
Doctoral Dissertation
Doctoral Program in Pure and Applied Mathematics (36th cycle)

On the Design and Security of
Post-Quantum Aggregate Signatures

Edoardo Signorini
* * * * *

Supervisors
Prof. Danilo Bazzanella, Supervisor

Dr. Guglielmo Morgari, Co-supervisor

Politecnico di Torino
14 October 2024

This thesis is licensed under a Creative Commons License, Attribution - Non-
Commercial - NoDerivative Works 4.0 International: see www.creativecommons.
org. The text may be reproduced for non-commercial purposes, provided that
credit is given to the original author.

I hereby declare that, the contents and organization of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. .
Edoardo Signorini

Turin, 14 October 2024

www.creativecommons.org
www.creativecommons.org

Abstract

Digital signatures are pivotal for ensuring the authenticity and integrity of digital
communications, serving as the backbone of numerous cryptographic protocols
and systems. However, the physical constraints of network communication pose
challenges in the transmission of large number of signatures, including digital
certificates in Public Key Infrastructures, routing protocols, and decentralized sys-
tems. The advent of quantum computing has heightened these challenges, given
that post-quantum cryptographic schemes, like those proposed under NIST’s
standardization project, generally result in larger signature sizes.

Aggregate signatures represent a powerful cryptographic tool to reduce com-
munication costs in protocols that require the verification of multiple signatures.
In fact, this method can reduce the total amount of transmitted data by allowing
multiple signers to combine their individual signatures on separate messages
into a single aggregate signature. Since general forms of aggregations are diffi-
cult to achieve in practice, weaker variants can be considered. For instance, in
a Sequential Aggregate Signature (SAS) scheme, signatures are combined in a
specific sequence, allowing each subsequent signer to append their signature to
an already aggregated one. Although sequential aggregation is more restrictive, it
often suits contexts where order or hierarchy are inherent, thus continuing to be
beneficial in practical applications. This thesis contributes primarily by exploring
aggregate signatures under post-quantum assumptions, particularly focusing on
signature schemes that are not based on structured lattices.

Our research delves into two main classes of digital signatures in the post-
quantum setting. Firstly, we explore the generalization of SAS schemes to Hash-
and-Sign signatures based on generic trapdoor functions. The simple structure of
signatures within this paradigm appears to make them ideal candidates for se-
quential aggregation. However, early SAS proposals required the use of trapdoor
permutation (e.g., RSA), while post-quantum trapdoor functions known so-far
are not injective. Direct attempts at generalizing permutation-based schemes
have been proposed, but they either lack formal security or require additional
properties on the trapdoor function, which are typically not available for multi-
variate or code-based functions. We provide a comprehensive analysis of existing
models, discuss their limitations, and prove how direct extensions of original SAS

iii

schemes are not possible without additional properties. Then, we propose a novel
construction of history-free SAS within the probabilistic Hash-and-Sign with retry
paradigm, generalizing existing techniques to generic trapdoor functions. We
prove the security of our scheme in the random oracle model, and we instantiate
our construction with multivariate and code-based schemes.

Secondly, we investigate the potential of group action-based signatures within
the Fiat-Shamir paradigm, proposing new techniques for signature aggregation.
Group actions are emerging as a promising tool in post-quantum cryptography,
and have been used to build several signature schemes, including some submitted
to the recent NIST call for additional post-quantum signatures. We propose two
novel aggregation methods for group action-based signatures: a sequential aggre-
gate signature and an interactive aggregation scheme. Although provably secure
sequential aggregation can be achieved, we show that the resulting compression is
too small for practical applications. Therefore, we investigate a trade-off between
aggregation capabilities and the need for interaction between signers. We then
obtain an interactive aggregation scheme (or multi-signature), whose security can
be reduced directly to the assumptions underlying the group action.

iv

To Carla Barghini

Acknowledgements

From the beginning, I perceived my PhD as a solitary journey, a constant juggling
act between industry and academia. For that, I’ve had my fair share of moments
wondering if I was in the right place at the right time. But looking back, I realize
it’s the people who’ve been there – sometimes pushing, sometimes supporting,
always believing – that have made this journey not just possible, but worthwhile.

First and foremost, I wish to express my deepest thanks to Guglielmo Morgari.
It all started with an unexpected (and perhaps annoying) call, and you took
a chance on me. Your unwavering dedication and endless support have been
invaluable throughout this process. Thank you for constantly pushing me to
reach higher, for making me a better communicator, and somehow convincing
me that I’m now friends with the lab’s oscilloscope. Perhaps most importantly,
I want to thank you for imparting me a small piece of the immeasurable faith
you’ve always placed in me.

These acknowledgments naturally extend to Telsy, the company to which I owe
this unique opportunity. I’m still amazed and grateful to be part of a team that’s
not afraid to bet on the value of research. A special thank you goes to Fabrizio
Vacca and the colleagues who believed in this project and made it possible.

I am grateful to my academic supervisor, Danilo Bazzanella, and the entire
CrypTo group at Politecnico. You have provided me with the precious opportu-
nity to work closely in an environment that is both stimulating and welcoming.
Although my primary workspace has never been the department, and my “office”
there remains more of a theoretical concept than a physical location I can reliably
find, each visit has contributed to making me feel part of a broader research
community. Among the group, my sincere thanks to Antonio Di Scala and Carlo
Sanna for guiding me throughmy first academic works with patience and wisdom.

I extend my gratitude to Simone Dutto and Nadir Murru for their meticulous
review of my work and the numerous insightful suggestions they provided.

I am deeply indebted to my closest co-authors and colleagues. To Alessio
Meneghetti, thank you for being the first who helpedme find a thread in a tangle of
confused ideas. To Giuseppe D’Alconzo and Andrea Flamini, I am grateful for the
numerous discussions, thoughts, and passion you shared. Without you, moving

viii

forward would have been immensely challenging, and my visits to Politecnico
would have been even fewer.

A heartfelt thank you goes to my colleagues at Telsy, Francesco Stocco, Veron-
ica Cristiano, and Marco Rinaudo. We often travelled on parallel tracks, and I
appreciate your patience with my frequent attempts to intersect our paths. Thank
you for the countless “frenstoc” moments, the TèPrint sessions, and the time you
dedicated to me despite your growing commitments. Your friendship inside and
outside the company have made this journey far less lonely.

I will be forever grateful to my family – Mamma, Papà, Tata, Bea, Leo, and
Ale. Thank you for your unconditional love and support, for never doubting my
choices even though I was never good at explaining what I do. Thank you for your
patience, especially when putting up with my reluctance to travel or attend any
event that required dusting off the suit. Despite the distance and our differences,
to each of you, I owe a part of who I am.

To marghe, my final acknowledgment, and the one closest to my heart. From
the very beginning, you’ve shared in every high and low, and supported me
through every setback. Thank you for everything we have experienced during
this time, for the places we have called home, for the cards we have exchanged.
Above all, thank you for discovering my hidden bit and keeping it close, seen and
understood.

ix

Contents

Introduction 1

1 Preliminaries 7
1.1 Notation . 7
1.2 Provable Security . 8
1.3 Cryptographic Primitives . 12

1.3.1 One-Way Functions . 12
1.3.2 Hash Functions . 12
1.3.3 Digital Signatures . 13
1.3.4 Aggregate Signatures . 15
1.3.5 Sequential Aggregate Signatures 16

1.4 Post-Quantum Cryptography . 17
1.4.1 NIST Standardization Processes 18

I Trapdoor-based Signature Aggregation 21

2 Hash-and-Sign Paradigm 23
2.1 Trapdoor Functions . 24

2.1.1 Preimage Sampleable Functions 25
2.2 Hash-and-Sign Schemes . 27

2.2.1 Security Analysis . 29
2.3 Post-Quantum Hash-and-Sign Schemes 33

2.3.1 Lattice-based Cryptography 35
2.3.2 Code-based Cryptography 39
2.3.3 Multivariate-based Cryptography 42

3 History-Free Sequential Aggregation of Hash-and-Sign Signatures 49
3.1 Sequential Aggregation from Trapdoor Permutation 50
3.2 LMRS Scheme for Generic Trapdoor Functions 52

3.2.1 The Scheme . 53
3.2.2 Provable Security . 53

x

3.3 Security of Existing Multivariate SAS Schemes 58
3.3.1 Description of the Forgery 58
3.3.2 Discussion . 60

3.4 Sequential Aggregation of Hash-and-Sign Signatures 62
3.4.1 History-Free Sequential Aggregate Signature 62
3.4.2 The Scheme . 64
3.4.3 Security Proof . 65

3.5 Optimizing the Scheme for (Average) Preimage Sampleable Functions 76
3.5.1 PSF-based Signatures . 76
3.5.2 APSF-based Signatures . 78

3.6 Instantiation and Evaluation . 80
3.6.1 Original Unbalanced Oil and Vinegar 81
3.6.2 Provable Unbalanced Oil and Vinegar 83
3.6.3 MAYO . 84
3.6.4 Wave . 86
3.6.5 Signature-Specific Optimizations 87

II Group Action-based Signature Aggregation 89

4 Signatures from Cryptographic Group Actions 91
4.1 Interactive Proofs . 92

4.1.1 Zero-Knowledge Proofs . 94
4.1.2 Sigma-Protocols . 95
4.1.3 Fiat-Shamir Transform . 99

4.2 Group Actions . 100
4.2.1 Effective Group Actions . 101
4.2.2 Computational Assumptions 102
4.2.3 Digital Signatures . 103

4.3 Signature Optimizations . 106
4.3.1 Compression of Random Elements 106
4.3.2 Seed Trees . 107
4.3.3 Fixed-Weight Challenges . 108
4.3.4 Multiple Public Keys . 108
4.3.5 Further Optimizations . 109

4.4 Post-Quantum Group Actions . 110
4.4.1 Code Equivalence . 110
4.4.2 Linear Code Equivalence . 112
4.4.3 Matrix Code Equivalence . 114
4.4.4 Alternating Trilinear Form Equivalence 115

xi

5 Aggregate and Multi-Signatures from Group Actions 119
5.1 Sequential Half-Aggregation of Group Action-Based Signatures . . 120

5.1.1 Security Proof . 121
5.1.2 Support for Standard Optimizations 129

5.2 Multi-Signature from Cryptographic Group Action 130
5.2.1 Multi-Signatures . 130
5.2.2 Sigma Protocol Variant . 132
5.2.3 The Multi-Signature Scheme 137
5.2.4 Security Proof . 139
5.2.5 Signature Optimizations . 145

5.3 Instantiation and Evaluation . 150
5.3.1 LESS . 153
5.3.2 MEDS . 155
5.3.3 ALTEQ . 155

Conclusions 159

Abbreviations 161

List of Tables 163

List of Figures 164

List of Algorithms 165

List of Experiments 166

Bibliography 167

xii

Introduction

Digital signatures are standard cryptographic techniques for proving the au-
thenticity and integrity of digital data. Authentication embodies one of the core
problems of cryptography, and digital signature schemes are needed in numerous
secure communication protocols. Being used in different contexts, the require-
ments behind digital signatures can vary widely. In addition to security, the size
of a digital signature is a critical measure of its efficiency, affecting both storage
and transmission requirements. In fact, while computational requirements can be
partially mitigated by continued technological advancement, there are physical
limitations for network communications that are difficult to overcome. A concrete
example is the use of digital certificates in a Public Key Infrastructure (PKI). PKIs
propagate trust from a Certificate Authority (CA) to an end-user (or a server)
through a chain of certificates, involving intermediate authorities who add their
signatures to lower level certificates. Each certificate includes a public key, tying
the identity of an entity to the possession of the corresponding private key. When
a cryptographic protocol involves a PKI, the entire certificate chain, including all
intermediate signatures, must be communicated in order for the user’s identity
to be verified.

To date, the most widely used paradigms in the field of digital signatures
are those based on Hash-and-Sign schemes, e.g., the RSA scheme [174], and Fiat-
Shamir schemes, e.g., the Schnorr Signature [176]. However, these established
solutions are being threatened by the rapid progress of quantum computers, for
which algorithms are known to efficiently solve the underlying computational
problems. The development of new quantum-resistant public-key cryptographic
algorithms, i.e., cryptosystems that are not vulnerable to the use of quantum
algorithms, is driving an important branch of cryptography that has matured in
the last decade, namely, Post-Quantum Cryptography (PQC). The identification
of new standard of post-quantum key-exchange and digital signature algorithms
took on particular importance with the announcement of the standardization
project launched by the American National Institute of Standards and Technology
(NIST) in early 2016 [162]. After three rounds of analysis with a deep involvement
of the cryptographic community, in 2022 NIST announced [5] an initial selection
of algorithms that will proceed to the standardization stage. For digital signatures,

1

Introduction

the chosen algorithms areCRYSTALS-Dilithium [144], Falcon [172] and SPHINCS+
[124]. NIST’s competition has been mainly dominated by solutions from lattice
theory, and all the schemes selected for standardization, except for SPHINCS+,
are based on structured lattices. With the aim of further differentiating the digital
signature landscape, NIST deemed necessary to initiate a new standardization
process focused on the selection of post-quantum signatures [161].

Aggregate Signatures An Aggregate Signature (AS) scheme allows 𝑛 users to
combine their individual signatures on separate messages to produce a single,
directly verifiable aggregate signature. This approach aims to achieve shorter
signature lengths compared to trivial concatenation of individual signatures. This
property makes aggregate signatures particularly useful in scenarios where a
large number of signatures need to be transmitted and the communication costs
within the network are not negligible. Typical application scenarios include PKI
certificate chains [40], secure routing protocols authentication [49], software
authentication [118], and blockchain systems [39]. The notion of aggregate signa-
tures was initially introduced in a seminal paper by Boneh et al. [40]. The authors
proposed a method that allows a third party to aggregate signatures from distinct
users using a public aggregation algorithm. Although this general aggregation
approach is efficient and valuable in many applications, it is notoriously difficult
to achieve in practice without the use of bilinear pairing [40, 19] or advanced
constructions based on indistinguishability obfuscation [121] or non-interactive
arguments (SNARKs) [7, 73, 192].

A restricted variant of aggregate signatures, known as Sequential Aggregated
Signature (SAS), was introduced by Lysyanskaya et al. [143]. In SAS schemes,
each user combines their signature with a so-far aggregated signature, acting in
a specific, but not necessarily predetermined, sequence. Although the public
aggregation functionality is lost, the sequential structure is still beneficial in
many applications where an order among the signers can be established, such
as PKI certificate chains. Numerous works have been pursued in this direction,
proposing constructions based on trapdoor permutations (e.g., RSA) [143, 156,
49, 107] or the use of bilinear pairings [142, 19, 98, 137, 136].

Additionally, the hardness in constructing generic aggregation schemes and
the possible limitation in using sequential aggregation in some scenarios led to
the investigation of additional variants. Typically, the strategy adopted in con-
structing these alternatives involves some form of interaction between the parties
during signature aggregation, as in the case of synchronous aggregate signature
and multi-signatures. First introduced by Gentry and Ramzan [109] and later for-
malized in [3], the synchronous model allows for general aggregation by assuming
that parties can produce an aggregate signature only within a predetermined
time window. In turn, multi-signatures are a particularly relevant technique in
decentralized applications and typically involve a form of interactive aggregation

2

Introduction

for signing a single message shared by multiple users. Although multi-signatures
were introduced separately from aggregate signatures [126, 164, 163] and the
usage scenarios are typically distinct, it is well known that a multi-signature
can be easily transformed into an interactive aggregate signature by requiring
participants to agree on a concatenation of messages to be signed [20]. Numerous
multi-signatures have been proposed for Schnorr’s signature [160, 20, 12, 145,
184, 148, 84, 159], with recent near-optimal schemes MuSig2 [158] and DWMS
[8] requiring only one round of interaction and allowing key aggregation.

