hold that $\varepsilon(x, \mathcal{P}_i^*) = \varepsilon(x, \mathcal{P}^*)$, since $c = (c_i, \bar{c})$ is not uniformly distributed in $\mathsf{Ch}^{t,\omega}.$

We need to sample c_i according to a particular distribution over Ch.

EE Telsy **Now Street**

Let $\mathcal D$ a probability distribution over $D \subset Ch$ with $|D| \geq k$. We define the success probability of \mathcal{P}^* restricted on $\mathcal D$ as

$$
\varepsilon(\mathcal{P}^*, \mathcal{D}) = \Pr[\mathcal{P}^*(\mathcal{C}) \text{ succeeds}],
$$

where C is a random variable being distributed as D . When D is the uniform distribution over Ch, then $\varepsilon(\mathcal{P}^*, \mathcal{D}) = \varepsilon(\mathcal{P}^*).$

Let $\mathcal D$ a probability distribution over $D \subset Ch$ with $|D| \geq k$. We define the success probability of \mathcal{P}^* restricted on $\mathcal D$ as

 $\varepsilon(\mathcal{P}^*, \mathcal{D})$ = Pr $[\mathcal{P}^*(C)$ succeeds],

where C is a random variable being distributed as D . When D is the uniform distribution over Ch, then $\varepsilon(\mathcal{P}^*, \mathcal{D}) = \varepsilon(\mathcal{P}^*).$

Restricted punctured success probability

$$
\delta_k(\mathcal{P}^*, \mathcal{D}) = \min_{S \subset \mathcal{D}: |S| < k} \Pr[\mathcal{P}^*(C) \text{ succeeds } | C \notin S],
$$

where C is a random variable being distributed as \mathcal{D} .

Let $\mathcal D$ a probability distribution over $D \subset Ch$ with $|D| \geq k$. We define the success probability of \mathcal{P}^* restricted on $\mathcal D$ as

 $\varepsilon(\mathcal{P}^*, \mathcal{D})$ = Pr $[\mathcal{P}^*(C)$ succeeds],

where C is a random variable being distributed as $\mathcal D$. When $\mathcal D$ is the uniform distribution over Ch, then $\varepsilon(\mathcal{P}^*, \mathcal{D}) = \varepsilon(\mathcal{P}^*).$

Restricted punctured success probability

$$
\delta_k(\mathcal{P}^*, \mathcal{D}) = \min_{S \subset \mathcal{D}: |S| < k} \Pr[\mathcal{P}^*(C) \text{ succeeds } | C \notin S],
$$

where C is a random variable being distributed as \mathcal{D} .

Extension of [AttFeh22, Lemma 2]

There exists an extraction algorithm $\mathcal{E}^{\mathcal{P}^*}(\mathcal{D})$ that succeed with probability at least

 δ_k $(\mathcal{P}^*, \mathcal{D})$ /k

EE Telsy **Reference**

Theorem

The (t, ω) -fixed-weight repetition of a k-out-of-N special-sound interactive proof is knowledge sound, with knowledge error

$$
\kappa_{t,\omega} = \left(\frac{t}{\omega}\right)^{-1} \frac{\eta_{t,\omega}}{(N-1)^{t-\omega}},
$$

where

$$
\eta_{t,\omega}=\begin{cases} \binom{\omega(k-1)}{ \omega}(k-2)^{\omega(k-2)}(k-1)^{t-\omega(k-1)}\quad \text{if }t\geq \omega(k-1)\\ \binom{t}{ \omega}(k-2)^{t-\omega}\quad\quad&\text{otherwise}\end{cases}
$$

.

Theorem

The (t, ω) -fixed-weight repetition of a k-out-of-N special-sound interactive proof is knowledge sound, with knowledge error

$$
\kappa_{t,\omega} = \left(\frac{t}{\omega}\right)^{-1} \frac{\eta_{t,\omega}}{(N-1)^{t-\omega}},
$$

where

$$
\eta_{t,\omega}=\begin{cases} \binom{\omega(k-1)}{ \omega}(k-2)^{\omega(k-2)}(k-1)^{t-\omega(k-1)} & \text{if } t\geq \omega(k-1) \\ \binom{t}{\omega}(k-2)^{t-\omega} & \text{otherwise} \end{cases}
$$

.

- $K_{t,\omega}$ cannot be expressed in terms of the knowledge error of the single istance.
- However, $\kappa_{t,\omega}$ coincides with the maximal cheating probability of a dishonest prover \implies the result is optimal!
- $\bullet~$ Our result can be extended to multi-round $(k_1,...\,,k_{\mu})$ -special-sound protocols.
- The expression for the knowledge error became quite complex (Theorem 2 in the paper)
- The result is still optimal!

Theorem

The (t,ω) -fixed-weight repetition of a $(k_1,...,k_{\mu})$ -out-of-($N_1,...,N_{\mu})$ special-sound interactive proof is knowledge sound.

- CROSS² is a $(2, 2)$ -out-of- $(p 1, 2)$ special-sound 5-pass protocol.
- Fixed-weight optimization is employed in all parameter sets of the scheme.

CROSS Specs

Cheating probability:

$$
\sum_{l=0}^{\min(\omega,t-\omega)}\frac{\binom{\omega}{l}\binom{t-\omega}{l}}{\binom{t}{\omega}}(p-1)^{-2l}
$$

Our work
Knowledge error:

$$
\max_{\alpha \in \{0,\ldots,t\}} \sum_{l=\max(0,\omega-t+\alpha)}^{min(\omega,\alpha)} \frac{\binom{\alpha}{l}\binom{t-\alpha}{\omega-l}}{\binom{t}{\omega}} (p-1)^{-(\alpha-l)-(\omega-l) }
$$

² *Baldi, Barenghi, Bitzer, Karl, Manganiello, Pavoni, Pelosi, Santini, Schupp, Slaughter, Wachter-Zeh, and Weger. CROSS — Codes and Restricted Objects Signature Scheme.*

- CROSS² is a $(2, 2)$ -out-of- $(p 1, 2)$ special-sound 5-pass protocol.
- Fixed-weight optimization is employed in all parameter sets of the scheme.

CROSS Specs Cheating probability: min(ω ,t− ω) ∑ $l=0$ $(\frac{\omega}{\iota})$ $\binom{1}{l}$ ($\binom{t-ω}{l}$ $\binom{t}{t}$ \int_{ω} $(p - 1)^{-2l}$

The expressions coincide for $\alpha = \omega$, which is not always the case for CROSS parameter sets.

This does not immediately translate to CROSS parameters after the application of Fiat-Shamir!

² *Baldi, Barenghi, Bitzer, Karl, Manganiello, Pavoni, Pelosi, Santini, Schupp, Slaughter, Wachter-Zeh, and Weger. CROSS — Codes and Restricted Objects Signature Scheme.*

Summary:

- The fixed-weight repetition of (multi-round) interactive proofs is knowledge-sound.
- Explicit expression of adversary's cheating probability against (k₁, ... , k_µ)-special-sound protocols.
- The knowledge error matches the optimal cheating probability.

Future works:

- Investigate the non-interactive case.
- Extend to "generalized" fixed-weight optimization for intermediate rounds.

Thank you!