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Interactive Proofs

A binary relation is a set 𝑅 = {(𝑥, 𝑤)} of
statement-witness pairs.

Goal

Prove the knowledge of a witness 𝑤
for a public statement 𝑥.

Public-coin

We consider interactive proofs where
the challenges 𝑐𝑖 are sampled
uniformly at random.

Prover(𝑥, 𝑤) Verifier(𝑤)
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Properties

Completeness

Honest provers (almost) always succeed in convincing a verifier.

Soundness

A dishonest prover (almost) never convince a verifier that a false statement
𝑥 ∉ 𝐿𝑅 = {𝑥 ∣ ∃𝑤 ∶ (𝑥, 𝑤) ∈ 𝑅} is true.

Zero-knowledge

No information about 𝑤 is revealed.

Soundness does not mean the prover knows a witness!
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Knowledge Soundness (Informal)

Informally, a dishonest prover P∗ (almost) never succeed without the knowledge of a witness 𝑤.

Knowledge soundness ⟺ exists a knowledge extractor E .

Knowledge Extractor

Input: Statement 𝑥, rewindable oracle access to a prover P∗.

Output: A witness 𝑤 such that (𝑥, 𝑤) ∈ 𝑅.
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Knowledge Soundness

Consider any (dishonest) prover P∗ against the protocol on statement 𝑥 and a knowledge
extractor E .

• 𝜀(𝑥,P∗) is the success probability of P∗ on input 𝑥.

• 𝜅(|𝑥|) is the knowledge error of the protocol.

Knowledge Soundness

If 𝜀(𝑥,P∗) > 𝜅(|𝑥|), then E extracts a witness 𝑤 such that (𝑥, 𝑤) ∈ 𝑅 in expected running time at
most

poly(|𝑥|)
𝜀(𝑥,P∗) − 𝜅(|𝑥|)

.

Knowledge Soundness is hard to prove in general!
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Special-Soundness

From now on we restrict to Σ-protocols (i.e, 3-move protocols) with challenge space
Ch = {0, 1, … , 𝑁 − 1}.

2-out-of-N special-soundness

There exists an efficient algorithm to extract a witness 𝑤 from 2 colliding accepting protocol
transcripts (𝑎, 𝑐, 𝑧) and (𝑎, 𝑐′, 𝑧′) with 𝑐 ≠ 𝑐′ ∈ Ch.

(2-out-of-N) special-soundness implies knowledge soundness with 𝜅 = 1/𝑁.

k-out-of-N special-soundness

There exists an efficient algorithm to extract a witness 𝑤 from 𝑘 colliding accepting protocol
transcripts (𝑎, 𝑐1, 𝑧1), … , (𝑎, 𝑐𝑘, 𝑧𝑘) with pairwise distinct challenges 𝑐1, … , 𝑐𝑘 ∈ Ch.

k-out-of-N special-soundness implies knowledge soundness with 𝜅 = (𝑘 − 1)/𝑁.

5



Special-Soundness

From now on we restrict to Σ-protocols (i.e, 3-move protocols) with challenge space
Ch = {0, 1, … , 𝑁 − 1}.

2-out-of-N special-soundness

There exists an efficient algorithm to extract a witness 𝑤 from 2 colliding accepting protocol
transcripts (𝑎, 𝑐, 𝑧) and (𝑎, 𝑐′, 𝑧′) with 𝑐 ≠ 𝑐′ ∈ Ch.

(2-out-of-N) special-soundness implies knowledge soundness with 𝜅 = 1/𝑁.

k-out-of-N special-soundness

There exists an efficient algorithm to extract a witness 𝑤 from 𝑘 colliding accepting protocol
transcripts (𝑎, 𝑐1, 𝑧1), … , (𝑎, 𝑐𝑘, 𝑧𝑘) with pairwise distinct challenges 𝑐1, … , 𝑐𝑘 ∈ Ch.

k-out-of-N special-soundness implies knowledge soundness with 𝜅 = (𝑘 − 1)/𝑁.

5



Special-Soundness

From now on we restrict to Σ-protocols (i.e, 3-move protocols) with challenge space
Ch = {0, 1, … , 𝑁 − 1}.

2-out-of-N special-soundness

There exists an efficient algorithm to extract a witness 𝑤 from 2 colliding accepting protocol
transcripts (𝑎, 𝑐, 𝑧) and (𝑎, 𝑐′, 𝑧′) with 𝑐 ≠ 𝑐′ ∈ Ch.

(2-out-of-N) special-soundness implies knowledge soundness with 𝜅 = 1/𝑁.

k-out-of-N special-soundness

There exists an efficient algorithm to extract a witness 𝑤 from 𝑘 colliding accepting protocol
transcripts (𝑎, 𝑐1, 𝑧1), … , (𝑎, 𝑐𝑘, 𝑧𝑘) with pairwise distinct challenges 𝑐1, … , 𝑐𝑘 ∈ Ch.

k-out-of-N special-soundness implies knowledge soundness with 𝜅 = (𝑘 − 1)/𝑁.

5



Reducing the Knowledge Error

• In many applications we need the knowledge error to be negligible.

• The 𝑡-fold parallel repetition Π𝑡 of a 2-out-of-𝑁 special-sound Σ-protocol Π is still a proof of
knowledge with knowledge error 1/𝑁𝑡.

What about 𝑘-out-of-𝑁 special-sound Σ-protocols?

Basic reasoning for 𝑘 = 2 is to observe that Π𝑡 is still 𝑙-special sound with 𝑙 = (𝑘 − 1)𝑡 + 1.
This reasoning does not apply in general, since 𝑙 grows exponentially in 𝑡 for 𝑘 > 2.

Theorem 2 [AF22]1

If Π has knowledge error 𝜅, then Π𝑡 has knowledge error 𝜅𝑡.

1Attema and Fehr. “Parallel Repetition of (𝑘1, … , 𝑘𝜇)-Special-Sound Multi-round Interactive Proofs”. CRYPTO 2022, Part I.
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Fixed-Weight Repetition

• When we build signature schemes from interactive protocols, the size of the signature is
typically dominated by the length of the responses.

• Some challenges may be matched by much smaller responses.

There is a standard optimization for this scenario:

Unbalanced Challenges

Use a challenge string with a fixed small weight on unfavorable challenges.

� Fewer large responses to be sent ⟹ smaller signature.

� More repetitions ⟹ less efficient signing and verification.

Research Question

Does a fixed-weight repetition of a 𝑘-special-sound public-coin interactive proof enjoy
knowledge soundness?
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Knowledge Extractor on 𝑘-out-of-𝑁 Special-Sound Protocols I

Let Π be a 𝑘-out-of-𝑁 special sound Σ-protocol, and let P∗ be a deterministic prover attacking Π
on input a statement 𝑥

• P∗’s first message 𝑎 is fixed.

• P∗ ∶ Ch → {0, 1}∗, 𝑐 ↦ 𝑧.

• P∗ is successful if (𝑎, 𝑐, 𝑧) is an accepting transcript.

P∗’s behavior can be described by a binary vector 𝐻(P∗) indexed by the challenges 𝑐𝑖.

𝐻(P∗) =
𝑐0 𝑐1 𝑐2 … 𝑐𝑁−2 𝑐𝑁−1
( )0 1 1 … 1 0

• 𝐻(P∗)[𝑐𝑖] = 1 corresponds to P∗ succeeding on input 𝑐𝑖
• 𝐻(P∗)[𝑐𝑖] = 0 corresponds to P∗ failing on input 𝑐𝑖
• The success probability 𝜀(𝑥,P∗) of P∗ on input 𝑥 is fraction of 1-entries.
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Knowledge Extractor on 𝑘-out-of-𝑁 Special-Sound Protocols II

Basic extraction algorithm:

1. Samples random challenges 𝑐1 until 𝐻(P∗)[𝑐1] = 1 ⟹ Expected time:

1/𝜀(𝑥,P∗).

2. Samples random challenges 𝑐2 ≠ 𝑐1 until 𝐻(P∗)[𝑐2] = 1 ⟹ Expected time:

≤
1

𝜀(𝑥,P∗) − 1/𝑁
.

⋮
𝑘. Samples random challenges 𝑐𝑘 ≠ 𝑐1, … , 𝑐𝑘−1 until 𝐻(P∗)[𝑐𝑘] = 1 ⟹ Expected time:

≤
1

𝜀(𝑥,P∗) − (𝑘 − 1)/𝑁
.

Expected runtime ≤ 𝑘
𝜀(𝑥,P∗)−(𝑘−1)/𝑁

⟹ knowledge error (𝑘 − 1)/𝑁.
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2-Fold Parallel Repetition

Consider P∗ attacking the 𝑡 = 2-fold parallel repetition Π𝑡.
We can treat P∗ as a (deterministic) function where the first message (𝑎1, 𝑎2) is fixed

P∗ ∶ Ch × Ch → {0, 1}∗, (𝑐1, 𝑐2) ↦ (𝑧1, 𝑧2).