Aggregate Signatures from Post-Quantum Assumptions Increasing activity in
the development of post-quantum signatures has led the community to explore
AS schemes in this field. The strong interest and additional properties inherent
in lattice-based schemes have caused most proposals to focus on this class of
signatures. The first lattice-based proposal was presented by El Bansarkhani
and Buchmann [91] and proposed sequential aggregation within the Hash-and-
Sign paradigm, allowing aggregation of Falcon signatures. A further sequential
aggregation scheme was proposed in [191], but was later found to be insecure
[48]. Within the Fiat-Shamir paradigm, which includes Dilithium, [83] first pro-
posed a partial aggregation scheme, achieving partial compression of signature
components. The original scheme had a vulnerability later corrected in [47],
resulting, however, in a negative compression of the signature. Recently, [48]
have proposed a sequential aggregation scheme for Dilithium, achieving however
only limited compression. Considering additional variants of aggregation, Fleis-
chhacker, Simkin, and Zhang [100] proposed a lattice-based aggregated signature
in the synchronous model and its subsequent optimization [99]. In the interactive
model, there is a long line of work proposing lattice-based multi-signatures [93,
103, 41, 69, 57] culminating with MuSig-L [45], which achieves properties similar
to those of MuSig2 for lattices. Finally, the idea of aggregating signatures using
lattice-based SNARK was recently investigated in [7] and formalized by Aardal
et al. [1].

Besides lattice-based solutions and generic approaches based on SNARKs,
there are only a limited number of proposals tailored for other post-quantum
assumptions. In the Hash-and-Sign paradigm, the SAS schemes proposed in
[91, 191] extend previous trapdoor permutation-based approaches [156, 107],
and can potentially be applied to other post-quantum signatures in the same
paradigm. Unfortunately, their security relies on the collision-resistance prop-
erty of lattice trapdoor Preimage Sampleable Functions [108]. These additional
properties are not available for generic trapdoor functions employed, for instance,
in multivariate-quadratic-based or code-based signature schemes. The first se-
quential aggregation scheme based on multivariate assumptions was proposed
by El Bansarkhani, Mohamed, and Petzoldt [92], with a construction based on

3

Introduction

SAS for trapdoor permutations [143] combined with the data-encoding tech-
niques introduced in [156]. Later, a similar SAS scheme tailored for a specific
multivariate-based scheme was proposed in [56]. Unfortunately, both [92, 56]
lack formal security and there are instances of the underlying function for which
they are insecure, as outlined below.

As such, there is a gap in the design of aggregation schemes for post-quantum
assumptions that cannot be traced back to lattice theory. In this thesis, we aim to
address this gap by analysing two classes of signature schemes.

Organization of the Thesis
The contribution of this thesis is divided into two parts. The first part is devoted to
the generalization of SAS schemes to Hash-and-Sign signatures based on generic
trapdoor functions. The second part investigates the aggregation of group action-
based signatures in the Fiat-Shamir paradigm.

Hash-and-Sign Schemes The Hash-and-Sign paradigm is a standard and in-
tuitive approach to building digital signature schemes from trapdoor functions
and hash functions. Classically, this approach is known as Full Domain Hash
(FDH) [21, 22] when employed with trapdoor permutations such as RSA. In the
post-quantum scenario, numerous signature schemes can be traced back to this
paradigm, e.g., Falcon for lattices and several multivariate schemes submitted
to the recent NIST call [30, 115, 104, 190, 78, 31, 167]. To date, no trapdoor
permutations based on post-quantum assumptions are known, leading us to con-
sider weaker trapdoor functions. In Chapter 2 we provide an overview of the
Hash-and-Sign paradigm, analysing how signature schemes should be adapted in
the presence of generic trapdoor functions. In Chapter 3 we propose a sequential
aggregation scheme that extends existing constructions on trapdoor permuta-
tions to generic trapdoor functions, making sequential aggregation possible for a
wider range of post-quantum signatures. We also show that previous proposed
constructions for multivariate functions are insecure and that a direct extension
of [143] is not sufficient in the absence of additional properties.

Group Action-based Signatures Recently, cryptographic group actions have
emerged as a promising tool for building post-quantum digital signatures in
the Fiat-Shamir paradigm. Starting from isogeny-based constructions [51, 70]
and subsequently from numerous non-abelian group actions [17, 61, 185, 89],
several signature schemes have been proposed, including three submitted to the
recent NIST call [13, 60, 37]. In Chapter 4 we introduce the relevant notions
for constructing digital signatures from group actions, analysing the standard
optimizations employed in these schemes so that they can be adapted into an

4

Introduction

aggregation scheme. In Chapter 5, we propose two aggregation techniques for
signature schemes based on group actions. First, we study the design of a sequen-
tial aggregate signature using an approach similar to that proposed in [48] for
lattice-based Fiat-Shamir signatures. The scheme we obtain is provably secure,
but the resulting aggregation is very limited for practical applications. Next, we
propose an interactive aggregation scheme (multi-signature) whose security can
be directly reduced to the underlying signature, achieving good compression
compared to the trivial concatenation of signatures.

Other Contributions
The following contributions were produced during the course of doctoral studies
but are not included in this thesis. In [74, 75] we investigated the equivalence
between the Ring Learning With Errors (RLWE) and the Polynomial Learning
With Errors (PLWE), showing that the two problems are not equivalent over
cyclotomic fields. In [154, 102] we studied the role of classical authentication
within Quantum Key Distribution (QKD) protocols.

RLWE vs PLWE
• Antonio J. Di Scala, Carlo Sanna, and Edoardo Signorini. “On the condition
number of the Vandermonde matrix of the nth cyclotomic polynomial.”
In: Journal of Mathematical Cryptology 15.1 (Nov. 2021), pp. 174–178. doi:
10.1515/JMC-2020-0009

• Antonio J. Di Scala, Carlo Sanna, and Edoardo Signorini. “RLWE and PLWE
over cyclotomic fields are not equivalent.” In: Applicable Algebra in En-
gineering, Communication and Computing 35.3 (2022), pp. 351–358. doi:
10.1007/S00200-022-00552-9

Authentication in QKD
• Guglielmo Morgari, Edoardo Signorini, and Francesco Stocco. “On the
classical authentication in Quantum Key Distribution.” In: CrypTOrino
2021. Vol. 4. Collectio Ciphrarum. Aracne, May 2021

• Giacomo Fregona et al. “AuthenticationMethods for QuantumKey Distribu-
tion: Challenges and Perspectives.” In: Toward a Quantum-Safe Communica-
tion Infrastructure. Ed. by André Xuereb Rainer Steinwandt. Vol. 64. NATO
Science for Peace and Security Series - D: Information and Communication
Security. IOS Press, Apr. 2024, pp. 54–66. doi: 10.3233/NICSP240007

5

https://doi.org/10.1515/JMC-2020-0009
https://doi.org/10.1007/S00200-022-00552-9
https://doi.org/10.3233/NICSP240007

6

Chapter 1

Preliminaries

In this chapter, we introduce the basic notation and definitions that will be
adopted in the rest of this thesis. We provide an introductory overview on the
notions related to provable security and the main cryptographic primitives which
are most frequently recalled. Further notation and primitives will be introduced
in the relevant chapters.

1.1 Notation
Sets For 𝑎, 𝑏 ∈ ℕ, we denote by [𝑎, 𝑏] the set { 𝑎,… , 𝑏 } and by [𝑏] the set { 1,… , 𝑎 }.
For a finite set 𝑆, we write |𝑆| for the cardinality of 𝑆 and len(𝑆) for the bit size of
elements in 𝑆. For 𝑛 ∈ ℕ we denote with {0,1}𝑛 the set of bitstrings of length 𝑛
and with {0,1}∗ the set of bitstrings of arbitrary length.

Lists and Tables An ordered list of elements is denoted with an arrow #«𝑎 =
(𝑎1,… , 𝑎𝑛). Given a list #«𝑎 = (𝑎1,… , 𝑎𝑛) and 𝑛1 < 𝑛2 ≤ 𝑛wedenotewith #«𝑎 [𝑛1∶𝑛2] =
(𝑎𝑛1,… , 𝑎𝑛2) the slicing of the list #«𝑎 between indices 𝑛1 and 𝑛2. We also write
#«𝑎 [𝑘∶] to denote #«𝑎 [𝑘 ∶ 𝑛].

A table 𝖳 is a key-value store, where each key has a single associated value.
For a key 𝑘, we denote with 𝑣 ← 𝖳[𝑘] the assignment of 𝑣 to the value associated
with 𝑘. Similarly, to assign a value 𝑣 to the key 𝑘, we write 𝖳[𝑘] ← 𝑣. If no value is
associated with 𝑘, we write 𝖳[𝑘] = ⊥.

Algebraic Structures Given a prime power 𝑞 = 𝑝𝑘, we denote with 𝔽𝑞 a finite
field with 𝑞 elements. Given 𝑛,𝑚 ∈ ℕ, we denote by 𝔽𝑛

𝑞 the 𝑛-dimensional vector
space over 𝔽𝑞, and by 𝔽𝑚×𝑛

𝑞 the set of matrices over 𝔽𝑞 with𝑚 rows and 𝑛 columns.
For a field 𝔽 and a positive integer 𝑛 ∈ ℕ, we denote by GL𝑛(𝔽) the general linear
group of degree 𝑛 over 𝔽. When 𝔽 = 𝔽𝑞, we simply write GL𝑛(𝑞).

7

Preliminaries

Vectors and Matrices Vectors in a vector space are denoted with a bold letter
𝒙 = (𝑥1,… , 𝑥𝑛). For a vector 𝒙 we denote with 𝑥𝑖 the 𝑖-th element of the vector.
Matrices are denoted with a bold capital letter 𝐀. 𝐈𝑛×𝑛 is the identity matrix of
size 𝑛. 𝟎𝑚×𝑛 is the 𝑚 × 𝑛 zero matrix and 0𝑛 is the zero vector in 𝔽𝑛

𝑞 .

Distributions and Probabilities Let 𝒟 be a probability distribution and 𝑋 be a
random variable. We write 𝑋 ∼ 𝒟 to denote that 𝑋 is distributed according to 𝒟.
For a set 𝑆, we denote by 𝒰(𝑆) the uniform distribution over 𝑆. Furthermore, by
𝑠 ←$ 𝑆, we denote the sample of the element 𝑠 from 𝒰(𝑆). We denote by Pr[𝑋 = 𝑥]
the probability that the random variable 𝑋 takes value 𝑥.

Algorithms Where not otherwise specified, each algorithm is probabilistic poly-
nomial time (PPT). A PPT algorithm is probabilistic, meaning that it has to access
random material (or random coins) during computation, and is efficient, meaning
that it runs in a time which is polynomial in the size of its input. In particular,
given an input 𝑥, we write that a PPT algorithm runs in time 𝗉𝗈𝗅𝗒(|𝑥|), where
|𝑥| is the bit length of 𝑥. A PPT algorithm is denoted with sans serif typeface 𝖠.
For a deterministic algorithm 𝖠, we write 𝑦 ← 𝖠(𝑥) to denote the assignment of
𝑦 to the output of 𝖠 on input 𝑥. If 𝖠 is probabilistic, we write 𝑦 ←$ 𝖠(𝑥). In a
pseudocode, each variable assignment is done by either deterministic assignment
(←) or probabilistic assignment (←$), while the symbol = is reserved for equality
testing. Furthermore, we use the symbol ⊥ to denote a failure, e.g., ⊥ ← 𝖠(𝑥).

Complexity Classes In a decision problem, given an input 𝑥 ∈ {0,1}∗, we are
required to verify whether 𝑥 satisfies some property and return a yes/no answer.
Analogously, given a set ℒ ⊆ {0,1}∗ of bitstrings, we need to determine whether
𝑥 ∈ ℒ. The subset ℒ is called a language, and every decision problem can be
specified using a language (and the reverse is also true). The complexity class
𝖯 is the class of decision problems that can be decided in polynomial time by a
deterministic algorithm. The complexity class 𝖭𝖯 is instead the class of decision
problems that can be decided in polynomial time by a non-deterministic algorithm.
Formally, a language ℒ is in 𝖭𝖯 if there exists a binary relation 𝑅ℒ of pairs (𝑥,𝑤)
such that 𝑥 ∈ ℒ and 𝑤 allows verifying that 𝑥 ∈ ℒ in polynomial time, i.e.,
|𝑤| = 𝗉𝗈𝗅𝗒(|𝑥|).

Miscellanea Given two bitstrings 𝑥, 𝑦 ∈ {0,1}∗, we denote by 𝑥 ‖ 𝑦 the bitstring
obtained by their concatenation. We write 𝜀 to denote an empty string.

1.2 Provable Security
Informally, the security of a cryptosystem can be described with two notions:

8

1.2 – Provable Security

• Informational security, which describes the theoretical possibility of breaking
a scheme.

• Computational security, which describes the strength of a schemewith respect
to an adversary which has bounded computational power.

While informational security has a great importance in theoretical cryptography,
it does not give a practical measure of the strength of a cryptosystem, unless it is
proven to be secure against an adversary with unlimited computational power,
which is rarely the case in real-world applications.

To determine the security of a cryptosystem, we first need to define the model
of an adversary. Once we have defined the capabilities of an adversary, we usually
proceed to reduce a mathematical problem, which is known to be computationally
hard, to the cryptographic scheme. Thus, if an adversary can break the cryptosys-
tem, or can produce a solution for the underlying computational problem, then
they could use the same algorithm to solve the hard mathematical problem. The
target security of a cryptosystem is expressed via a security parameter, which is
denoted as 𝜆. Once a security parameter is defined, we assume that every PPT
algorithm runs polynomially in 𝜆 and that the parameters of a cryptographic
scheme are chosen to obtain 𝜆 bits of security, i.e., the best algorithm that can
break the security of the scheme requires at least 2𝜆 operations.

Adversaries An adversary 𝒜 in a cryptographic protocol with a security param-
eter 𝜆 is modelled using a PPT algorithm that takes as input a bitstring of length
𝜆, denoted by 1𝜆.

Oracles An oracle 𝖮 is a generic black-box functionality that takes some inputs
and returns some output without specifying the internal computations. Given an
adversary 𝒜 and an arbitrary function 𝖥, we write 𝑥 ←$ 𝒜𝖮𝖥 the assignment of 𝑥
to the output of 𝒜 with oracle access to 𝖥.

Negligible Function A function 𝑓∶ ℕ → ℝ is said to be negligible, and we write
𝑓(𝑥) = 𝗇𝖾𝗀𝗅(𝑥), if for every 𝑐 ∈ ℕ there exists 𝑛̄ ∈ ℕ such that

|𝑓(𝑛)| < 1
𝑛𝑐 , for all 𝑛 > 𝑛̄.

Advantage When we define the security notion of a cryptographic scheme, we
define an attack game (or experiment) played between a challenger and an adversary,
and we measure the advantage of the adversary in winning the game. An attack
game for a security notion Exp is often made of two sub-games, Exp0 and Exp1,
where the attacker is required to distinguishwhether is interactingwith the former
or the latter. The standard template for a distinguishing experiment is given in

9

Preliminaries

Experiment 1.1: Exp𝑏
The challenger generates some public parameters for the adversary, which runs
with oracle access to either Exp0 or Exp1.

1: 𝑥 ←$ 𝖦𝖾𝗇(1𝜆)
2: 𝑏⋆ ←$ 𝒜Exp𝑏(𝑥)
3: return 𝑏⋆ ∈ {0,1}

Exp0:
1: …
2: return 𝑎

Exp1:
1: …
2: return 𝑎

Hybrid Argument 1.1: Generic Template for Successive Games

𝖦𝖺𝗆𝖾𝗂:
1: First instruction
2: Second instruction
3: Third instruction
4: return State

𝖦𝖺𝗆𝖾𝗂+𝟣:
1: First instruction
2: Second instruction
3: if Condition then
4: New instruction
5: Third instruction
6: return State

Experiment 1.1. The advantage of the adversary𝒜 in playing the experiment Exp
is defined as

𝖠𝖽𝗏Exp(𝒜) = |Pr[Exp0(𝒜) = 1] − Pr[Exp1(𝒜) = 1]|,

where Pr[Exp𝑏(𝒜) = 1] is the probability that Exp𝑏 returns 1 when played by 𝒜.
We say that a cryptographic scheme is secure with respect to the notion Exp if,
for all PPT adversaries 𝒜, the advantage 𝖠𝖽𝗏Exp(𝒜) is negligible.

Hybrid Arguments Several approaches exist to prove the security of a crypto-
graphic scheme with respect to a particular security notion. In this thesis, we
adopt the so-called game-based technique, where the security proof is organized
by defining a sequence of indistinguishable experiments (or hybrid arguments).
In more detail, the security proof consists of constructing a reduction from the
original experiment to a notion that we assume to be secure. In the reduction,
a sequence of games 𝖦𝖺𝗆𝖾𝟢,𝖦𝖺𝗆𝖾𝟣,… ,𝖦𝖺𝗆𝖾𝗇 is presented, where 𝖦𝖺𝗆𝖾𝟢 is the
initial notion Exp with respect to an adversary𝒜, and subsequent games progres-
sively modify it until it can be simulated by an adversary ℬ against the target
notion. Let Pr[𝖦𝖺𝗆𝖾𝗂(𝒜) = 1] denote the probability that 𝖦𝖺𝗆𝖾𝗂(𝒜) returns 1
when played by 𝒜. Usually, the reduction strategy is to define 𝖦𝖺𝗆𝖾𝗂+𝟣 in a way
that Pr[𝖦𝖺𝗆𝖾𝗂(𝒜) = 1] is indistinguishable from Pr[𝖦𝖺𝗆𝖾𝗂+𝟣(𝒜) = 1], i.e.,

|Pr[𝖦𝖺𝗆𝖾𝗂(𝒜) = 1] − Pr[𝖦𝖺𝗆𝖾𝗂(𝒜) = 1]|

10

1.2 – Provable Security

is negligible. When describing complex hybrid arguments, we will typically
include descriptions of intermediate games in pseudocode form, highlighting
differences between successive games with the notation variant, as shown in
Argument 1.1. We refer to [181] for an excellent survey on game-based security
proofs.

RandomOracle Model The Random Oracle Model (ROM), formally introduced
by Bellare and Rogaway [21], is a widely used paradigm to obtain security proofs
for many cryptographic protocols by assuming the existence of “random oracles”.
Intuitively, a random oracle 𝖮 ∶ {0,1}∗ → {0,1}𝑘 behaves like an ideal, black-box,
deterministic random function that returns a uniformly random bitstring of
length 𝑘 on each distinct input. In the ROM, a random oracle is instantiated with
a concrete hash function 𝖧 with the assumption that 𝖧 ←$ {𝖦 ∶ {0,1}∗ → {0,1}𝑘 }.
Clearly this is unrealistic, since otherwise the description of 𝖧would be unreason-
ably long, and indeed there are no practical functions that behave like a random
oracle. The ROM paradigm states that if a cryptographic protocol can be proved
to be secure by assuming the existence of a random oracle, then replacing the
random oracle with a (hash) function 𝖧 that meets certain requirements does
not affect the security of the protocol. Although fundamentally heuristic, ROM
has proven extremely useful in allowing formal security proofs of cryptographic
protocols without undermining the practical security of the protocols; in fact,
there are no known attacks that exploit the use of a hash function instead of a
random oracle [133]. Nevertheless, an important research direction is to remove
the ROM requirement, building security proofs that rely solely on assumptions
about the complexity of the underlying problems. Schemes proven secure without
the use of idealized versions of cryptographic primitives are said to be secure in
the standard model.

When we consider a security experiment within the ROM, the adversary has
oracle access to the random oracle 𝖧. A standard technique to obtain a security
proof in the ROM is known as reprogramming with lazy sampling. The random
oracle is controlled by the challenger, which, instead of sampling for a random
function at the beginning of the game, proceeds to program the outputs of 𝖧
with random values as it receives new queries. More in detail, at the start of the
game the challenger initializes a table 𝖧𝖳 of inputs that are queried to the random
oracle. When a new query 𝑄 is sent to 𝖧, the challenger checks that 𝖧𝖳[𝑄] = ⊥,
sample 𝑥 ←$ {0,1}𝑘 and programs 𝖧𝖳[𝑄] ← 𝑥, finally returning 𝑥. The core of
security proof is often based on appropriate random oracle programming. A
standard example of this approach is found in the security analysis of Hash-and-
Sign schemes provided in Section 2.2.1. Later, we will make extensive use of this
model in the analysis of subsequent aggregation protocols.

11

Preliminaries

Experiment 1.2: OW𝖥
𝖥 ∶ 𝒳 → 𝒴 with len(𝒳) = 𝜆.
1: 𝑥 ←$ 𝒳
2: 𝑦 ← 𝖥(𝑥)
3: 𝑥′ ←$ 𝒜(𝖥, 𝑦)
4: return 𝖥(𝑥′) = 𝑦

Quantum Random Oracle Model When we consider an adversary who has
access to a quantum computer, it makes sense to consider that they can query
the random oracle on an input in quantum superposition. This model is known
as the Quantum Random Oracle Model (QROM) and was introduced by Boneh
et al. [38]. The problem of extending security proofs from the ROM to the QROM
is highly non-trivial, as many standard techniques cannot be directly applied in
the quantum model. However, numerous works recently have attempted to fill
the gap, typically at the cost of introducing slightly larger safety losses in the
reductions. In the context of digital signatures, the security of schemes in the
QROM has been studied and proved for both the Hash-and-Sign paradigm [194,
141, 134, 63] and the Fiat-Shamir paradigm [67, 189, 140, 82].

1.3 Cryptographic Primitives
In this section, we introduce some basic cryptographic primitives, which are
recalled throughout the thesis.

1.3.1 One-Way Functions
The notion of a one-way function is fundamental in cryptography, as it describes
a function that is efficient to compute but computationally difficult to invert.

Definition 1.1 (One-Way Function). Let 𝖥 ∶ 𝒳 → 𝒴 with len(𝒳) = 𝜆 and let 𝒜 by
an adversary. We define the advantage of𝒜 playing theOW game (Experiment 1.2)
against 𝖥 as

𝖠𝖽𝗏OW𝖥 (𝒜) = Pr[OW𝖥(𝒜) = 1].

We say that 𝖥 is one-way if it is deterministic polynomial-time for all input 𝑥 ∈ 𝒳
and the advantage 𝖠𝖽𝗏OW𝖥 (𝒜) is negligible for any adversary 𝒜.

1.3.2 Hash Functions
Generally speaking, a hash function is a compression map 𝖧 ∶ {0,1}∗ → {0,1}𝑘 with
some additional security properties. As we previously mentioned, hash functions

12

1.3 – Cryptographic Primitives

are used in practice as a concrete instantiation of a random oracle and are then
expected to behave as a truly random function. Since we don’t explicitly reduce
to the properties of hash functions, below we give a formal definition without
introducing additional security notions.

Definition 1.2 (Hash Function). A cryptographic hash function with output of
length 𝑘 is a function 𝖧 ∶ {0,1}∗ → {0,1}𝑘 such that the following problems are
computationally hard with respect to 𝑘:

Preimage Resistance Given an output 𝑦 ∈ {0,1}𝑘, find any input such that 𝖧(𝑥) =
𝑦.

Second Preimage Resistance Given an input 𝑥 ∈ {0,1}∗ find any 𝑥′ ≠ 𝑥 such that
𝖧(𝑥′) = 𝖧(𝑥).

Collision Resistance Find any distinct 𝑥, 𝑥′ ∈ {0,1}∗ such that 𝖧(𝑥) = 𝖧(𝑥′).

A useful generalization of a hash function is given by extendable-output func-
tions (XOF), where instead of having outputs of fixed length, the output can
be extended to any chosen length. XOFs must satisfy the same cryptographic
properties as hash functions and can be treated within the ROM as independent
random oracles. More in detail, a XOF is a function 𝖧 ∶ ℕ × {0,1}∗ → {0,1}∗ such
that 𝖧(𝑘) ∶= 𝖧(𝑘, ⋅) ∶ {0,1}∗ → {0,1}𝑘 is modelled as a random oracle.

1.3.3 Digital Signatures
A digital signature is a public-key cryptographic scheme that can be thought of as
the cryptographic analogue of a handwritten signature. A digital signature allows
a signer in possession of the private key to prove the authenticity of a message,
guaranteeing a non-repudiation property on the part of the author. Anyone in
possession of the corresponding public key can verify the authenticity of the
signature and confirm the message’s binding to the signer.

Formally, a digital signature scheme 𝖲𝗂𝗀 is a tuple of three algorithms (𝖪𝖦𝖾𝗇,
𝖲𝗂𝗀𝗇,𝖵𝗋𝖿𝗒):

• 𝖪𝖦𝖾𝗇(1𝜆): takes as input a security parameter 1𝜆 and generates a key pair
(𝗉𝗄, 𝗌𝗄).

• 𝖲𝗂𝗀𝗇(𝗌𝗄,𝑚): takes as input a signing key 𝗌𝗄 and a message 𝑚 and returns a
signature 𝜎.

• 𝖵𝗋𝖿𝗒(𝗉𝗄,𝑚,𝜎): takes as input a verification key 𝗉𝗄, a message 𝑚 and a signa-
ture 𝜎 and returns 1 for acceptance or 0 for rejection.

13

Preliminaries

Experiment 1.3: strong EUF-CMA

1: (𝗉𝗄, 𝗌𝗄) ←$ 𝖪𝖦𝖾𝗇(1𝜆)
2: 𝒬 ← ∅
3: (𝑚,𝜎) ←$ 𝒜𝖮,𝖮𝖲𝗂𝗀𝗇(𝗉𝗄)
4: if (𝑚,𝜎) ∈ 𝒬 then
5: return 0
6: return 𝖵𝗋𝖿𝗒(𝗉𝗄,𝑚,𝜎)

𝖮𝖲𝗂𝗀𝗇(𝑚):
1: 𝜎 ←$ 𝖲𝗂𝗀𝗇(𝗌𝗄,𝑚)
2: 𝒬 ← 𝒬 ∪ {(𝑚,𝜎)}
3: return 𝜎

We say that 𝖲𝗂𝗀 is correct if an honest generated signature is always verified,
i.e.,

Pr[𝖵𝗋𝖿𝗒(𝗉𝗄,𝑚,𝜎) = 1 | (𝗉𝗄, 𝗌𝗄) ←$ 𝖪𝖦𝖾𝗇(1𝜆)
𝜎 ←$ 𝖲𝗂𝗀𝗇(𝗌𝗄,𝑚)] = 1.

In terms of security, the minimum acceptable notion asks that no adversary
can forge a valid signature without the knowledge of the private key. This is often
not enough in real-world scenarios, where an adversary may have access to valid
signatures, or even have access to a signature oracle that produces valid signatures
for partially adversary-controlled messages. In this model, an adversary might
extract enough information to generate a forgery on a message of their choice, or
even be able to recover the private key. Therefore, we usually consider a stronger
notion of Existential Unforgeability against Chosen-Message Attacks (EUF-CMA),
where an adversary has access to a signing oracle that provides a polynomial
number of valid message-signature pairs. Although not strictly necessary, this
model is typically considered in the ROM, so that the signature scheme can be
extended to arbitrary messages as the signature is computed on the output of a
suitable hash function.

Definition 1.3 (EUF-CMA security). Let 𝖮 be a random oracle, let 𝖲𝗂𝗀 = (𝖪𝖦𝖾𝗇,
𝖲𝗂𝗀𝗇,𝖵𝗋𝖿𝗒) be a signature scheme, let 𝒜 be an adversary. We define the advantage
of 𝒜 playing the EUF-CMA game (Experiment 1.3) against 𝖲𝗂𝗀 in the random
oracle model as:

𝖠𝖽𝗏EUF-CMA
𝖲𝗂𝗀 (𝒜) = Pr[EUF-CMA𝖲𝗂𝗀(𝒜) = 1]

We say that 𝖲𝗂𝗀 is existential unforgeable against chosen-message attacks if the ad-
vantage 𝖠𝖽𝗏EUF-CMA

𝖲𝗂𝗀 (𝒜) is negligible for any adversary 𝒜.

A slightly stronger notion can also be considered, where the adversary may
produce forgery on messages already queried to the signing oracle, provided that
the forged signature is distinct from the oracle’s response. We denote this variant
as strong EUF-CMA (SUF-CMA).

14

1.3 – Cryptographic Primitives

1.3.4 Aggregate Signatures
An aggregate signature scheme allows compressing 𝑛 signatures from different
users on potentially distinct messages. In its most general form, each user with
keys (𝗉𝗄𝑖, 𝗌𝗄𝑖) for the signature scheme 𝖲𝗂𝗀 produces a signature 𝜎𝑖 on a message
𝑚𝑖. Then, there exists a public aggregation algorithm for 𝖲𝗂𝗀 that takes as input
𝜎1,… ,𝜎𝑛 and produces a single compressed signature Σ that can be directly
verified. The main desired property for an aggregate signature is that the length
of the compressed signature Σ is less than the concatenation of the individual
signatures 𝜎𝑖, i.e., |Σ| ll ∑𝑛

𝑖=1|𝜎𝑖|. For practical applications, it is also required
that the aggregation process does not involve changing the underlying signature
protocol keys, so that signing and verification keys can be used interchangeably
between single and aggregate signature scheme. In fact, aggregation schemes are
particularly useful for practical and established signature schemes. Sometimes it
is possible to satisfy additional properties, such as obtaining that the aggregated
signature Σ is still a valid signature for 𝖲𝗂𝗀 for some public key 𝗉𝗄 obtained as a
combination of the signers’ public keys 𝗉𝗄𝑖.

In what follows, we first consider a generic notion of aggregation, and then
specialize on a weaker but easier-to-obtain form in the context of post-quantum
signatures.

An aggregate signature scheme 𝖠𝖲 with associated signature scheme 𝖲𝗂𝗀 is a
tuple of three algorithms (𝖪𝖦𝖾𝗇,𝖠𝗀𝗀𝖲𝗂𝗀𝗇,𝖠𝗀𝗀𝖵𝗋𝖿𝗒):

• 𝖪𝖦𝖾𝗇(1𝜆): takes as input a security parameter 1𝜆 and generates a key pair
(𝗉𝗄, 𝗌𝗄).

• 𝖠𝗀𝗀𝖲𝗂𝗀𝗇(
«

𝗉𝗄𝑛,
#«𝑚𝑛,

#«𝜎𝑛): takes as input a list of public keys
«

𝗉𝗄𝑛 = (𝗉𝗄1,… , 𝗉𝗄𝑛)
of messages #«𝑚𝑛 = (𝑚1,… ,𝑚𝑛) and signatures #«𝜎𝑛 = (𝜎1,… ,𝜎𝑛), where 𝜎𝑖 ←$

𝖲𝗂𝗀𝗇(𝗌𝗄𝑖,𝑚𝑖) for all 𝑖 ∈ { 1,… ,𝑛 }. The algorithm combines the individual
signatures 𝜎1,… ,𝜎𝑛 and returns an aggregate signature Σ.

• 𝖠𝗀𝗀𝖵𝗋𝖿𝗒(
«

𝗉𝗄𝑛,
#«𝑚𝑛,Σ𝑛): takes as input a list of public keys

«

𝗉𝗄𝑛 = (𝗉𝗄1,… , 𝗉𝗄𝑛)
and messages #«𝑚𝑛 = (𝑚1,… ,𝑚𝑛), and an aggregate signature Σ. The algo-
rithm returns 1 for acceptance and 0 for rejection.

The security notion associated with aggregated signatures generalizes the
notion of EUF-CMA described for plain signatures. More in detail, an adversary
is given a target public key and oracle access to an aggregate signing oracle. The
adversary can query the oracle with arbitrary messages and using their own
independently generated public keys. Eventually, the adversary should provide a
forgery involving the target public key for some set of messages and public keys
not previously queried to the oracle. Since we work primarily with a variant of
aggregated signatures, we defer the formalization of this security notion to the

15

Preliminaries

next section. The differences with the notion for general aggregation schemes
are minimal and concern only the interaction of the adversary with the signature
oracle.

1.3.5 Sequential Aggregate Signatures
Generic aggregation schemes allow a (potentially untrusted) third party to aggre-
gate signatures produced by the individual users. Although very powerful, these
constructs are difficult to achieve in practice, and it is often sufficient to focus on
a slightly weaker variant where aggregation is done sequentially by individual
signers combining their own signatures with the so-far aggregated signature. This
variant is known as sequential aggregate signature (SAS).

Formally, a SAS scheme is a tuple of three algorithms (𝖪𝖦𝖾𝗇,𝖠𝗀𝗀𝖲𝗂𝗀𝗇,𝖠𝗀𝗀𝖵𝗋𝖿𝗒):

• 𝖪𝖦𝖾𝗇(1𝜆): takes as input a security parameter 1𝜆 and generates a key pair
(𝗉𝗄, 𝗌𝗄).

• 𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝗌𝗄𝑖,𝑚𝑖,Σ𝑖−1): takes as input the secret key and the message of the
𝑖-th user and the previous aggregate signature Σ𝑖−1 and returns an aggregate
signature Σ𝑖.

• 𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑛,Σ𝑛): takes as input the full history 𝐿𝑛 = (𝗉𝗄1,𝑚1),… , (𝗉𝗄𝑛,𝑚𝑛)
of public key, message pairs, and an aggregate signature Σ𝑛. Returns 1 if Σ𝑛
is a valid aggregate signature and 0 otherwise.

Every signer has a key pair (𝗉𝗄𝑖, 𝗌𝗄𝑖) ←$ 𝖪𝖦𝖾𝗇(1𝜆). The signature aggregation
process is done iteratively: the first signerwith keys (𝗉𝗄1, 𝗌𝗄1) generates a signature
Σ1 for message 𝑚1 with Σ1 ←$ 𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝗌𝗄1,𝑚1, 𝜀), where 𝜀 represents the empty
string to indicate that this is the first signature in the sequence. The 𝑖-th signer
with keys (𝗉𝗄𝑖, 𝗌𝗄𝑖) receives an aggregate signature Σ𝑖−1 from the (𝑖 − 1)-th signer
and aggregates his signature on message 𝑚𝑖 to obtain the aggregate signature
Σ𝑖 ←$ 𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝗌𝗄𝑖,𝑚𝑖,Σ𝑖−1). Note that, in general, the aggregation algorithm
𝖠𝗀𝗀𝖲𝗂𝗀𝗇 does not require the public keys and messages from the previous signers.
Finally, the verifier can check the validity of the aggregate signature by running
𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑛,Σ𝑛).

Security model for SAS Below we show the definition of Sequential Existential
Unforgeability against Chosen-Message Attacks (SAS-EUF-CMA).

As briefly mentioned above, in this model the forger controls all users’ private
keys except for at least one honest user. The forger can choose the keys of the
rogue signers and adaptively query an aggregate signature oracle. Finally, to win
the experiment, the forger must produce a valid, non-trivial aggregate signature
involving the public key of the honest user.

16

1.4 – Post-Quantum Cryptography

Formally, let 𝖮 be a random oracle, let 𝖲𝖠𝖲 = (𝖪𝖦𝖾𝗇,𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇,𝖮𝖠𝗀𝗀𝖵𝗋𝖿𝗒) be
a SAS scheme, let 𝒜 be an adversary. We define the advantage 𝖠𝖽𝗏SAS-EUF-CMA

𝖲𝖠𝖲 (𝒜)
of 𝒜 playing the SAS-EUF-CMA game as its success probability in the following
experiment.

Setup The challenger produces a key pair (𝗉𝗄⋆, 𝗌𝗄⋆) ←$ 𝖪𝖦𝖾𝗇(1𝜆) and provides
𝗉𝗄⋆ to 𝒜.

Queries 𝒜 can be adaptive and has access to a random oracle 𝖮 and an aggregate
signing oracle 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝗌𝗄⋆, ⋅, ⋅). The aggregate signing oracle receives a
message 𝑚 and an aggregate signature Σ𝑖 on messages 𝑚1,… ,𝑚𝑖 under
public keys 𝗉𝗄1,… , 𝗉𝗄𝑖 controlled by 𝒜; it returns an aggregate signature
Σ under the challenge secret key 𝗌𝗄⋆. The random oracle provides 𝒜 with
access to a suitable random function.

Output 𝒜 outputs an aggregate signature Σ on 𝑛 messages 𝑚1,… ,𝑚𝑛 under
public keys 𝗉𝗄1,… , 𝗉𝗄𝑛 for a chosen 𝑛 ∈ ℕ. One of the public keys must be
the challenge public key 𝗉𝗄𝑖⋆ = 𝗉𝗄⋆ for some 1 ≤ 𝑖⋆ ≤ 𝑛.

The adversary 𝒜 wins the experiment if Σ is a valid aggregate signature and
a query with messages 𝑚1,… ,𝑚𝑖⋆ under public keys 𝗉𝗄1,… , 𝗉𝗄𝑖⋆ has never been
made to the oracle.

In Chapter 3, we further specialize this security notion for full-history and
(partial-signature) history-free variants of sequential aggregation schemes. The
respective experiments are described in Experiment 3.1 and Experiment 3.2.

1.4 Post-Quantum Cryptography
The threat of quantum computers has remained purely theoretical for many years.
In 1996, Grover [117], however, described a search algorithm for an unordered
list of 𝑛 elements that only requires √𝑛 quantum operations. More in detail,
given a function 𝑓 over a discrete domain of 𝑛 elements and a target 𝑦, Grover’s
algorithm finds an input 𝑥 such that 𝑓(𝑥) = 𝑦 in 𝒪(√𝑛) iterations, without further
assumptions on the structure of 𝑓. This gives a quadratic speed-up over the
classical counterpart, which requires 𝒪(𝑛) operations. This result is particularly
interesting for symmetric cryptosystem, for which the best attacks are typically
brute force attacks on the key space. Taking into account only the asymptotic
behaviour of Grover’s algorithm, this means that a key of 128 bits1 has only
64 bits of security against a quantum adversary. This is relevant mainly from a
theoretical point of view, since Grover’s algorithm is difficult to parallelize and the

1Typical lengths for symmetric keys are 128, 192, and 256 bits.

17

Preliminaries

concrete security of an exhaustive 128-bit attack is plausibly still out of scale [101,
178]. Either way, any attack with a quadratic speed-up can be easily mitigated by
doubling the length of the keys for each level of security needed.

A context where quantum computers have a far more worrying advantage is
that of public key cryptography. The main schemes used today for key-exchange
and digital signatures are RSA, Diffie-Hellman and elliptic curve cryptography,
which are based on two hard problems: integer factorization and discrete loga-
rithm. In 1994, Shor [180] described a quantum algorithm capable of solving both
problems with an exponential speed-up over the classical counterpart. The real-
ization of a quantum computer would, therefore, have disastrous consequences
on today’s public key cryptography, making these schemes no longer secure.

While not going into the details of the Shor algorithm, it is interesting to
note how this algorithm allows solving a wider class of problems and how they
can be exploited for the factoring problem and the discrete logarithm problem.
Roughly speaking, given a periodic function 𝑓, i.e., there exists a period 𝑃 such
that 𝑓(𝑥 + 𝑃) = 𝑓(𝑥) for any 𝑥, Shor’s algorithm can efficiently find 𝑃.

Integer factorization. Given 𝑁 = 𝑝𝑞 the integer product of two large primes,
the problem is to find 𝑝, 𝑞. The key observation for the application of Shor’s
algorithm is that it is easy to factor 𝑁 if, fixed 𝑎 ∈ ℤ ∖ {0}, one can find the period
of 𝑎𝑥 mod 𝑁. In fact, if we find the period 𝑃, then

𝑎𝑥 ≡ 𝑎𝑥+𝑃 (mod 𝑁) ⟹ 𝑎𝑃 ≡ 1 (mod 𝑁) ⟹ 𝑎𝑃 − 1 ≡ 0 (mod 𝑁),

so that 𝑁 divides 𝑎𝑃 − 1. Now we can just factor 𝑎𝑃 − 1 = (𝑎𝑃/2 − 1)(𝑎𝑃/2 + 1)
and check if this leads to a factor of 𝑁 by computing the gcd of 𝑁 with each
factor. We can iterate this procedure with random choices of 𝑎 until we find a
non-trivial factor of 𝑁. From a computational point of view, if we let 𝑛 = log2(𝑁),
this algorithm takes approx 𝒪(𝑛3) iterations, which is polynomial in 𝑛. While the
best classical algorithm is exponential in 𝑛.

Discrete logarithm. Given a group 𝐺 = ⟨𝑔⟩ generated by 𝑔 and given 𝑦 = 𝑔 𝑥,
the problem is to find 𝑥. Since 𝑞 = ord(𝑔) is a known parameter, we need to find
𝑥 mod 𝑞. It is enough to find the period of 𝑓(𝑎, 𝑏) = 𝑔 𝑎𝑦𝑏, that is 𝑃,𝑃 ′ such that
𝑓(𝑎 + 𝑃, 𝑏 + 𝑃 ′) = 𝑓(𝑎, 𝑏). In particular, we have

𝑔 𝑎𝑦𝑏 = 𝑔 𝑎+𝑃𝑦𝑏+𝑃′ ⟹ 𝑔𝑃𝑦𝑃′ = 1 ⟹ 𝑔𝑃+𝑥𝑃′ = 1.

Therefore, 𝑃 + 𝑥𝑃 ′ ≡ 0 (mod 𝑞) and 𝑥 = −𝑃/𝑃 ′ (mod 𝑞).

1.4.1 NIST Standardization Processes
Post-Quantum Cryptography aims to design public-key cryptosystem that cannot
be broken by an adversary that has access to a quantum computer. Therefore,

18

1.4 – Post-Quantum Cryptography

Table 1.1: Categories and number of digital signature proposals between the first
and second NIST calls. The winners of Round III are highlighted.

Category
1st Call 2nd Call

Round 1 Round 2 Round 3 Round 1
Code-based 3 – – 5
Isogenies – – – 1
Lattices 5 3 2 7
MPC-in-the-Head – – – 7
Multivariate 7 4 2 11
Symmetric 2 1 1 4
Other 2 1 1 5

such schemes have to be based on hard problems for which there is no exponential
quantum speed-up, instead of what happens to integer factorization or discrete
logarithm.

The cryptographic community began to be particularly interested in the de-
velopment of such schemes when in 2015 the American National Security Agency
(NSA) declared that it was necessary to begin a phase of transition to post-quantum
schemes in view of a possible realization of a quantum computer. Although this
development may not occur quickly, it has been assessed that, in the absence of
timely intervention, the period needed to switch to a new public key encryption
standard could take an even longer time. Following this, in 2016, NIST launched
a standardization process for public-key encryption, key exchange and signa-
ture schemes [162]. Among the 69 starting candidates, only 19 proposed digital
signature algorithms. In July 2022, with the conclusion of the third round [5],
NIST has identified three signature schemes that will proceed to be standardized:
CRYSTALS-Dilithium [144], Falcon [172] and SPHINCS+ [124]. Despite the re-
duced number, the initial proposals were heterogeneous, with proposals coming
from the main categories of post-quantum problems, such as lattices, linear codes,
multivariate systems, and symmetric primitives. The diversification gradually
decreased in subsequent rounds, leading to an over-representation of algorithms
based on structured lattices. With the aim of further differentiating security
assumptions and use-case scenarios for standardized signatures, in 2022 NIST
launched a new “on-ramp” process dedicated to post-quantum digital signatures
[161].

In June 2023, at the end of the new submission phase, NIST received 50
proposals and found 40 to be compatible with the requirements of the call. In
addition to the main categories already identified in the original process, new

19

Preliminaries

proposals include algorithms based on isogenies of supersingular elliptic curves
and others framed in the recent “MPC-in-the-head” paradigm. Table 1.1 shows the
main problem families and the number of proposals among the various rounds of
NIST processes. In the following, we give a brief description of themain categories
of underlying problems.

Code-based Code-based schemes are tied to the theory of error-correcting codes.
The underlying computational problems are related to (general) syndrome decod-
ing problem and the problem of finding isometries between (linear) codes.

Isogenies Isogeny-based cryptography is based on the properties of isogenies
between supersingular elliptic curves. The security relies on the difficulty of
finding an isogeny of a given degree between two supersingular elliptic curves
over a finite field.

Lattices Lattice-based cryptography is related to lattice problems over high-
dimensional lattices. The hardness assumptions typically relate to the problem
of finding a short vector in the lattice or a vector close to a given vector outside
the lattice.

MPC-in-the-Head MPC-in-the-Head is a recent paradigm that leverages secure
Multi-Party Computation (MPC) protocols to construct zero-knowledge proofs.
Combined with the Fiat-Shamir transform, this allows to obtain efficient digital
signature schemes.

Multivariate Multivariate-based cryptography is based on multivariate polyno-
mials over a finite field. The security relies on the hardness of solving systems of
multivariate quadratic equations over a finite field (the MQ Problem).

Symmetric Symmetric-based cryptography employs symmetric cryptographic
primitives, particularly hash functions, for digital signatures. The security reduces
to the collision and preimage resistance of hash functions.

In both calls, NIST defined five security levels, for which the submitted schemes
must propose different parameterizations. Each level defines the complexity of
breaking the security of the proposed scheme by comparison with a standard
symmetric primitive. Specifically, levels I, III, and V refer to the complexity
of performing an exhaustive key-search attack against AES-128, AES-192, and
AES-256, respectively. Levels II and IV, on the other hand, refer to the complexity
of finding a collision for SHA-256 and SHA-384, respectively.

20

Part I

Trapdoor-based Signature
Aggregation

21

Chapter 2

Hash-and-Sign Paradigm

The Hash-and-Sign (HaS) paradigm is a standard technique to build a digital
signature from trapdoor one-way functions and hash functions in the random
oracle model. On a high level, the signature of a message is obtained by finding a
pre-image of the message hash. A signature can be easily verified by applying
the public function but, without knowledge of the trapdoor, finding a pre-image
should be computationally hard. Historically, this paradigm is known as Full
Domain Hash [21, 22] when employed with trapdoor permutations, such as the
one underlying the well-known RSA scheme [174].

When we consider post-quantum assumptions, no trapdoor permutations are
known to date, and it is therefore necessary to consider non-bijective functions.
In principle, to build a digital signature in the Hash-and-Sign paradigm we only
need the trapdoor function to be surjective, so that a pre-image always exists. On
the other hand, the loss of injectivity presents issues in the formal security of
the signature, as it is not obvious that one-wayness alone is sufficient to prove
unforgeability. In the literature, this problem has been addressed in different
ways. Lattice-based trapdoor functions typically fall into the class of Preimage
Sampleable Functions (PSFs) [108], presenting additional properties that allow
for an easy recovery of formal security in signature schemes. PSFs are difficult
to implement outside of lattices, and a weaker model has been considered for
code-based assumptions [52]. Finally, multivariate trapdoor functions typically
do not present additional properties, and schemes based on these assumptions
have solved this problem independently [175].

In Section 2.1 we introduce the basic notions of trapdoor functions, analysing
some classes of functions which are relevant for applications to post-quantum
signatures. In Section 2.2 we describe a generalization of the Hash-and-Sign
paradigm as recently formalized in [134]. We also provide an overview of the
main techniques used in the security proofs of Hash-and-Sign schemes, antici-
pating some methods that will be employed in the security analysis of sequential
aggregation schemes in the next chapter. Finally, in Section 2.3 we present the

23

Hash-and-Sign Paradigm

Experiment 2.1: OW, INV, and CR

OW:
1: (𝖥, 𝖨) ←$ 𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝜆)
2: 𝑥 ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥)
3: 𝑦 ← 𝖥(𝑥)
4: 𝑥′ ←$ 𝒜(𝖥, 𝑦)
5: return 𝖥(𝑥′) = 𝑦

INV:
1: (𝖥, 𝖨) ←$ 𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝜆)
2: 𝑦 ←$ 𝒴
3: 𝑥 ←$ 𝒜(𝖥, 𝑦)
4: return 𝖥(𝑥) = 𝑦

CR:
1: (𝖥, 𝖨) ←$ 𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝜆)
2: (𝑥0, 𝑥1) ←$ 𝒜(𝖥)
3: return 𝖥(𝑥0) = 𝖥(𝑥1)

state of the art of this paradigm in the post-quantum landscape, introducing some
of the schemes that will later be analysed with respect to aggregation capabilities.

2.1 Trapdoor Functions
Definition 2.1. A Trapdoor Function (TDF) 𝖳 is a tuple of four algorithms
(𝖳𝗋𝖺𝗉𝖦𝖾𝗇, 𝖥, 𝖨, 𝖲𝖺𝗆𝗉𝖣𝗈𝗆):

• 𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝜆): takes as input a security parameter 1𝜆 and generates an effi-
ciently computable function 𝖥 ∶ 𝒳 → 𝒴 and a trapdoor 𝖨 that allow to invert
𝖥.

• 𝖥(𝑥): takes as input 𝑥 ∈ 𝒳 and outputs 𝖥(𝑥) ∈ 𝒴.

• 𝖨(𝑦): takes as input 𝑦 ∈ 𝒴 and outputs 𝑥 ∈ 𝒳 such that 𝖥(𝑥) = 𝑦, or it fails by
returning ⊥.

• 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥) takes as input a function 𝖥 ∶ 𝒳 → 𝒴 and outputs 𝑥 ∈ 𝒳.

A special type of trapdoor function is obtained when we consider bijections.

Definition 2.2. A TDF 𝖳 = (𝖳𝗋𝖺𝗉𝖦𝖾𝗇, 𝖥, 𝖨, 𝖲𝖺𝗆𝗉𝖣𝗈𝗆) is said to be a Trapdoor
Permutation (TDP) if 𝖥 and 𝖨 are permutations.

Remark. A relevant example of trapdoor permutation is given by the RSA function.

The standard form of security for a trapdoor function is given by the notion
of One-Wayness (OW) [21].

Definition 2.3. Let 𝖳 = (𝖳𝗋𝖺𝗉𝖦𝖾𝗇, 𝖥, 𝖨, 𝖲𝖺𝗆𝗉𝖣𝗈𝗆) be a TDF and let 𝒜 be an ad-
versary. We define the advantage of 𝒜 playing the OW game (Experiment 2.1)
against 𝖳 as

𝖠𝖽𝗏OW𝖳 (𝒜) = Pr[OW𝖳(𝒜) = 1].

We say that 𝖳 is one-way if the advantage 𝖠𝖽𝗏OW𝖳 (𝒜) is negligible for any adversary
𝒜.

24

2.1 – Trapdoor Functions

The notion of one-wayness requires that the challenge is obtained as 𝖥(𝑥) with
𝑥 sampled following some distribution on𝒳. If the image via 𝖥 of a random input
is not uniformly distributed in 𝒴, an alternative notion of Non-Invertibility (INV)
[122] where the challenge is uniformly sampled is necessary to prove the security
of Hash-and-Sign schemes.

Definition 2.4. Let 𝖳 = (𝖳𝗋𝖺𝗉𝖦𝖾𝗇, 𝖥, 𝖨, 𝖲𝖺𝗆𝗉𝖣𝗈𝗆) be a TDF and let 𝒜 be an ad-
versary. We define the advantage of 𝒜 playing the INV game (Experiment 2.1)
against 𝖳 as

𝖠𝖽𝗏INV
𝖳 (𝒜) = Pr[INV𝖳(𝒜) = 1].

We say that 𝖳 is non-invertible if the advantage 𝖠𝖽𝗏INV
𝖳 (𝒜) is negligible for any

adversary 𝒜.

In the literature, there is not always a clear distinction between these two
notions, and both are commonly described as one-wayness [108, 175, 52]. When
implementing the Hash-and-Sign paradigm with post-quantum trapdoor func-
tions, we will mainly use the latter concept of non-invertibility. This is because
these functions usually do not have a uniform distribution of outputs.
Remark. Note that the INV notion of Definition 2.4 includes trapdoor functions
for which the probability that a pre-image exists via 𝖥 for a random element 𝑦 ∈ 𝒴
is negligible. Such functions could not be used as a building block for Hash-
and-Sign schemes, as even knowledge of the secret trapdoor would not allow the
computation of a pre-image. Nevertheless, a non-negligible failure probability
could impact the tightness of a security reduction from INV. In security proofs,
it is therefore important to explicitly consider this possibility.

Finally, we can consider an advanced notion of Collision Resistance (CR).
Trapdoor functions that satisfy this notion can typically achieve tighter security
reductions and enable advanced constructions.

Definition 2.5. Let 𝖳 = (𝖳𝗋𝖺𝗉𝖦𝖾𝗇, 𝖥, 𝖨, 𝖲𝖺𝗆𝗉𝖣𝗈𝗆) be a TDF and let 𝒜 be an adver-
sary. We define the advantage of𝒜 playing the CR game (Experiment 2.1) against
𝖳 as

𝖠𝖽𝗏CR𝖳 (𝒜) = Pr[CR𝖳(𝒜) = 1].

We say that 𝖳 is collision-resistant if the advantage 𝖠𝖽𝗏CR𝖳 (𝒜) is negligible for any
adversary 𝒜.

2.1.1 Preimage Sampleable Functions
When a trapdoor function is used to construct a digital signature, each signature
reveals a preimage 𝑥 ←$ 𝖨(𝑦) obtained via the secret trapdoor on a uniformly
distributed element 𝑦 ←$ 𝒴. To ensure the security of the scheme, it is necessary
that knowledge of the pair (𝑥, 𝑦) does not reveal information about the trapdoor.

25

Hash-and-Sign Paradigm

When we consider a trapdoor permutation, this problem does not arise, since
the preimage of a uniformly distributed element is still uniformly distributed.
This property of preimage sampleability is quickly lost when we consider a generic
trapdoor function, which is generally not injective. However, building a one-way
trapdoor permutation in the post-quantum setting presents significant challenges
[123]. Nonetheless, relevant properties for security can be obtained by imposing
additional requirements on the trapdoor function. A strong notion of Preimage
Sampleable Functions was introduced for lattice-based functions in [108].

Definition 2.6. A TDF 𝖳 = (𝖳𝗋𝖺𝗉𝖦𝖾𝗇, 𝖥, 𝖨, 𝖲𝖺𝗆𝗉𝖣𝗈𝗆) is a Preimage Sampleable
Function (PSF) if it satisfies the following properties:

1. 𝑦 ← 𝖥(𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥)) is uniformly distributed over 𝒴.

2. 𝑥 ←$ 𝖨(𝑦), with 𝑦 ←$ 𝒴, is distributed as 𝑥 ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥) conditioned on
𝖥(𝑥) = 𝑦.

3. For any 𝑦 ∈ 𝒴, 𝖨(𝑦) always returns 𝑥 ∈ 𝒳 such that 𝖥(𝑥) = 𝑦.

A collision-resistant PSF satisfies the following additional property:

4. For any 𝑦 ∈ 𝒴, the conditional min-entropy of 𝑥 ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥) condi-
tioned on 𝖥(𝑥) = 𝑦 is at least 𝜔(log𝜆).

In [52, 59], a relaxed variant of PSFs is considered where the uniformity
property on preimages is weakened and required to hold only on average. This
was first considered for code-based functions, for which no PSFs are known.

Definition 2.7. A TDF 𝖳 = (𝖳𝗋𝖺𝗉𝖦𝖾𝗇, 𝖥, 𝖨, 𝖲𝖺𝗆𝗉𝖣𝗈𝗆) is an 𝜀-Average Preimage
Sampleable Function (𝜀-APSF) if it satisfies the following properties:

1. For any 𝑦 ∈ 𝒴, 𝖨(𝑦) always returns 𝑥 ∈ 𝒳 such that 𝖥(𝑥) = 𝑦.

2. Consider the statistical distance 𝜀𝖥,𝖨 = Δ(𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥), 𝖨(𝒰(𝒴))). Then, it
holds that 𝔼(𝖥,𝖨)[𝜀𝖥,𝖨] ≤ 𝜀.

Remark. The definition of PSF requires uniform images with the first property of
Definition 2.6. For an 𝜀-APSF this is not required, but it holds that [52, Prop. 2]

Δ(𝖥(𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥)),𝒰(𝒴)) ≤ 𝜀𝖥,𝖨.

It can be easily observed that a trapdoor permutation satisfies all the properties
of a PSF. In particular, it holds that

TDP ⟹ PSF ⟹ Average PSF.

26

2.2 – Hash-and-Sign Schemes

Experiment 2.2: PS𝑏
1: (𝖥, 𝖨) ←$ 𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝜆)
2: 𝑏⋆ ←$ 𝒜𝖲𝖺𝗆𝗉𝗅𝖾𝑏(𝖥)
3: return 𝑏⋆ ∈ {0,1}

𝖲𝖺𝗆𝗉𝗅𝖾1:
1: 𝑟𝑖 ←$ 𝖱
2: 𝑥𝑖 ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥)
3: return (𝑟𝑖, 𝑥𝑖)

𝖲𝖺𝗆𝗉𝗅𝖾0:
1: repeat
2: 𝑟𝑖 ←$ 𝖱
3: 𝑦𝑖 ←$ 𝒴
4: 𝑥𝑖 ←$ 𝖨(𝑦𝑖)
5: until 𝑥𝑖 ≠ ⊥
6: return (𝑟𝑖, 𝑥𝑖)

When we consider a generic trapdoor function that does not satisfy the notion
of (A)PSF, such as for multivariate-based functions, preimage sampleability must
be ensured with an additional security assumption. This notion is formalized in
[134] with the Preimage Sampling (PS) game.

Definition 2.8 (Preimage Sampling). Let 𝖳 = (𝖳𝗋𝖺𝗉𝖦𝖾𝗇, 𝖥, 𝖨, 𝖲𝖺𝗆𝗉𝖣𝗈𝗆) be a TDF,
let𝒜 be an adversary. We define the advantage of𝒜 playing the PS game (Experi-
ment 2.2) against 𝖳 as:

𝖠𝖽𝗏PS𝖳 (𝒜) = |Pr[PS0(𝒜) = 1] − Pr[PS1(𝒜) = 1]|.

We say that 𝖳 is preimage-sampleable if the advantage 𝖠𝖽𝗏PS𝖳 (𝒜) is negligible for
any adversary 𝒜.

Remark. The PS game introduces the use of a random salt 𝑟 to recover a weaker
property of preimage indistinguishability. When we consider a PSF we have a
stronger property where the preimage of a uniformly random output is indis-
tinguishable from a uniformly random input. In the PS game we are trying to
distinguish between pairs (𝑟, 𝑥) and pairs (𝑟 ′, 𝑥′), where 𝑟 and 𝑟 ′ are uniformly
random salts over 𝖱, 𝑥 ∈ 𝒳 is the preimage of a uniformly random output 𝑦 ←$ 𝒴,
and 𝑥′ ←$ 𝒳 is a uniformly random input. In the next section, we will see that
the pair (𝑟, 𝑥) can be described as the output of a generalized Hash-and-Sign
scheme. This notion of indistinguishability can then be used in signature schemes
to recover EUF-CMA security from the Full Domain Hash approach, where a
random salt is not required.

2.2 Hash-and-Sign Schemes
The Hash-and-Sign (𝖧𝖺𝖲) paradigm is a standard approach to building digital
signature schemes in the random oracle model from a trapdoor function 𝖳 and a
hash function𝖧 ∶ {0,1}∗ → 𝒴. When 𝖳 is a trapdoor permutation, this construction
is known as Full Domain Hash [21, 22]. To sign a message 𝑚, a signer with a

27

Hash-and-Sign Paradigm

Algorithm 2.1: Hash-and-Sign with retry

𝖪𝖦𝖾𝗇(1𝜆):
1: (𝖥, 𝖨) ←$ 𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝜆)
2: return (𝖥, 𝖨)

𝖵𝗋𝖿𝗒(𝖥, 𝑚, (𝑟, 𝑥)):
1: return 𝖥(𝑥) = 𝖧(𝑟,𝑚)

𝖲𝗂𝗀𝗇(𝖨, 𝑚):
1: repeat
2: 𝑟 ←$ 𝖱
3: 𝑥 ←$ 𝖨(𝖧(𝑟,𝑚))
4: until 𝑥 ≠ ⊥
5: return (𝑟, 𝑥)

secret key 𝗌𝗄 = 𝖨 applies the hash function, modelled as a random oracle, to the
message 𝑦 ← 𝖧(𝑚) and computes its inverse 𝑥 ←$ 𝖨(𝑦) through the secret trapdoor.
In its original form, it can be formulated using the following algorithms.

• 𝖪𝖦𝖾𝗇(1𝜆): takes as input a security parameter 1𝜆 and generates (𝖥, 𝖨) ←$

𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝜆). The verification key for the signature scheme is 𝖥, the signing
key is 𝖨.

• 𝖲𝗂𝗀𝗇(𝖨,𝑚): takes as input the trapdoor 𝖨 and a message 𝑚. Computes 𝜂 ←
𝖧(𝑚) and returns the signature as the preimage 𝜎 ←$ 𝖨(𝜂).

• 𝖵𝗋𝖿𝗒(𝖥,𝑚,𝜎): takes as input a verification key 𝖥, a message𝑚 and a signature
𝜎. Computes 𝜂 ← 𝖧(𝑚) and 𝜂′ ← 𝖥(𝜎). Returns 1 if 𝜂 = 𝜂′, otherwise 0.

Remark. The role of the hash function is twofold. First, it allows the signature
scheme to be extended to arbitrary messages. Indeed, if the signature 𝜎 of a
message 𝑚 were calculated directly such that 𝖥(𝜎) = 𝑚, the scheme would be
restricted only to messages that reside in the image of the trapdoor function. In
the absence of the hash function, it would also be possible to produce forgeries
trivially. An attacker could in fact randomly choose 𝜎 and obtain a signature for
𝑚 ← 𝖥(𝜎).

In some scenarios, the 𝖧𝖺𝖲 paradigm requires using a random string 𝑟, which
acts as a salt for the hash function, i.e., 𝑦 ← 𝖧(𝑚 ‖ 𝑟). This is known as the
probabilisticHash-and-Sign (𝖯𝖧𝖺𝖲) paradigm. The resulting signature is the couple
𝜎 = (𝑥, 𝑟). A verifier uses the corresponding public key 𝗉𝗄 = 𝖥 to verify whether
𝖥(𝑥) = 𝖧(𝑚 ‖ 𝑟).

More generally, a slightly different paradigm, known as probabilistic Hash-
and-Sign with retry (𝖯𝖧𝖺𝖲𝗐𝖱), is employed with generic trapdoor functions. With
this approach, a random string 𝑟 is sampled until a preimage for 𝖧(𝑚 ‖ 𝑟) is
found. This approach is described in Algorithm 2.1. The security is based on the
one-wayness of the trapdoor function and on the additional condition that the
output of the signing algorithm (𝑟, 𝑥) is indistinguishable from a couple (𝑟 ′, 𝑥′)
with 𝑟 ′ ←$ {0,1}𝜆 and 𝑥′ ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥).

28

2.2 – Hash-and-Sign Schemes

Table 2.1: Summary of existing security proof for Hash-and-Sign schemes in the
ROM.

Function Assumption
Target scheme

Security bound Proof
𝖧𝖺𝖲 𝖯𝖧𝖺𝖲 𝖯𝖧𝖺𝖲𝗐𝖱

TDP OW/INV ✓ ✓ – 𝒪(𝗊𝖧𝜀OW) [22]
PSF OW/INV ✓ ✓ – 𝒪(𝗊𝖧𝜀OW) [108]
PSF CR ✓ ✓ – 𝒪(𝜀CR) [108]
APSF OW/INV – ✓ – 𝒪(𝗊𝖧𝜀OW) [52]
TDF INV + PS – – ✓ 𝒪(𝗊𝖧𝜀INV + 𝜀PS) [134]

2.2.1 Security Analysis
In this section, we give an overview of the security reductions of Hash-and-
Sign schemes as the type of trapdoor function changes. Many of the techniques
highlighted below underlie the aggregate signature security demonstration in
Chapter 3. A summary of the security proof for Hash-and-Sign schemes in the
ROM is given in Table 2.1. The techniques presented cover the classical scenario
and are generally extendable to QROM [194, 193, 52, 134].

The core idea in the ROM for an (A)PSF, is to simulate the signature oracle
for a message 𝑚 by taking a random element 𝑥 ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥) as the signature
and then programming the random oracle as 𝖧(𝑚) ← 𝖥(𝑥). In this way, 𝑥 is a
valid signature since its image via the trapdoor function is equal to the hash
of the message. In the following, we start with the case of the Full Domain
Hash paradigm for a trapdoor permutation. Then, we subsequently weaken the
assumptions about the trapdoor function, and we analyse the necessary changes
in the security proof.

Theorem 2.9 ([22]). Let 𝖳 be a TDP. Let 𝒜 be a EUF-CMA adversary against the
(probabilistic) 𝖧𝖺𝖲 scheme on 𝖳 in the random oracle model, which makes 𝗊𝖲 signing
queries and 𝗊𝖧 queries to the random oracle. Then, there exists a OW adversary ℬ
against 𝖳 such that

𝖠𝖽𝗏EUF-CMA
𝖧𝖺𝖲/𝖯𝖧𝖺𝖲 (𝒜) ≤ (𝗊𝖲 + 𝗊𝖧 + 1)𝖠𝖽𝗏OW𝖳 (ℬ).

Proof Idea. We show that the OW adversary ℬ can simulate the EUF-CMA game.
First, after receiving a challenge (𝖥, 𝑦), ℬ forwards 𝖥 to 𝒜. Then, ℬ initialized a
table 𝖧𝖳 and simulates the oracles queries as follows.

Random oracle queries Suppose a query 𝑄 = (𝑟,𝑚) for 𝖧 is received. If 𝖧𝖳[𝑄] ≠
⊥, ℬ uniformly samples 𝑥 ←$ 𝒳 and stores 𝖧𝖳[𝑄] ← 𝑥. Finally, it returns

29

Hash-and-Sign Paradigm

𝖥(𝖧𝖳[𝑄]). The simulation is correct since 𝖥 ∶ 𝒳 → 𝒳 is a permutation and
the output of 𝖥(𝑥) with 𝑥 ←$ 𝒳 is uniformly distributed.

Signing oracle queries Suppose a query 𝑄 = 𝑚 for 𝖮𝖲𝗂𝗀𝗇 is received. First, ℬ
uniformly samples a random salt 𝑟 ←$ 𝖱. If𝖧𝖳[(𝑟,𝑚)] = ⊥, thenℬ uniformly
samples 𝑥 ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥) and stores𝖧𝖳[(𝑟,𝑚)] ← 𝑥. Otherwise,ℬ retrieves
𝑥 ← 𝖧𝖳[(𝑟,𝑚)]. Finally, it returns (𝑟, 𝑥). The simulation is correct since
simulated signatures are uniformly distributed in 𝒳, while real signatures
are obtained as 𝖨(𝜂) with 𝜂 ∼ 𝒰(𝒳). Since we are dealing with a trapdoor
permutation, 𝖨(𝜂) is uniformly distributed.

To win the OW game, ℬ randomly chooses a query 𝑄⋆ = (𝑟⋆,𝑚⋆) to 𝖧 among
(𝗊𝖲 + 𝗊𝖧 + 1) possible ones. For this special query, ℬ uses their challenge 𝑦 to
program the random oracle, i.e. 𝖧𝖳[𝑄⋆] ← 𝑦. Eventually, 𝒜 will produce a
valid signature 𝜎 = (𝑟, 𝑥) for a message 𝑚. Without loss of generality, we assume
that before returning the forgery, 𝒜 queries 𝖧 on input (𝑟,𝑚). With probability
1/(𝗊𝖲 + 𝗊𝖧 + 1), we have that (𝑟,𝑚) = 𝑄⋆. Therefore, 𝖥(𝑥) = 𝖧(𝑟,𝑚) = 𝑦 and ℬ wins
his OW game by returning 𝑥.

The previous reduction cannot be applied to generic trapdoor functions that
do not satisfy preimage sampleability. However, through the use of PSFs, it is
possible to recover the EUF-CMA security.

Theorem 2.10 ([108]). Let 𝖳 be a PSF. Let 𝒜 be a EUF-CMA adversary against the
(probabilistic) 𝖧𝖺𝖲 scheme on 𝖳 in the random oracle model, which makes 𝗊𝖲 signing
queries and 𝗊𝖧 queries to the random oracle. Then, there exists a OW adversary ℬ
against 𝖳 such that

𝖠𝖽𝗏EUF-CMA
𝖧𝖺𝖲/𝖯𝖧𝖺𝖲 (𝒜) ≤ (𝗊𝖲 + 𝗊𝖧 + 1)𝖠𝖽𝗏OW𝖳 (ℬ).

Proof Idea. The proof is the same as that of the previous theorem, except that
sampling elements from 𝒳 during the simulation is done according to the dis-
tribution of 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥). Since 𝖳 is a PSF, Property 1 of Definition 2.6 ensures
that 𝖥(𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥)) is uniformly distributed over 𝒴, so that we can use 𝖥(𝑥) to
simulate the output of the random oracle. Moreover, Properties 2 and 3 ensures
that the real signature distribution, obtained as 𝑥 ←$ 𝖨(𝖧(𝑟,𝑚)), is equal to the
simulated distribution, obtained as 𝑥 ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥).

A stronger reduction to SUF-CMA is possible using collision-resistant PSFs.
This also applies in the QROM [38].

Theorem 2.11 ([108]). Let 𝖳 be a collision-resistant PSF. Let 𝒜 be a SUF-CMA
adversary against the (probabilistic) 𝖧𝖺𝖲 scheme on 𝖳 in the random oracle model.
Then, there exists a CR adversary ℬ against 𝖳 such that

𝖠𝖽𝗏SUF-CMA
𝖧𝖺𝖲/𝖯𝖧𝖺𝖲 (𝒜) ≤ 1

1 − 2−𝜔(log𝜆)
𝖠𝖽𝗏CR𝖳 (ℬ).

30

2.2 – Hash-and-Sign Schemes

Proof Idea. The simulation of random oracle queries and signing queries coincides
with that of the previous theorem. When 𝒜 produces a valid signature 𝜎 = (𝑟, 𝑥)
for a message 𝑚, ℬ retrieves 𝑥⋆ ← 𝖧𝖳[(𝑟,𝑚)] and returns (𝑥, 𝑥⋆) as a collision for
𝖥. Notice that 𝖥(𝑥) = 𝖧(𝑟,𝑚) = 𝖥(𝑥⋆), so we are left to bound the probability that
𝑥 ≠ 𝑥⋆. Suppose that 𝒜 made a signature query on 𝑚 and received (𝑟⋆, 𝑥⋆). Since
(𝑟, 𝑥) is a valid signature for the SUF-CMA game, then either 𝑟 ≠ 𝑟⋆ and (𝑟,𝑚)
was later queried to 𝖧, or 𝑟 = 𝑟⋆ and 𝑥 ≠ 𝑥⋆. Otherwise, if 𝒜 did not make a
signature query on 𝑚, then (𝑟,𝑚) was queried to 𝖧 and ℬ stored 𝖧𝖳[(𝑟,𝑚)] ← 𝑥⋆
for 𝑥⋆ ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥). Then, by Property 4 of Definition 2.6, the min-entropy of
𝑥⋆ given 𝖥(𝑥⋆) is 𝜔(log𝜆). Therefore, 𝑥 ≠ 𝑥⋆ with probability 1 − 2−𝜔(log𝜆).

When we consider the relaxed notion of APSF, we have the following result1.

Theorem 2.12 ([52]). Let 𝖳 be an 𝜀-APSF. Let 𝒜 be a EUF-CMA adversary against
the 𝖯𝖧𝖺𝖲 scheme on 𝖳 in the random oracle model, which makes 𝗊𝖲 signing queries and
𝗊𝖧 queries to the random oracle. Then, there exists a OW adversary ℬ against 𝖳 such
that

𝖠𝖽𝗏EUF-CMA
𝖯𝖧𝖺𝖲 (𝒜) ≤ 𝗊𝖧𝖠𝖽𝗏OW𝖳 (ℬ) + 𝗊𝖲 (𝜀 +

𝗊𝖲 + 𝗊𝖧
|𝖱|

) .

Proof Idea. When 𝖳 is an 𝜀-APSF, Property 2 of Definition 2.6 is replaced with a
weaker condition such that the expected value of the statistical distance 𝜀𝖥,𝖨 =
Δ(𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥), 𝖨(𝒰(𝒴))) over all (𝖥, 𝖨) ←$ 𝖪𝖦𝖾𝗇(1𝜆) is bounded by 𝜀. ℬ simulates
the oracle queries as follows.

Random oracle queries Suppose a query 𝑄 = (𝑟,𝑚) for 𝖧 is received. If 𝖧𝖳[𝑄] ≠
⊥, ℬ uniformly samples 𝑦 ←$ 𝒴 and stores 𝖧𝖳[𝑄] ← 𝑦. Finally, it returns
𝖧𝖳[𝑄]. The simulation is correct since it outputs uniformly random ele-
ments in 𝒴.

Signing oracle queries Suppose a query 𝑄 = 𝑚 for 𝖮𝖲𝗂𝗀𝗇 is received. First, ℬ
uniformly samples a random salt 𝑟 ←$ 𝖱. If 𝖧𝖳[(𝑟,𝑚)] ≠ ⊥, then ℬ the sim-
ulations fails. Otherwise, ℬ uniformly samples 𝑥 ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥). Finally,
it returns (𝑟, 𝑥). The statistical distance between the real distribution and
the simulated distribution is bounded by 𝜀𝖥,𝖨 +

𝗊𝖲+𝗊𝖧
|𝖱|

. In fact, the simulation
differs with the real execution only whenℬ samples a random salt 𝑟 such that
𝖧𝖳[(𝑟,𝑚)] ≠ ⊥. Since there are at most 𝗊𝖲 + 𝗊𝖧 entries in 𝖧𝖳, this happens
with probability at most 𝗊𝖲+𝗊𝖧

|𝖱|
. Otherwise, the statistical distance between

the output of the simulation and the real execution is given by 𝜀𝖥,𝖨. The
previous bound then follows using the triangle inequality.

1The authors of [52] prove the reduction step from sEUF-NMA to EUF-CMA using a slightly
more general problem called claw with random function problem. This is equivalent to the
sEUF-NMA game for 𝖧𝖺𝖲. Moreover, it is easy to show that 𝖠𝖽𝗏sEUF-NMA

𝖧𝖺𝖲 (𝒞) ≤ 𝗊𝖧𝖠𝖽𝗏OW𝖳 (ℬ)

31

Hash-and-Sign Paradigm

The rest of the proof follows from that of PSFs. Averaging over (𝖥, 𝖨) ←$ 𝖪𝖦𝖾𝗇(1𝜆),
the real execution differs from the simulated one only by the signing oracle
simulation. Since there are 𝗊𝖲 queries to the singing oracle, we obtain the claimed
bound.

Remark. Notice that for a (A)PSF it holds that 𝖠𝖽𝗏OW𝖳 (𝒜) = 𝖠𝖽𝗏INV
𝖳 (ℬ). In fact, 𝒜

can simulate the INV game (Definition 2.4) by giving the uniformly distributed
𝑦 ← 𝖥(𝑥) to ℬ. On the other hand, ℬ can simulate the OW game (Definition 2.3)
by giving the random 𝑦 ←$ 𝒴 to 𝒜.

The previous security proofs are valid only when we consider (A)PSF. In fact,
if we consider a generic trapdoor function, the previous technique to simulate a
signing query presents two issues.

• The simulated signature distribution and the real signature distribution
may differ. In fact, in the real distribution, the signature is taken as the
preimage of a random element in the codomain of the trapdoor function. So
the real distribution is given by 𝒟𝒳 ∼ 𝖨(𝒰(𝒴)). In the simulated distribution
the signature is sampled from a fixed distribution 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥). To obtain a
correct simulation, it is necessary to be able to characterize 𝒟𝒳 and choose
𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥) ∼ 𝒟𝒳. In the case of a TDP, this is straightforward since
𝒟𝒳 ∼ 𝒰(𝒳). But in general such a characterization is not possible.

• The output of the reprogrammed random oracle may not be uniformly
distributed. During the simulation of a signing query, the random oracle
is programmed as 𝖥(𝑥) with 𝑥 ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥). For a generic trapdoor
function, the image of 𝖥 is not necessarily uniform.

Sakumoto, Shirai, and Hiwatari [175], first tried to solve these problems for
generic trapdoor functions by introducing the probabilistic Hash-and-Sign with
retry paradigm. Their approach solves the first problem by using successive sam-
pling of random salts, which ensures that the simulated distribution of preimages
is indistinguishable from the real one. Unfortunately, as analysed in [55], this is
not enough to solve the second issue.

In [134], the authors solved this problem, showing that the additional proper-
ties of (A)PSFs are not necessary to prove the EUF-CMA security in the (Q)ROM,
provided that the trapdoor function satisfies the preimage sampleability notion
of Definition 2.8. The same techniques are also applied in [63] to obtain a tighter
result in the ROM. Since 𝖥(𝑥) may not be uniformly distributed, it is not possible
to show a general reduction from OW. Instead, in [134] a reduction from INV to
EUF-CMA is proved2.

2Recall that if the image of 𝖥 is uniform, the notions of OW and INV are equivalent.

32

2.3 – Post-Quantum Hash-and-Sign Schemes

Theorem 2.13 ([134]). Let 𝖳 be a TDF. Let 𝒜 be a EUF-CMA adversary against the
𝖯𝖧𝖺𝖲𝗐𝖱 scheme on 𝖳 in the random oracle model, which makes 𝗊𝖲 signing queries and
𝗊𝖧 queries to the random oracle. Then, there exists a INV adversary ℬ against 𝖳 and a
PS adversary 𝒟 against 𝖳 issuing 𝗊𝖲 queries, such that

𝖠𝖽𝗏EUF-CMA
𝖯𝖧𝖺𝖲𝗐𝖱 (𝒜) ≤ (𝗊𝖧 + 1)𝖠𝖽𝗏INV

𝖳 (ℬ) + 𝖠𝖽𝗏PS𝖳 (𝒟) + 𝗊′𝖲
𝗊′𝖲 + 𝗊𝖧 + 1

|𝖱|
+ (𝗊𝖧 + 1)

𝗊′𝖲 − 𝗊𝖲
|𝖱|

,

where 𝗊′𝖲 is a bound on the total number of queries to 𝖧 in all the signing queries.

Proof Idea. The main idea of the general case is to modify the EUF-CMA game
such that in 𝖮𝖲𝗂𝗀𝗇 the salt 𝑟 is chosen uniformly at random in 𝖱 and the preimage
is generated by 𝑥 ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥) instead of repeatedly sampling the random salt
until 𝖨(𝖧(𝑟,𝑚)) ≠ ⊥. The PS adversary 𝒟, can simulate the original game and the
modified game by either playing PS0 or PS1 (Experiment 2.2). The advantage in
distinguishing the two games can therefore be estimated with 𝖠𝖽𝗏PS𝖳 (𝒟). Modify-
ing the EUF-CMA game requires first to adaptively reprogram the random oracle
𝖧 with 𝖧(𝑟,𝑚) ← 𝑦 for randomly chosen (𝑟, 𝑦) until it holds that 𝖨(𝑦) ≠ ⊥. Next, it
is required to remove the reprogramming for failed retries. Finally, 𝖧 is modified
such that the adversary cannot make a query to the random oracle on a set of
pre-selected salts. The rest of the proof follows as in the previous cases.

Remark. The previous result can be extended to the QROM by employing relevant
techniques [116, 9, 81, 35]. The incurred security loss in the QROM grows from
(𝗊𝖧 + 1) to (2𝗊𝖧 + 1)2.

2.3 Post-Quantum Hash-and-Sign Schemes
In its classical form, the Full Domain Hash paradigm uses trapdoor permutations
[174] to invert hash outputs, ensuring secure signature generation and verification.
As outlined in the previous section, adapting this framework in the post-quantum
setting, where no construction of one-way permutation are known, presents
unique challenges.

Early attempts to extend the Hash-and-Sign paradigm with lattices can be
traced back to the GGH proposal [111] and subsequent variants like NTRUSign
[119]. In these proposals, the trapdoor consisted of a “good” lattice base. The sig-
nature of a message was then obtained by finding a lattice point near the message
hash encoding in the space. This was one of the first attempts to construct 𝖧𝖺𝖲
schemeswithout the use of trapdoor permutations. Unfortunately, these proposals
lacked preimage sampleability and the choice of a preimage was deterministically
linked to the private key. These flaws were exploited and led to key-recovery
attacks [157, 86]. Gentry, Peikert, and Vaikuntanathan [108] proposed in 2008 a

33

Hash-and-Sign Paradigm

general approach, that will later be known as the GPV framework, to build prov-
ably secure Hash-and-Sign schemes based on PSFs (Definition 2.6). Numerous
subsequent works have proposed practical instances of the GPV framework with
optimized implementations [182, 151, 85, 88]. This line of research culminates
with the NIST PQC selected algorithm Falcon [172], and with the recent proposal
of Hawk [87] to the NIST additional call for post-quantum signatures [44].

Code-based schemes have also sought to adapt the FDH framework. The CFS
scheme, introduced in [64], was one of the initial attempts to create such a scheme
using high-rate Goppa codes. However, the security proof for this scheme was
later invalidated [95] and the scheme’s bit-security scales logarithmically with
the key size, requiring impractically large public keys and long signature times
for typical security parameters [97, 135]. Other proposals have explored different
code families [14, 110, 138] but have also been broken [171, 153]. Additionally,
the use of the rank metric has been investigated with the RankSign scheme
[105], but it was also later broken in [72]. The use of PSFs, as seen in the GPV
framework, have been instrumental in developing secure lattice-based Hash-and-
Sign schemes. Unfortunately, it is not knownhow to build efficient PSFs from code-
based assumptions. Nonetheless, [71] introduces the Wave family of functions,
based on generalized (𝑈,𝑈 + 𝑉)-codes, that extends this approach to code-based
cryptography, recovering preimage sampling on average. This approach has been
later formalized in [52] with the notion of APSFs (Definition 2.7).

For multivariate-based assumptions, it is not known how to build (A)PSFs,
and ad-hoc version of the 𝖯𝖧𝖺𝖲𝗐𝖱 paradigm has been employed with multivariate
signature schemes. Patarin introduced the Oil and Vinegar (OV) signature scheme
[166] using quadratic polynomials with a particular hidden structure. The scheme
was later broken in [131] and modified in the Unbalanced Oil and Vinegar scheme
[130]. Two variants of UOV, Rainbow [79] and LUOV [33], were later submitted
to the NIST competition and subsequently broken [77, 27]. Nevertheless, the
assumption behind UOV maintained its security. Because it is considered a
practical and conservative design, it has recently been employed as the basis of
numerous schemes submitted to NIST additional call for post-quantum signatures
[30, 115, 104, 190, 78, 31, 167]. Patarin also introduced the Hidden Field Equation
(HFE) construction [165]. Schemes based on HFE, and particularly with the
Minus and Vinegar modifiers (HFEv-) [130], constitute another important line of
multivariate signature schemes [168, 80], including GeMSS [50]. Although the
HFE assumption is not broken, a key recovered attack presented in [186] showed
how the considered modifiers do not increase the security of the scheme, making
the construction uncompetitive compared to UOV. In [175], Sakumoto, Shirai,
and Hiwatari notices that both UOV and HFE lack preimage sampleability and
that the original schemes are not provably secure in the ROM. They first proposed
a security proof by considering a variant within the probabilistic Hash-and-Sign
with retry paradigm. Although there is a flaw in their proof [55], this construction

34

2.3 – Post-Quantum Hash-and-Sign Schemes

was later proved to be secure in the (Q)ROM by [134].
In the remainder of this chapter, we will provide a description of some post-

quantum Hash-and-Sign schemes. In the next chapter, the proposed aggregate
signature will be applied to these schemes in order to evaluate their signature
compression and the applicability of the security proof.

2.3.1 Lattice-based Cryptography
A lattice is a subset ℒ of points in ℝ𝑛 such that

1. ℒ is an additive subgroup.

2. ℒ is discrete. That is for every 𝒙 ∈ ℒ there exists some 𝛾 > 0 such that
𝐵(𝒙,𝛾) ∩ ℒ = {𝒙}.

Equivalently, a lattice can be described as the integer linear combination of inde-
pendent vectors in 𝒃1,… ,𝒃𝑘 ∈ ℝ𝑛. Let 𝐁 = [𝒃1⋯𝒃𝑘] ∈ ℝ𝑛×𝑘. The lattice generated
by 𝐁 is defined as

ℒ(𝐁) = { 𝐁𝒙 | 𝒙 ∈ ℤ𝑘 } =
⎧
⎨
⎩

𝑘

∑
𝑖=1

𝑥𝑖𝒃𝑖
|
| 𝑥𝑖 ∈ ℤ

⎫
⎬
⎭

The notion of duality, for lattices, is closely related to the abstract definition
of dual of a vector space.

Let Λ ⊂ ℝ𝑛 be a lattice. The dual of Λ is defined as

Λ∨ ∶= { 𝒙 ∈ ℝ𝑛 | ⟨𝒙, 𝒚⟩ ∈ ℤ, 𝒚 ∈ Λ } .

An interesting class of lattices, often used in applications, is that of 𝑞-ary
lattices. A lattice Λ is said to be 𝑞-ary if it satisfies

𝑞ℤ𝑛 ⊆ Λ ⊆ ℤ𝑛

for some 𝑞 ∈ ℤ. Clearly, if Λ is 𝑞-ary, then for any 𝒙 ∈ ℤ𝑛 we have that

𝒙 ∈ Λ ⟺ 𝒙 (mod 𝑞) ∈ Λ.

We can define two particular classes of 𝑞-ary lattices, which often appear in
cryptographic contexts.

Definition 2.14. Let𝐀 ∈ ℤ𝑚×𝑛. Define the 𝑞-ary lattices generated by the columns
of 𝐀 as

Λ⟂
𝑞 (𝐀) = { 𝒚 ∈ ℤ𝑛 | 𝐀𝒚 ≡ 0 (mod 𝑞) }

35

Hash-and-Sign Paradigm

It can be shown that, for 𝑛 > 𝑚, the lattice Λ𝑞(𝐀) is a full-rank lattice in ℤ𝑛. If,
otherwise, 𝑛 ≤ 𝑚, the kernel of 𝐀 will be the nullspace in most of the cases. So
that Λ⟂

𝑞 (𝐀) = 𝑞ℤ𝑛 and det (Λ⟂
𝑞 (𝐀)) = 𝑞𝑛.

Similarly, we can consider the lattice generated by the rows of 𝐀.

Definition 2.15. Let 𝐀 ∈ ℤ𝑚×𝑛. Define the 𝑞-ary lattices generated by the rows of
𝐀 as

Λ𝑞(𝐀) = { 𝒚 ∈ ℤ𝑛 | 𝒚 ≡ 𝐀⊺𝒔 (mod 𝑞), 𝒔 ∈ ℤ𝑚 } .

These two lattices are linked through the dual in the following relations.

Λ⟂
𝑞 (𝐀) = 𝑞 ⋅ (Λ𝑞(𝐀))

∨ and Λ𝑞(𝐀) = 𝑞 ⋅ (Λ⟂
𝑞 (𝐀))

∨.

Hard Problems. Many computational problems have been studied on lattices;
we will focus on those that are central to the GPV framework. Let us start by
introducing the fundamental problem of finding the shortest vector in a lattice.

Definition 2.16 (SVP). Let 𝐁 be a lattice basis for ℒ = ℒ(𝐁). The Shortest Vector
Problem asks to find a non-zero vector 𝒙 ∈ ℒ ∖ {0}, such that

‖𝒙‖ = 𝜆(ℒ) ∶= min
𝒗∈ℒ∖{0}

‖𝒗‖.

There are no known algorithms to solve the exact version of SVP in polynomial
time; for this reason, an approximate and weaker version of this problem has
been developed. Approximation problems are widely used in lattice cryptography,
and algorithms for these versions provide solutions which approximate the exact
one within a factor 𝛾 ≥ 1. The approximation factor is usually taken as a function
of the lattice dimension 𝑛. The following is the approximate version of SVP:

Definition 2.17 (SVP𝛾). Let 𝐁 be an 𝑛-dimensional lattice basis for ℒ = ℒ(𝐁). The
𝛾-approximate Shortest Vector Problem asks to find a non-zero vector 𝒙 ∈ ℒ ∖ {0}
such that

‖𝒙‖ ≤ 𝛾(𝑛)𝜆(ℒ).

The problem underlying a GPV-based signature is the Short Integer Solution
(SIS) problem, that was first introduced by Ajtai in 1996 [4].

Definition 2.18 (SIS Problem). Given a uniformly random matrix 𝐀 ∈ ℤ𝑛×𝑚
𝑞 , find

a non-zero integer vector 𝒛 ∈ ℤ𝑚 of norm ‖𝒛‖ ≤ 𝛽 such that

𝐀𝒛 = 0 ∈ ℤ𝑛
𝑞 .

The SIS problem can be seen as a SVP𝛾 problem on the 𝑚-dimensional 𝑞-ary
lattice Λ⟂

𝑞 (𝐀) generated by 𝐀. Starting from the work of Ajtai, a long sequence of
results have established the hardness of the SIS problem, linking it to worst-case
lattice problems [152, 108, 150].

36

2.3 – Post-Quantum Hash-and-Sign Schemes

Algorithm 2.2: Falcon Signature Scheme

𝖳𝗋𝖺𝗉𝖦𝖾𝗇falc(1𝜆):
1: 𝜙 ←$ 𝑋𝑛 + 1
2: Find short 𝑓, 𝑔 ∈ ℤ[𝑋]/⟨𝜙⟩ such that

𝑓 is invertible mod 𝑞
3: Find corresponding 𝐹,𝐺 ∈ ℤ[𝑋]/⟨𝜙⟩

such that 𝑓𝐺 − 𝑔𝐹 = 𝑞 (mod 𝜙)
4: ℎ ← 𝑔 ⋅ 𝑓−1 (mod 𝑞)
5: return 𝖥falc ← ℎ, 𝖨falc ← (𝑓, 𝑔,𝐹,𝐺)

𝖨falc(𝑡):
1: 𝑐0 ← (𝐒⊺)−1𝑡
2: repeat
3: 𝑣 ←$ 𝖿𝖿𝖲𝖺𝗆𝗉𝗅𝗂𝗇𝗀(𝐒, 𝑐0)
4: (𝑠1, 𝑠2) ← 𝑐0 − 𝑣
5: until ‖(𝑠1, 𝑠2)‖ ≤ 𝛽
6: return (𝑠1, 𝑠2)

𝖪𝖦𝖾𝗇(1𝜆):
1: (𝖥falc, 𝖨falc) ←$ 𝖳𝗋𝖺𝗉𝖦𝖾𝗇falc(1𝜆)
2: return (𝖥falc, 𝖨falc)

𝖲𝗂𝗀𝗇(𝖨falc, 𝑚):
1: 𝑟 ←$ 𝖱
2: (𝑠1, 𝑠2) ←$ 𝖨falc(𝖧(𝑟,𝑚))
3: return (𝑟, (𝑠1, 𝑠2))

𝖵𝗋𝖿𝗒(𝖥falc = ℎ, 𝑚, 𝜎 = (𝑟, (𝑠1, 𝑠2))):
1: 𝑡 ← 𝖧(𝑟,𝑚)
2: 𝑡′ ← 𝑠1 + ℎ ⋅ 𝑠2
3: return 𝑡 = 𝑡′.

The GPV Framework

At the core of the work of Gentry, Peikert, and Vaikuntanathan [108], there is a
technique on how to use a short basis for an arbitrary lattice as a trapdoor for a
𝖧𝖺𝖲 scheme. This idea had already been used in previous proposals such as GGH
and NTRUSign [111, 119], but with a different approach that leaked information
about the secret basis.

On a high level, the public key is described by a uniformly random matrix
𝐀 ∈ ℤ𝑚×𝑛

𝑞 , with 𝑚 ≥ 𝑛, that generates a 𝑞-ary lattice Λ = Λ𝑞(𝐀). 𝐀 is generated
together with a “short” trapdoor basis 𝐒 ∈ ℤ𝑚×𝑚 such that 𝐒 ⋅ 𝐀 = 0 (mod 𝑞), so
that 𝐒 generates Λ⟂

𝑞 = Λ⟂
𝑞 (𝐒), the lattice orthogonal to Λ𝑞 modulo 𝑞. The trapdoor

public function is then given by the map 𝑓𝐀 ∶ ℤ𝑚
𝑞 → ℤ𝑛

𝑞 where 𝑓𝐀(𝒔) = 𝐀⊺𝒔.
Given a target 𝒕 ∈ ℤ𝑛

𝑞 we need to find a “short” value 𝒔 ∈ ℤ𝑚
𝑞 such that 𝑓𝐀(𝒔) = 𝒕.

To find 𝒔, first a solution 𝒄0 ∈ ℤ𝑚
𝑞 for 𝑓𝐀(𝒄0) = 𝐀⊺𝒄0 = 𝒕 is computed. Without

imposing a constraint on the norm of 𝒄0, a solution can be found with gaussian
elimination. Then, the secret basis 𝐒 is used to find a lattice vector 𝒗 ∈ Λ⟂

𝑞 close
to 𝒄0. The difference 𝒔 = 𝒄0 − 𝒗 is still a solution since 𝐀⊺𝒔 = 𝐀⊺𝒄0 − 𝐀⊺𝒗 = 𝒕 − 0.
Moreover, if 𝒗 is close to 𝒄0, then the difference 𝒔 is short.

One of the main contributions of [108] is the method to sample the near
lattice vector 𝒗 without leaking information about the trapdoor basis 𝐒 using a
randomized variant of Klein’s nearest plane algorithm [132].

37

Hash-and-Sign Paradigm

Falcon

To instantiate the GPV framework, it is required to choose a class of lattices that
will be employed during the trapdoor generation. Falcon relies on the class of
structured NTRU lattices, first introduced in [120]. The NTRU lattice is defined
over the ring 𝑅𝑞 = ℤ𝑞[𝑋]/⟨𝜙⟩ where 𝜙 = 𝑋𝑛 + 1 for some 𝑛 = 2𝑘 a power-of-two
and some prime modulus 𝑞. The trapdoor generation algorithm produces four
small polynomials 𝑓, 𝑔,𝐹,𝐺 ∈ ℤ[𝑋]/⟨𝜙⟩ such that 𝑓 is invertible modulo 𝑞 and

𝑓𝐺 − 𝑔𝐹 = 𝑞 (mod 𝜙).

The public key can be reduced to a single polynomial ℎ ← 𝑔 ⋅𝑓−1 (mod 𝑞). Given ℎ,
the problem of finding small polynomials 𝑓 ′, 𝑔 ′ such that ℎ = 𝑔 ′ ⋅ (𝑓 ′)−1 constitutes
the NTRU assumption.

Given these polynomials, it is possible to instantiate the GPV framework by
taking the public basis for Λ𝑞

𝐀 = [𝐈𝑛
ℎ],

where the matrix associated with ℎ is an 𝑛 × 𝑛 matrix where the 𝑖-th rows is given
by 𝑋 𝑖ℎ (mod 𝜙). The corresponding private basis for Λ⟂

𝑞 is given by

𝐒 = [𝑔 −𝑓
𝐺 −𝐹]

Let 𝖳falc = (𝖳𝗋𝖺𝗉𝖦𝖾𝗇falc𝖥falc, 𝖨falc) be the PSF of Falcon. 𝖥falc is given by 𝑓ℎ ∶ 𝑅𝑞 ×
𝑅𝑞 → 𝑅𝑞 such that 𝑓ℎ(𝑠1, 𝑠2) = 𝑠1 + ℎ ⋅ 𝑠2. 𝖨falc use the knowledge of the secret basis
𝐒 to sample a pair (𝑠1, 𝑠2) from a Gaussian distribution with standard deviation 𝜎,
such that ‖(𝑠1, 𝑠2)‖ ≤ 𝛽 for some short parameter 𝛽. This process is known as Fast
Fourier Sampling. The key generation and the signing procedure are shown in
Algorithm 2.2.

𝖳falc is the underlying trapdoor function of the Falcon scheme [172], which
is a selected scheme to the NIST PQC Standardization process. The proposed
parameters for Falcon are shown in Table 2.2.

38

2.3 – Post-Quantum Hash-and-Sign Schemes

Table 2.2: Proposed parameters for Falcon [172]with corresponding key/signature
sizes.

Set NIST
SL

Parameters |pk| |sig|
𝑛 𝑞 𝜎 (B) (B)

Falcon-512 I 512 12289 165.737 897 666
Falcon-1024 V 1024 12289 168.389 1793 1280

2.3.2 Code-based Cryptography
A 𝑞-ary linear code ℭ of length 𝑛 and dimension 𝑘 is a 𝑘-dimensional subspace of
𝔽𝑛
𝑞 . A linear code ℭ can be represented using a generator matrix 𝐆 ∈ 𝔽𝑘×𝑛

𝑞 which
has the code as image, i.e.,

𝒗 ∈ ℭ ⟺ ∃𝒙 ∈ 𝔽𝑘
𝑞 s.t. 𝒗 = 𝒙𝐆.

Alternatively, ℭ is usually represented using a parity-check matrix 𝐇 ∈ 𝔽𝑛−𝑘×𝑛
𝑞

which has the code as kernel, i.e.,

𝒗 ∈ ℭ ⟺ 𝐇𝒗⊺ = 0.

Usually, linear codes are endowed with the metric induced by the Hamming
weight.

Definition 2.19 (HammingWeight). Let 𝒙 ∈ 𝔽𝑛
𝑞 . TheHamming weight of 𝒙 is given

by the number of its non-zero components, i.e.,

wt(𝒙) = |{𝑖 ∈ {1,… ,𝑛} ∣ 𝑥𝑖 ≠ 0}|.

The Hamming weight naturally induces a distance on 𝔽𝑛
𝑞 given by d(𝒙, 𝒚) =

wt(𝒙 − 𝒚).

Hard Problems. Linear codes were introduced to provide error correction ca-
pabilities. The goal is to be able to decode a message after is sent through a
noisy communication channel, which adds some unknown error. With 𝑞-ary
linear codes, a message 𝒎 is an element of 𝔽𝑘

𝑞. After choosing a 𝑘-dimensional
liner code ℭ ⊂ 𝔽𝑛

𝑞 with generator matrix 𝐆, the message is encoded as codeword
𝒄 = 𝒎𝐆 ∈ ℭ. After 𝒄 is sent through the communication channel, a receiver gets
a vector 𝒚 = 𝒄 + 𝒆 ∈ 𝔽𝑛

𝑞 for some unknown error 𝒆 ∈ 𝔽𝑛
𝑞 . A decoder for ℭ should

be able to remove the error and retrieve 𝒄, and consequently the message 𝒎. The
associated problem comes with additional constraints on the weight of the error.

39

Hash-and-Sign Paradigm

Algorithm 2.3: Wave Signature Scheme

𝖳𝗋𝖺𝗉𝖦𝖾𝗇wave(1𝜆):
1: 𝐇𝗌𝗄 ∈ 𝔽(𝑛−𝑘)×𝑛

𝑞 ←$ generalized (𝑈,𝑈+
𝑉)-code

2: 𝐒 ←$ GL𝑛−𝑘(𝔽𝑞)
3: 𝐏 ←$ 𝑛 × 𝑛 permutation matrix
4: 𝐇𝗉𝗄 ← 𝐒𝐇𝗌𝗄𝐏
5: return 𝖥wave ← 𝐇𝗉𝗄, 𝖨wave ←

(𝐇𝗌𝗄,𝐒,𝐏)

𝖨wave(𝒚):
1: 𝒆 ←$ 𝐷𝐇𝗌𝗄

(𝒚(𝐒⊺)−1)
2: 𝒙 ← 𝒆𝐏
3: return 𝒙

𝖪𝖦𝖾𝗇(1𝜆):
1: (𝖥wave, 𝖨wave) ←$ 𝖳𝗋𝖺𝗉𝖦𝖾𝗇wave(1𝜆)
2: return (𝖥wave, 𝖨wave)

𝖲𝗂𝗀𝗇(𝖨wave, 𝑚):
1: 𝑟 ←$ 𝖱
2: 𝒙 ←$ 𝖨wave(𝖧(𝑟,𝑚))
3: return (𝑟, 𝒙)

𝖵𝗋𝖿𝗒(𝖥wave = 𝐇𝗉𝗄, 𝑚, 𝜎 = (𝑟, 𝒙)):
1: 𝒕 ← 𝖧(𝑟,𝑚)
2: 𝒕 ′ ← 𝒙𝐇⊺

𝗉𝗄
3: return 𝒕 = 𝒕 ′.

Definition 2.20 (Decoding Problem). Letℭ be a linear code with generator matrix
𝐆 ∈ 𝔽𝑘×𝑛

𝑞 . Given a target vector 𝒚 ∈ 𝔽𝑛
𝑞 , and a distance 𝑡 such that 𝒚 = 𝒎𝐆 + 𝒆 for

some 𝒎 ∈ 𝔽𝑘
𝑞 and 𝒆 ∈ 𝔽𝑛

𝑞 with wt(𝒆) = 𝑡, find the error vector 𝒆.

There is an equivalent problem expressed in terms of the parity-check matrix,
which is typically the one considered in practice. Given a parity-check matrix
𝐇 for ℭ and a target 𝒚 = 𝒄 + 𝒆 it is possible to compute its syndrome 𝒔⊺ = 𝐇𝒚⊺ =
𝐇𝒄⊺ + 𝐇𝒆⊺ = 𝐇𝒆⊺ ∈ 𝔽𝑛−𝑘

𝑞 .

Definition 2.21 (SyndromeDecoding Problem). Letℭ be a linear code with parity-
check matrix 𝐇 ∈ 𝔽𝑛−𝑘×𝑛

𝑞 . Given a syndrome vector 𝒔 ∈ 𝔽𝑛−𝑘
𝑞 , and a distance 𝑡 such

that 𝒔⊺ = 𝐇𝒆⊺ for some 𝒆 ∈ 𝔽𝑛
𝑞 with wt(𝒆) = 𝑡, find the error vector 𝒆.

The (Syndrome) Decoding Problem is 𝖭𝖯-complete [26] and believed to be
hard on average [187, 46]. For a recent study on the hardness of the Decoding
Problem we point to [94].

A standard approach to building code-based signature schemes, is to find a
class of codes 𝒟 for which an efficient decoding algorithm is known. The private
key will be a code ℭ ∈ 𝒟, while the public key will be a representative of ℭ
given by the generator matrix 𝐆 (or the parity-check matrix). Since the Decoding
Problem is hard for a random code, for the scheme to be secure 𝐆 needs to be
indistinguishable from a random matrix. There are no general results on the
hardness of this Distinguishing Problem, and many proposals based on different
code families have been broken.

40

2.3 – Post-Quantum Hash-and-Sign Schemes

Table 2.3: Proposed parameters for Wave [15] with corresponding key/signature
sizes.

Set NIST
SL

Parameters |pk| |sig|
𝑛 𝑘 𝑤 (B) (B)

Wave822 I 8576 4288 7668 3,677,390 822
Wave1249 III 12544 6272 11226 7,867,598 1249
Wave1644 V 16512 8256 14784 13,632,308 1644

Wave

Wave [71] is a 𝖧𝖺𝖲 signature scheme based on the family of the generalized
(𝑈,𝑈 + 𝑉)-codes. Let 𝖳wave = (𝖳𝗋𝖺𝗉𝖦𝖾𝗇wave, 𝖥wave, 𝖨wave) be the TDF of Wave. The
OW security of 𝖥wave is based on the indistinguishability of (𝑈,𝑈 +𝑉)-codes from
random codes and the SyndromeDecoding (SD) problem. The indistinguishability
problem is𝖭𝖯-complete for large finite fields𝔽𝑞, while the SD problem is𝖭𝖯-hard
for arbitrary finite fields. The trapdoor secret information is a random generalized
(𝑈,𝑈 + 𝑉)-code over 𝔽𝑞 of length 𝑛 and dimension 𝑘 = 𝑘𝑈 + 𝑘𝑉, described by its
parity check matrix 𝐇𝗌𝗄 ∈ 𝔽(𝑛−𝑘)×𝑛

𝑞 , an invertible matrix 𝐒 ∈ 𝔽(𝑛−𝑘)×(𝑛−𝑘)
𝑞 and a

permutation matrix 𝐏 ∈ 𝔽𝑛×𝑛
𝑞 . Using the underlying structure of the (𝑈,𝑈 + 𝑉)-

code, an efficient decoding algorithm 𝐷𝐇𝗌𝗄
is produced. The public function 𝖥wave

is obtained from the parity check matrix 𝐇𝗉𝗄 = 𝐒𝐇𝗌𝗄𝐏. Let 𝑆𝑤,𝑛 be the subset of
vectors in𝔽𝑛

𝑞 withHammingweight𝑤. The weight𝑤 is chosen such that the public
function 𝖥wave ∶ 𝒆 ∈ 𝑆𝑤,𝑛 ↦ 𝒆𝐇⊺

𝗉𝗄 ∈ 𝔽𝑛−𝑘
𝑞 is a surjection. To find a preimage for

𝒚 ∈ 𝔽𝑛−𝑘
𝑞 , the signer uses the decoding algorithm 𝐷𝐇𝗌𝗄

on 𝒚(𝐒⊺)−1 to find 𝒆 ∈ 𝑆𝑤,𝑛,
and finally returns 𝒆𝐏. The key generation and the preimage computation via
𝖨wave are shown in Algorithm 2.3.

Wave can be described in the 𝖧𝖺𝖲 without retry paradigm. Moreover, 𝖳wave is
an APSF [52], a weaker notion of PSF where the uniformity property on preimages
is required to hold only on average (Definition 2.7). In particular, for any (𝖥, 𝖨) ←$

𝖳𝗋𝖺𝗉𝖦𝖾𝗇wave(1𝜆), consider the statistical distance 𝜀𝖥,𝖨 = Δ(𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥), 𝖨(𝒰(𝒴))).
Then, it holds that 𝔼(𝖥,𝖨)[𝜀𝖥,𝖨] ≤ 𝜀, where 𝜀 is negligible in the security parameter
𝜆. This condition can be used to bound the distinguishing advantage on PS with
𝜀, obtaining 𝖠𝖽𝗏PS𝖳wave

(𝒟) ≤ 𝗊𝖲𝜀.
𝖳wave is the underlying trapdoor function of the Wave scheme [15] submitted

to the NIST PQC Standardization of Additional Digital Signature. The proposed
parameters for Wave are shown in Table 2.3.

41

Hash-and-Sign Paradigm

2.3.3 Multivariate-based Cryptography
A multivariate quadratic map 𝒫 ∶ 𝔽𝑛

𝑞 ⟶ 𝔽𝑚
𝑞 with 𝑚 components and 𝑛 variables is

defined by 𝑚 multivariate quadratic polynomials 𝑝1(𝒙),… , 𝑝𝑚(𝒙) in 𝑛 variables
𝒙 = (𝑥1,… , 𝑥𝑛) with coefficients in a finite field 𝔽𝑞. The evaluation of 𝒫 at 𝒗 ∈ 𝔽𝑛

𝑞
is 𝒕 = (𝑡1,… , 𝑡𝑚) ∈ 𝔽𝑚

𝑞 , where 𝑡𝑖 = 𝑝𝑖(𝒗) for 𝑖 = 1,… ,𝑚.
Themainmathematical problem underlying the security ofmultivariate-based

schemes lies in the hardness of solving a system of multivariate equations over a
finite field. Typically, this problem is restricted to quadratic polynomials and is
known as the Multivariate Quadratic (MQ) problem.

Definition 2.22 (MQ Problem). Let 𝒫 ∶ 𝔽𝑛
𝑞 → 𝔽𝑚

𝑞 be a multivariate quadratic map
and let 𝒕 ∈ 𝔽𝑚

𝑞 be a target vector. Find a preimage 𝒗 ∈ 𝔽𝑛
𝑞 such that 𝒫(𝒗) = 𝒕.

The MQ problem is 𝖭𝖯-hard over a finite field, and is believed hard also on
average when 𝑛 ∼ 𝑚. The decision version of the MQ problem is also known to
be 𝖭𝖯-complete. To date, the best algorithms capable of solving the MQ problem
for relevant instances use algebraic techniques based on Gröbner’s bases. For an
overview of the hardness of the MQ problem, we point to [24].

One of the foundational schemes of multivariate cryptography was proposed
by Matsumoto and Imai (MI) in 1988 [147]. The MI scheme proposed for the first
time the use of multivariate systems for public key encryption. In particular, the
scheme introduced an innovative technique that is still the basis of many multi-
variate schemes today. The idea is to start with a quadratic map, called a central
map, that is easy to invert and then to mask it to obtain an apparently random
quadratic map. This approach can be traced to a broader class of constructions,
called bipolar. The private key of a bipolar cryptosystem is given by the central
map, a quadratic system ℱ ∶ 𝔽𝑛

𝑞 → 𝔽𝑚
𝑞 of 𝑚 polynomials and 𝑛 variables that can

be easily inverted, and two affine maps 𝒮 ∶ 𝔽𝑚
𝑞 → 𝔽𝑚

𝑞 and𝒯 ∶ 𝔽𝑛
𝑞 → 𝔽𝑛

𝑞 . The public
key is the quadratic map 𝒫 = 𝒮 ∘ℱ ∘𝒯 obtained by the composition of the secret
maps. With the knowledge of the secret maps is easy to invert 𝒫 and, in principle,
this construction can be employed for both encryption and signature schemes.

Since the public map of a bipolar system is not a random quadratic map, the
security of the scheme cannot be directly reduced to the MQ problem. Instead,
due to the presence of a hidden central map masked with affine maps, we also
need to consider a variant of the Isomorphism of Polynomials (IP) problem. In the
following, we consider the extended version of this problem where the central
map is not known, as it is the one relevant for UOV-based schemes.

Definition 2.23 (EIP Problem). Let ℭ be a class of nonlinear multivariate systems
and let ℱ ∶ 𝔽𝑛

𝑞 → 𝔽𝑚
𝑞 ∈ ℭ. Given 𝒫 ∶ ℱ𝑛

𝑞 → 𝔽𝑚
𝑞 such that 𝒫 = 𝒮 ∘ℱ ∘𝒯 for some

affine maps 𝒮,𝒯, find a decomposition 𝒫 = 𝒮′ ∘ℱ′ ