

Security of Fixed-Weight Repetitions of Special-Sound Multi-Round Interactive Proofs

Edoardo Signorini Joint work with Michele Battagliola, Riccardo Longo, Federico Pintore and Giovanni Tognolini

November 13, 2024

A binary relation is a set **R** = {(**x**, **w**)} of statement-witness pairs.

Prover(*x*, *w*)

Goal

Prove the knowledge of a witness **w** for a public statement **x**.

We consider interactive proofs where the challenges c_i are sampled uniformly at random.

1

Completeness

Honest provers (almost) always succeed in convincing a verifier.

Soundness

A dishonest prover (almost) never convince a verifier that a false statement $x \notin L_R = \{x \mid \exists w : (x, w) \in R\}$ is true.

Zero-knowledge

No information about **w** is revealed.

Completeness

Honest provers (almost) always succeed in convincing a verifier.

Soundness

A dishonest prover (almost) never convince a verifier that a false statement $x \notin L_R = \{x \mid \exists w : (x, w) \in R\}$ is true.

Zero-knowledge

No information about **w** is revealed.

Soundness does not mean the prover knows a witness!

Informally, a dishonest prover \mathcal{P}^* (almost) never succeed without the knowledge of a witness **w**.

Knowledge soundness \iff exists a knowledge extractor \mathcal{E} .

Knowledge Extractor Input: Statement *x*, rewindable oracle access to a prover \mathcal{P}^* . **Output:** A witness *w* such that $(x, w) \in R$.

Consider any (dishonest) prover \mathcal{P}^* against the protocol on statement x and a knowledge extractor \mathcal{E} .

- $\epsilon(x, \mathcal{P}^*)$ is the success probability of \mathcal{P}^* on input x.
- $\kappa(|x|)$ is the knowledge error of the protocol.

Consider any (dishonest) prover \mathcal{P}^* against the protocol on statement x and a knowledge extractor \mathcal{E} .

- $\epsilon(x, \mathcal{P}^*)$ is the success probability of \mathcal{P}^* on input x.
- $\kappa(|x|)$ is the knowledge error of the protocol.

Knowledge Soundness

If $\varepsilon(x, \mathcal{P}^*) > \kappa(|x|)$, then \mathcal{E} extracts a witness w such that $(x, w) \in R$ in expected running time at most

 $\frac{\operatorname{poly}(|x|)}{\varepsilon(x,\mathcal{P}^*)-\kappa(|x|)}.$

Consider any (dishonest) prover \mathcal{P}^* against the protocol on statement x and a knowledge extractor \mathcal{E} .

- $\epsilon(x, \mathcal{P}^*)$ is the success probability of \mathcal{P}^* on input x.
- $\kappa(|x|)$ is the knowledge error of the protocol.

Knowledge Soundness

If $\varepsilon(x, \mathcal{P}^*) > \kappa(|x|)$, then \mathcal{E} extracts a witness w such that $(x, w) \in R$ in expected running time at most

 $\frac{\operatorname{poly}(|x|)}{\varepsilon(x,\mathcal{P}^*)-\kappa(|x|)}.$

Knowledge Soundness is hard to prove in general!

From now on we restrict to Σ -protocols (i.e, 3-move protocols) with challenge space Ch = {0, 1, ..., N - 1}.

2-out-of-N special-soundness

There exists an efficient algorithm to extract a witness w from 2 *colliding* accepting protocol transcripts (a, c, z) and (a, c', z') with $c \neq c' \in Ch$.

From now on we restrict to Σ -protocols (i.e, 3-move protocols) with challenge space Ch = {0, 1, ..., N - 1}.

2-out-of-N special-soundness

There exists an efficient algorithm to extract a witness w from 2 *colliding* accepting protocol transcripts (a, c, z) and (a, c', z') with $c \neq c' \in Ch$.

(2-out-of-N) special-soundness implies knowledge soundness with $\kappa = 1/N$.

From now on we restrict to Σ -protocols (i.e, 3-move protocols) with challenge space Ch = {0, 1, ..., N - 1}.

2-out-of-N special-soundness

There exists an efficient algorithm to extract a witness w from 2 *colliding* accepting protocol transcripts (a, c, z) and (a, c', z') with $c \neq c' \in Ch$.

(2-out-of-N) special-soundness implies knowledge soundness with $\kappa = 1/N$.

k-out-of-N special-soundness

There exists an efficient algorithm to extract a witness w from k colliding accepting protocol transcripts $(a, c_1, z_1), \dots, (a, c_k, z_k)$ with pairwise distinct challenges $c_1, \dots, c_k \in Ch$.

k-out-of-N special-soundness implies knowledge soundness with $\kappa = (k - 1)/N$.

- In many applications we need the knowledge error to be negligible.
- The t-fold parallel repetition Π^t of a 2-out-of-N special-sound Σ-protocol Π is still a proof of knowledge with knowledge error 1/N^t.

¹Attema and Fehr. "Parallel Repetition of (k₁,..., k_µ)-Special-Sound Multi-round Interactive Proofs". CRYPTO 2022, Part I.

- In many applications we need the knowledge error to be negligible.
- The t-fold parallel repetition Π^t of a 2-out-of-N special-sound Σ-protocol Π is still a proof of knowledge with knowledge error 1/N^t.

¹Attema and Fehr. "Parallel Repetition of (k₁,..., k_µ)-Special-Sound Multi-round Interactive Proofs". CRYPTO 2022, Part I.

- In many applications we need the knowledge error to be negligible.
- The t-fold parallel repetition Π^t of a 2-out-of-N special-sound Σ-protocol Π is still a proof of knowledge with knowledge error 1/N^t.

Basic reasoning for k = 2 is to observe that Π^{t} is still *l*-special sound with $l = (k - 1)^{t} + 1$.

¹Attema and Fehr. "Parallel Repetition of (k₁,..., k_µ)-Special-Sound Multi-round Interactive Proofs". CRYPTO 2022, Part I.

- In many applications we need the knowledge error to be negligible.
- The *t*-fold *parallel repetition* Π^t of a 2-out-of-*N* special-sound Σ -protocol Π is still a proof of knowledge with knowledge error $1/N^t$.

Basic reasoning for k = 2 is to observe that Π^t is still *l*-special sound with $l = (k - 1)^t + 1$. This reasoning does not apply in general, since *l* grows exponentially in *t* for k > 2.

¹Attema and Fehr. "Parallel Repetition of (k₁,..., k_µ)-Special-Sound Multi-round Interactive Proofs". CRYPTO 2022, Part I.

- In many applications we need the knowledge error to be negligible.
- The t-fold parallel repetition Π^t of a 2-out-of-N special-sound Σ-protocol Π is still a proof of knowledge with knowledge error 1/N^t.

Basic reasoning for k = 2 is to observe that Π^t is still *l*-special sound with $l = (k - 1)^t + 1$. This reasoning does not apply in general, since *l* grows exponentially in *t* for k > 2.

Theorem 2 [AF22]¹

If Π has knowledge error κ , then Π^t has knowledge error κ^t .

¹Attema and Fehr. "Parallel Repetition of (k₁,..., k_µ)-Special-Sound Multi-round Interactive Proofs". CRYPTO 2022, Part I.

- When we build signature schemes from interactive protocols, the size of the signature is typically dominated by the length of the responses.
- Some challenges may be matched by much smaller responses.

- When we build signature schemes from interactive protocols, the size of the signature is typically dominated by the length of the responses.
- Some challenges may be matched by much smaller responses.

There is a standard optimization for this scenario:

Unbalanced Challenges

Use a challenge string with a fixed small weight on unfavorable challenges.

- \mathcal{O} Fewer large responses to be sent \implies smaller signature.
- $\mathbf{\nabla}$ More repetitions \implies less efficient signing and verification.

- When we build signature schemes from interactive protocols, the size of the signature is typically dominated by the length of the responses.
- Some challenges may be matched by much smaller responses.

There is a standard optimization for this scenario:

Unbalanced Challenges

Use a challenge string with a fixed small weight on unfavorable challenges.

- ightharpoonup Fewer large responses to be sent \implies smaller signature.
- $\mathbf{\nabla}$ More repetitions \implies less efficient signing and verification.

Research Question

Does a fixed-weight repetition of a **k**-special-sound public-coin interactive proof enjoy knowledge soundness?

Let Π be a *k*-out-of-*N* special sound Σ -protocol, and let \mathcal{P}^* be a *deterministic* prover attacking Π on input a statement *x*

- \mathcal{P}^* 's first message a is fixed.
- \mathcal{P}^* : Ch \rightarrow {0, 1}*, c \mapsto z.
- \mathcal{P}^* is successful if (*a*, *c*, *z*) is an accepting transcript.

Let Π be a *k*-out-of-*N* special sound Σ -protocol, and let \mathcal{P}^* be a *deterministic* prover attacking Π on input a statement *x*

- \mathcal{P}^* 's first message a is fixed.
- \mathcal{P}^* : Ch \rightarrow {0, 1}*, c \mapsto z.
- \mathcal{P}^* is successful if (*a*, *c*, *z*) is an accepting transcript.

 \mathcal{P}^{*} 's behavior can be described by a binary vector $H(\mathcal{P}^{*})$ indexed by the challenges c_{i} .

$$H(\mathcal{P}^*) = \begin{pmatrix} c_0 & c_1 & c_2 & \dots & c_{N-2} & c_{N-1} \\ 0 & 1 & 1 & \dots & 1 & 0 \end{pmatrix}$$

- $H(\mathcal{P}^*)[c_i] = 1$ corresponds to \mathcal{P}^* succeeding on input c_i
- $H(\mathcal{P}^*)[c_i] = 0$ corresponds to \mathcal{P}^* failing on input c_i
- The success probability $\varepsilon(x,\mathcal{P}^*)$ of \mathcal{P}^* on input x is fraction of 1-entries.

1. Samples random challenges c_1 until $H(\mathcal{P}^*)[c_1] = 1 \implies$ Expected time:

 $1/\varepsilon(x, \mathcal{P}^*).$

1. Samples random challenges c_1 until $H(\mathcal{P}^*)[c_1] = 1 \implies$ Expected time:

 $1/\varepsilon(x, \mathcal{P}^*).$

2. Samples random challenges $c_2 \neq c_1$ until $H(\mathcal{P}^*)[c_2] = 1 \implies$ Expected time:

$$\leq \frac{1}{\varepsilon(x,\mathcal{P}^*)-1/N}.$$

1. Samples random challenges c_1 until $H(\mathcal{P}^*)[c_1] = 1 \implies$ Expected time:

 $1/\varepsilon(x, \mathcal{P}^*).$

2. Samples random challenges $c_2 \neq c_1$ until $H(\mathcal{P}^*)[c_2] = 1 \implies$ Expected time:

$$\leq \frac{1}{\varepsilon(x,\mathcal{P}^*)-1/N}.$$

k. Samples random challenges $c_k \neq c_1, ..., c_{k-1}$ until $H(\mathcal{P}^*)[c_k] = 1 \implies$ Expected time:

$$\leq \frac{1}{\varepsilon(x,\mathcal{P}^*)-(k-1)/N}.$$

÷

1. Samples random challenges c_1 until $H(\mathcal{P}^*)[c_1] = 1 \implies$ Expected time:

 $1/\varepsilon(x, \mathcal{P}^*).$

2. Samples random challenges $c_2 \neq c_1$ until $H(\mathcal{P}^*)[c_2] = 1 \implies$ Expected time:

$$\leq \frac{1}{\varepsilon(x,\mathcal{P}^*)-1/N}.$$

k. Samples random challenges $c_k \neq c_1, ..., c_{k-1}$ until $H(\mathcal{P}^*)[c_k] = 1 \implies$ Expected time:

$$\leq \frac{1}{\varepsilon(x,\mathcal{P}^*)-(k-1)/N}$$

$$\text{Expected runtime} \leq \frac{k}{\varepsilon(x,\mathcal{P}^*)-(k-1)/N} \implies \text{knowledge error } (k-1)/N.$$

Telsy ATM

÷

Consider \mathcal{P}^* attacking the t = 2-fold parallel repetition Π^t . We can treat \mathcal{P}^* as a (deterministic) function where the first message (a_1, a_2) is fixed

 $\mathcal{P}^*: \operatorname{Ch} \times \operatorname{Ch} \to \{0, 1\}^*, \qquad (c_1, c_2) \mapsto (z_1, z_2).$

Consider \mathcal{P}^* attacking the t = 2-fold parallel repetition Π^t . We can treat \mathcal{P}^* as a (deterministic) function where the first message (a_1, a_2) is fixed

$$\mathcal{P}^*: \operatorname{Ch} \times \operatorname{Ch} \to \{0, 1\}^*, \qquad (c_1, c_2) \mapsto (z_1, z_2).$$

 \mathcal{P}^* defines two (probabilistic) provers \mathcal{P}_1^* and \mathcal{P}_2^* attacking a single invocation of Π

$$\mathcal{P}_{1}^{*} \colon c_{1} \mapsto \begin{bmatrix} c_{2} \leftarrow \$ \text{ Ch} \\ (z_{1}, z_{2}) \leftarrow \mathcal{P}^{*}(c_{1}, c_{2}) \end{bmatrix} \mapsto z_{1}$$
$$\mathcal{P}_{2}^{*} \colon c_{2} \mapsto \begin{bmatrix} c_{1} \leftarrow \$ \text{ Ch} \\ (z_{1}, z_{2}) \leftarrow \mathcal{P}^{*}(c_{1}, c_{2}) \end{bmatrix} \mapsto z_{2}$$

Consider \mathcal{P}^* attacking the t = 2-fold parallel repetition Π^t . We can treat \mathcal{P}^* as a (deterministic) function where the first message (a_1, a_2) is fixed

$$\mathcal{P}^*: \operatorname{Ch} \times \operatorname{Ch} \to \{0, 1\}^*, \qquad (c_1, c_2) \mapsto (z_1, z_2).$$

 \mathcal{P}^* defines two (probabilistic) provers \mathcal{P}_1^* and \mathcal{P}_2^* attacking a single invocation of Π

$$\mathcal{P}_{1}^{*} \colon c_{1} \mapsto \begin{bmatrix} c_{2} \leftarrow \$ \text{ Ch} \\ (z_{1}, z_{2}) \leftarrow \mathcal{P}^{*}(c_{1}, c_{2}) \end{bmatrix} \mapsto z_{1}$$
$$\mathcal{P}_{2}^{*} \colon c_{2} \mapsto \begin{bmatrix} c_{1} \leftarrow \$ \text{ Ch} \\ (z_{1}, z_{2}) \leftarrow \mathcal{P}^{*}(c_{1}, c_{2}) \end{bmatrix} \mapsto z_{2}$$

Notice that

$$\varepsilon(x,\mathcal{P}_i^*)=\Pr\bigl[V(c_i,\mathcal{P}_i^*(c_i))=1\bigr]=\Pr\bigl[V(c,\mathcal{P}^*(c))=1\bigr]=\varepsilon(x,\mathcal{P}^*),$$

where $c_i \leftarrow$ Sch and $c \leftarrow$ Sch^t.

Knowledge Extractor

- Run the extractor \mathcal{E} for Π for both \mathcal{P}_1^* and \mathcal{P}_2^* .
- Hope that at least one of them succeed.
- The same analysis as before holds, even though \mathcal{P}_1^{\star} and \mathcal{P}_2^{\star} are not deterministic.

Knowledge Extractor

- Run the extractor \mathcal{E} for Π for both \mathcal{P}_1^* and \mathcal{P}_2^* .
- Hope that at least one of them succeed.
- The same analysis as before holds, even though \mathcal{P}_1^* and \mathcal{P}_2^* are not deterministic.

This does not work!

- The obtained knowledge error is still (k 1)/N.
- We hope to reduce knowledge error down to $(k 1)^2 / N^2$.

- Introduce a more fine-grained quality measure of success.
- Currently the quality of the extractor is expressed in terms of $\epsilon(x, \mathcal{P}^*)$

- Introduce a more fine-grained quality measure of success.
- Currently the quality of the extractor is expressed in terms of $\epsilon(x, \mathcal{P}^*)$

Punctured success probability

Define the following measure

$$\delta_k(x, \mathcal{P}^*) = \min_{S \subset Ch: |S| = k-1} \Pr[\mathcal{P}^*(C) \text{ succeeds } | C \notin S],$$

where **C** is a random variable uniformly random in **Ch**.

 $\delta_k(x, \mathcal{P}^*)$ lower bounds the success probability of \mathcal{P}^* when removing k – 1 challenges.

- Introduce a more fine-grained quality measure of success.
- Currently the quality of the extractor is expressed in terms of $\epsilon(x, \mathcal{P}^*)$

Punctured success probability

Define the following measure

$$\delta_k(x, \mathcal{P}^*) = \min_{S \subset Ch: |S| = k-1} \Pr[\mathcal{P}^*(C) \text{ succeeds } | C \notin S],$$

where **C** is a random variable uniformly random in **Ch**.

 $\delta_k(x, \mathcal{P}^*)$ lower bounds the success probability of \mathcal{P}^* when removing k – 1 challenges.

New Extractor

On a single invocation $\mathcal{E}^{\mathcal{P}^{\star}}$ has expected runtime

$$\leq \frac{k}{\delta_k(x,\mathcal{P}^*)} \leq \frac{k(1-\kappa)}{\varepsilon(x,\mathcal{P}^*)-\kappa},$$

where $\kappa = \frac{k-1}{N}$.

Telsy ATM

Consider again \mathcal{P}^* attacking the t = 2-fold parallel repetition Π^t . \mathcal{P}^* 's behaviour can be described by a binary matrix $H(\mathcal{P}^*)$:

$$H(\mathcal{P}^*) = \begin{pmatrix} c_0 & c_1 & c_2 & \dots & c_{N-2} & c_{N-1} \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 1 & 1 & 0 & \dots & 1 & 1 \\ 1 & 1 & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & 1 & \dots & 1 & 0 \\ 0 & 0 & 1 & \dots & 1 & 0 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{N-1} \\ c_{N-1} \end{pmatrix}$$

Consider again \mathcal{P}^* attacking the t = 2-fold parallel repetition Π^t . \mathcal{P}^* 's behaviour can be described by a binary matrix $H(\mathcal{P}^*)$:

$$H(\mathcal{P}^*) = \begin{pmatrix} c_0 & c_1 & c_2 & \dots & c_{N-2} & c_{N-1} \\ 0 & 0 & 1 & \dots & 0 & 0 \\ 1 & 1 & 0 & \dots & 1 & 1 \\ 1 & 1 & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 1 & 1 & \dots & 1 & 0 \\ 0 & 0 & 1 & \dots & 1 & 0 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_{N-2} \\ c_{N-2} \end{pmatrix}$$

The behavior of \mathcal{P}_1^* (resp. \mathcal{P}_2^*) can be described by looking at the columns (resp. rows) of $\mathcal{H}(\mathcal{P}^*)$.

W.l.o.g assume $H(\mathcal{P}^*)$'s rows and columns are sorted based on fraction of 1-entries.

W.l.o.g assume $H(\mathcal{P}^*)$'s rows and columns are sorted based on fraction of 1-entries.

- $\delta_k(x, \mathcal{P}_1^*)$ is the fraction of 1-entries in blue region.
- $\delta_k(x, \mathcal{P}_2^*)$ is the fraction of 1-entries in red region.

W.l.o.g assume $H(\mathcal{P}^*)$'s rows and columns are sorted based on fraction of 1-entries.

- $\delta_k(x, \mathcal{P}_1^*)$ is the fraction of 1-entries in blue region.
- $\delta_k(x, \mathcal{P}_2^*)$ is the fraction of 1-entries in red region.

By running the single instance extractor in parallel on \mathcal{P}_1^* and \mathcal{P}_2^* , the extraction probability is given by

$$\delta_k(x, \mathcal{P}_1^*) + \delta_k(x, \mathcal{P}_2^*) \ge \varepsilon(x, \mathcal{P}^*) - \frac{(k-1)^2}{N^2}$$
$$\implies \max(\delta_k(x, \mathcal{P}_1^*), \delta_k(x, \mathcal{P}_2^*)) \ge \left(\varepsilon(x, \mathcal{P}^*) - \frac{(k-1)^2}{N^2}\right)/2$$

Consider \mathcal{P}^* attacking the (t, ω) -fixed-weight repetition $\Pi^{t,\omega}$. The challenge space is given by $Ch^{t,\omega} = \{c \in Ch^t : wt_0(c) = \omega\}$.

$$\mathcal{P}^*: \operatorname{Ch}^{t,\omega} \to \{0,1\}^*, \qquad c \mapsto (z_1, \dots, z_t).$$

$$\mathcal{P}^*: \operatorname{Ch}^{t,\omega} \to \{0,1\}^*, \qquad c \mapsto (z_1,\ldots,z_t).$$

We can define t probabilistic provers $\mathcal{P}_1^*, ..., \mathcal{P}_t^*$ attacking a single invocation of Π

$$\mathcal{P}_i^* \colon c_i \mapsto \begin{bmatrix} \bar{c} \leftarrow s \begin{cases} Ch^{t-1,\omega-1} & \text{if } c_i = 0\\ Ch^{t-1,\omega} & \text{if } c_i \neq 0\\ (z_1, \dots, z_t) \leftarrow \mathcal{P}^*(c = (c_i, \bar{c})) \end{bmatrix} \mapsto z_i$$

$$\mathcal{P}^*: \operatorname{Ch}^{t,\omega} \to \{0,1\}^*, \qquad c \mapsto (z_1,\ldots,z_t).$$

We can define t probabilistic provers $\mathcal{P}_1^*, ..., \mathcal{P}_t^*$ attacking a single invocation of Π

$$\mathcal{P}_i^* \colon c_i \mapsto \begin{bmatrix} \bar{c} \leftarrow s & Ch^{t-1,\omega-1} & \text{if } c_i = 0\\ Ch^{t-1,\omega} & \text{if } c_i \neq 0\\ (z_1, \dots, z_t) \leftarrow \mathcal{P}^*(c = (c_i, \bar{c})) \end{bmatrix} \mapsto z_i$$

Notice that, if we take $c_i \leftarrow$ s **Ch** it does not hold that $\varepsilon(x, \mathcal{P}_i^*) = \varepsilon(x, \mathcal{P}^*)$, since $c = (c_i, \bar{c})$ is not uniformly distributed in $Ch^{t,\omega}$.

$$\mathcal{P}^*: \operatorname{Ch}^{t,\omega} \to \{0,1\}^*, \qquad c \mapsto (z_1,\ldots,z_t).$$

We can define t probabilistic provers $\mathcal{P}_1^*, ..., \mathcal{P}_t^*$ attacking a single invocation of Π

$$\mathcal{P}_i^* \colon c_i \mapsto \begin{bmatrix} \bar{c} \leftarrow s & Ch^{t-1,\omega-1} & \text{if } c_i = 0 \\ Ch^{t-1,\omega} & \text{if } c_i \neq 0 \\ (z_1, \dots, z_t) \leftarrow \mathcal{P}^*(c = (c_i, \bar{c})) \end{bmatrix} \mapsto z_i$$

Notice that, if we take $c_i \leftarrow$ s **Ch** it does not hold that $\varepsilon(x, \mathcal{P}_i^*) = \varepsilon(x, \mathcal{P}^*)$, since $c = (c_i, \bar{c})$ is not uniformly distributed in **Ch**^{t, ω}.

We need to sample c_i according to a particular distribution over **Ch**.

Let \mathcal{D} a probability distribution over $D \subset Ch$ with $|D| \ge k$. We define the success probability of \mathcal{P}^* restricted on \mathcal{D} as

$$\varepsilon(\mathcal{P}^*, \mathcal{D}) = \Pr[\mathcal{P}^*(C) \text{ succeeds}],$$

where **C** is a random variable being distributed as \mathcal{D} . When \mathcal{D} is the uniform distribution over **Ch**, then $\varepsilon(\mathcal{P}^*, \mathcal{D}) = \varepsilon(\mathcal{P}^*)$.

Let \mathcal{D} a probability distribution over $D \subset Ch$ with $|D| \ge k$. We define the success probability of \mathcal{P}^* restricted on \mathcal{D} as

 $\epsilon(\mathcal{P}^*, \mathcal{D}) = \Pr[\mathcal{P}^*(C) \text{ succeeds}],$

where **C** is a random variable being distributed as \mathcal{D} . When \mathcal{D} is the uniform distribution over **Ch**, then $\varepsilon(\mathcal{P}^*, \mathcal{D}) = \varepsilon(\mathcal{P}^*)$.

Restricted punctured success probability

$$\delta_k(\mathcal{P}^*, \mathcal{D}) = \min_{S \subset \mathcal{D}: |S| < k} \Pr[\mathcal{P}^*(C) \text{ succeeds } | C \notin S],$$

where \boldsymbol{C} is a random variable being distributed as \mathcal{D} .

Let \mathcal{D} a probability distribution over $D \subset Ch$ with $|D| \ge k$. We define the success probability of \mathcal{P}^* restricted on \mathcal{D} as

 $\epsilon(\mathcal{P}^*, \mathcal{D}) = \Pr[\mathcal{P}^*(C) \text{ succeeds}],$

where **C** is a random variable being distributed as \mathcal{D} . When \mathcal{D} is the uniform distribution over **Ch**, then $\varepsilon(\mathcal{P}^*, \mathcal{D}) = \varepsilon(\mathcal{P}^*)$.

Restricted punctured success probability

$$\delta_k(\mathcal{P}^*, \mathcal{D}) = \min_{S \subset \mathcal{D}: |S| < k} \Pr[\mathcal{P}^*(C) \text{ succeeds } | C \notin S],$$

where C is a random variable being distributed as \mathcal{D} .

Extension of [AttFeh22, Lemma 2]

There exists an extraction algorithm $\mathcal{E}^{\mathcal{P}^*}(\mathcal{D})$ that succeed with probability at least

 $\delta_k(\mathcal{P}^*, \mathcal{D})/k$

Theorem

The (t, ω) -fixed-weight repetition of a *k*-out-of-*N* special-sound interactive proof is knowledge sound, with knowledge error

$$\boldsymbol{\kappa}_{t,\omega} = \begin{pmatrix} t \\ \omega \end{pmatrix}^{-1} \frac{\eta_{t,\omega}}{(N-1)^{t-\omega}},$$

where

$$\eta_{t,\omega} = \begin{cases} \binom{\omega(k-1)}{\omega} (k-2)^{\omega(k-2)} (k-1)^{t-\omega(k-1)} & \text{if } t \ge \omega(k-1) \\ \binom{t}{\omega} (k-2)^{t-\omega} & \text{otherwise} \end{cases}$$

Theorem

The (t, ω) -fixed-weight repetition of a *k*-out-of-*N* special-sound interactive proof is knowledge sound, with knowledge error

$$\boldsymbol{\kappa}_{t,\omega} = \begin{pmatrix} t \\ \omega \end{pmatrix}^{-1} \frac{\eta_{t,\omega}}{(N-1)^{t-\omega}},$$

where

$$\eta_{t,\omega} = \begin{cases} \binom{\omega(k-1)}{\omega} (k-2)^{\omega(k-2)} (k-1)^{t-\omega(k-1)} & \text{if } t \geq \omega(k-1) \\ \binom{t}{\omega} (k-2)^{t-\omega} & \text{otherwise} \end{cases}$$

- $\kappa_{t,\omega}$ cannot be expressed in terms of the knowledge error of the single istance.
- However, $\kappa_{t,\omega}$ coincides with the maximal cheating probability of a dishonest prover \implies the result is optimal!

- Our result can be extended to multi-round (k_1, \dots, k_μ) -special-sound protocols.
- The expression for the knowledge error became quite complex (Theorem 2 in the paper)
- The result is still optimal!

Theorem

The (t, ω) -fixed-weight repetition of a (k_1, \dots, k_μ) -out-of- (N_1, \dots, N_μ) special-sound interactive proof is knowledge sound.

- CROSS² is a (2, 2)-out-of-(p 1, 2) special-sound 5-pass protocol.
- Fixed-weight optimization is employed in all parameter sets of the scheme.

CROSS Specs

Cheating probability:

$$\sum_{l=0}^{\min(\omega,t-\omega)} \frac{\binom{\omega}{l}\binom{t-\omega}{l}}{\binom{t}{\omega}} (p-1)^{-2l}$$

Our work
Knowledge error:

$$\max_{\alpha \in \{0,...,t\}} \sum_{l=\max(0,\omega-t+\alpha)}^{\min(\omega,\alpha)} \frac{\binom{\alpha}{l}\binom{t-\alpha}{\omega-l}}{\binom{t}{\omega}} (p-1)^{-(\alpha-l)-(\omega-l)}$$

²Baldi, Barenghi, Bitzer, Karl, Manganiello, Pavoni, Pelosi, Santini, Schupp, Slaughter, Wachter-Zeh, and Weger. CROSS – Codes and Restricted Objects Signature Scheme.

- CROSS² is a (2, 2)-out-of-(p 1, 2) special-sound 5-pass protocol.
- Fixed-weight optimization is employed in all parameter sets of the scheme.

CROSS Specs

Cheating probability:

$$\sum_{l=0}^{\min(\omega,t-\omega)} \frac{\binom{\omega}{l}\binom{t-\omega}{l}}{\binom{t}{\omega}} (p-1)^{-2l}$$

The expressions coincide for $\alpha = \omega$, which is not always the case for CROSS parameter sets.

This does not immediately translate to CROSS parameters after the application of Fiat-Shamir!

²Baldi, Barenghi, Bitzer, Karl, Manganiello, Pavoni, Pelosi, Santini, Schupp, Slaughter, Wachter-Zeh, and Weger. CROSS – Codes and Restricted Objects Signature Scheme.

Summary:

- The fixed-weight repetition of (multi-round) interactive proofs is knowledge-sound.
- Explicit expression of adversary's cheating probability against (k₁, ..., k_µ)-special-sound protocols.
- The knowledge error matches the optimal cheating probability.

Future works:

- Investigate the non-interactive case.
- Extend to "generalized" fixed-weight optimization for intermediate rounds.

Thank you!