P∗ defines two (probabilistic) provers P∗
1 and P∗

2 attacking a single invocation of Π

P∗
1 ∶ 𝑐1 ↦ [

𝑐2 ←$ Ch
(𝑧1, 𝑧2) ← P∗(𝑐1, 𝑐2)

] ↦ 𝑧1

P∗
2 ∶ 𝑐2 ↦ [

𝑐1 ←$ Ch
(𝑧1, 𝑧2) ← P∗(𝑐1, 𝑐2)

] ↦ 𝑧2

Notice that
𝜀(𝑥,P∗

𝑖 ) = Pr[𝑉(𝑐𝑖,P∗
𝑖 (𝑐𝑖)) = 1] = Pr[𝑉(𝑐,P∗(𝑐)) = 1] = 𝜀(𝑥,P∗),

where 𝑐𝑖 ←$ Ch and 𝑐 ←$ Ch𝑡.
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Naive Extraction for 2-Fold Parallel Repetition

Knowledge Extractor

• Run the extractor E for Π for both P∗
1 and P∗

2 .

• Hope that at least one of them succeed.

• The same analysis as before holds, even though P∗
1 and P∗

2 are not deterministic.

This does not work!

• The obtained knowledge error is still (𝑘 − 1)/𝑁.

• We hope to reduce knowledge error down to (𝑘 − 1)2/𝑁2.
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Solution of [AF22]

• Introduce a more fine-grained quality measure of success.

• Currently the quality of the extractor is expressed in terms of 𝜀(𝑥,P∗)

Punctured success probability

Define the following measure

𝛿𝑘(𝑥,P∗) = min
𝑆⊂Ch∶|𝑆|=𝑘−1

Pr[P∗(𝐶) succeeds ∣ 𝐶 ∉ 𝑆],

where 𝐶 is a random variable uniformly random in Ch.

𝛿𝑘(𝑥,P∗) lower bounds the success probability of P∗ when removing 𝑘 − 1 challenges.

New Extractor

On a single invocation EP∗ has expected runtime

≤
𝑘

𝛿𝑘(𝑥,P∗)
≤

𝑘(1 − 𝜅)
𝜀(𝑥,P∗) − 𝜅

,

where 𝜅 = 𝑘−1
𝑁
.
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Refined Parallel Repetition I

Consider again P∗ attacking the 𝑡 = 2-fold parallel repetition Π𝑡.
P∗’s behaviour can be described by a binary matrix 𝐻(P∗):

𝐻(P∗) =

𝑐0 𝑐1 𝑐2 … 𝑐𝑁−2 𝑐𝑁−1

⎛⎜⎜⎜⎜

⎝

⎞⎟⎟⎟⎟

⎠

0 0 1 … 0 0 𝑐0
1 1 0 … 1 1 𝑐1
1 1 0 … 1 1 𝑐2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 1 1 … 1 0 𝑐𝑁−2
0 0 1 … 1 0 𝑐𝑁−1

The behavior of P∗
1 (resp. P∗

2 ) can be described by looking at the columns (resp. rows) of 𝐻(P∗).
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Refined Parallel Repetition II

W.l.o.g assume 𝐻(P∗)’s rows and columns are sorted based on fraction of 1-entries.

• 𝛿𝑘(𝑥,P∗
1 ) is the fraction of 1-entries in

blue region.

• 𝛿𝑘(𝑥,P∗
2 ) is the fraction of 1-entries in

red region.

By running the single instance extractor in parallel on P∗
1 and P∗

2 , the extraction probability is
given by

𝛿𝑘(𝑥,P∗
1 ) + 𝛿𝑘(𝑥,P∗

2 ) ≥ 𝜀(𝑥,P∗) −
(𝑘 − 1)2

𝑁2

⟹ max(𝛿𝑘(𝑥,P∗
1 ), 𝛿𝑘(𝑥,P∗

2 ))≥ (𝜀(𝑥,P∗) −
(𝑘 − 1)2

𝑁2
)/2
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Fixed-Weight Repetition

Consider P∗ attacking the (𝑡, 𝜔)-fixed-weight repetition Π𝑡,𝜔. The challenge space is given by
Ch𝑡,𝜔 = {𝑐 ∈ Ch𝑡 ∶ wt0(𝑐) = 𝜔}.

Again, we can treat P∗ as a (deterministic) function

P∗ ∶ Ch𝑡,𝜔 → {0, 1}∗, 𝑐 ↦ (𝑧1, … , 𝑧𝑡).

We can define 𝑡 probabilistic provers P∗
1 , … ,P∗

𝑡 attacking a single invocation of Π

P∗
𝑖 ∶ 𝑐𝑖 ↦ [ ̄𝑐 ←$ {

Ch𝑡−1,𝜔−1 if 𝑐𝑖 = 0
Ch𝑡−1,𝜔 if 𝑐𝑖 ≠ 0

(𝑧1, … , 𝑧𝑡) ← P∗(𝑐 = (𝑐𝑖, ̄𝑐))
] ↦ 𝑧𝑖

Notice that, if we take 𝑐𝑖 ←$ Ch it does not hold that 𝜀(𝑥,P∗
𝑖 ) = 𝜀(𝑥,P∗), since 𝑐 = (𝑐𝑖, ̄𝑐) is not

uniformly distributed in Ch𝑡,𝜔.

We need to sample 𝑐𝑖 according to a particular distribution over Ch.
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“Generalized” Punctured Success Probability

Let D a probability distribution over 𝐷 ⊂ Ch with |𝐷| ≥ 𝑘. We define the success probability of
P∗ restricted on D as

𝜀(P∗,D) = Pr[P∗(𝐶) succeeds],

where 𝐶 is a random variable being distributed as D. When D is the uniform distribution over
Ch, then 𝜀(P∗,D) = 𝜀(P∗).

Restricted punctured success probability

𝛿𝑘(P∗,D) = min
𝑆⊂𝐷∶|𝑆|<𝑘

Pr[P∗(𝐶) succeeds ∣ 𝐶 ∉ 𝑆],

where 𝐶 is a random variable being distributed as D.

Extension of [AttFeh22, Lemma 2]

There exists an extraction algorithm EP∗(D) that succeed with probability at least

𝛿𝑘(P∗,D)/𝑘
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Main Result

Theorem

The (𝑡, 𝜔)-fixed-weight repetition of a 𝑘-out-of-𝑁 special-sound interactive proof is knowledge
sound, with knowledge error

𝜅𝑡,𝜔 = (
𝑡

𝜔
)
−1 𝜂𝑡,𝜔
(𝑁 − 1)𝑡−𝜔

,

where

𝜂𝑡,𝜔 = {
(𝜔(𝑘−1)

𝜔
)(𝑘 − 2)𝜔(𝑘−2)(𝑘 − 1)𝑡−𝜔(𝑘−1) if 𝑡 ≥ 𝜔(𝑘 − 1)

( 𝑡
𝜔
)(𝑘 − 2)𝑡−𝜔 otherwise

.

• 𝜅𝑡,𝜔 cannot be expressed in terms of the knowledge error of the single istance.

• However, 𝜅𝑡,𝜔 coincides with the maximal cheating probability of a dishonest prover ⟹
the result is optimal!
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Extending to Multi-Round Protocols

• Our result can be extended to multi-round (𝑘1, … , 𝑘𝜇)-special-sound protocols.

• The expression for the knowledge error became quite complex (Theorem 2 in the paper)

• The result is still optimal!

Theorem

The (𝑡, 𝜔)-fixed-weight repetition of a (𝑘1, … , 𝑘𝜇)-out-of-(𝑁1, … , 𝑁𝜇) special-sound interactive
proof is knowledge sound.
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Knowledge Soundness of CROSS Protocol

• CROSS2 is a (2, 2)-out-of-(𝑝 − 1, 2) special-sound 5-pass protocol.

• Fixed-weight optimization is employed in all parameter sets of the scheme.

CROSS Specs

Cheating probability:

min(𝜔,𝑡−𝜔)

∑
𝑙=0

(𝜔
𝑙
)(𝑡−𝜔

𝑙
)

( 𝑡
𝜔
)

(𝑝 − 1)−2𝑙

Our work

Knowledge error:

max
𝛼∈{0,…,𝑡}

min(𝜔,𝛼)

∑
𝑙=max(0,𝜔−𝑡+𝛼)

(𝛼
𝑙
)(𝑡−𝛼
𝜔−𝑙
)

( 𝑡
𝜔
)
(𝑝 − 1)−(𝛼−𝑙)−(𝜔−𝑙)

The expressions coincide for 𝛼 = 𝜔, which is not always the case for CROSS parameter sets.

This does not immediately translate to CROSS parameters after the application of Fiat-Shamir!

2Baldi, Barenghi, Bitzer, Karl, Manganiello, Pavoni, Pelosi, Santini, Schupp, Slaughter, Wachter-Zeh, and Weger. CROSS — Codes and Restricted Objects Signature Scheme.
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Conclusions and Future Works

Summary:

• The fixed-weight repetition of (multi-round) interactive
proofs is knowledge-sound.

• Explicit expression of adversary’s cheating probability
against (𝑘1, … , 𝑘𝜇)-special-sound protocols.

• The knowledge error matches the optimal cheating
probability.

Future works:

• Investigate the non-interactive case.

• Extend to “generalized” fixed-weight optimization for
intermediate rounds.

ia.cr/2024/884
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Thank you!
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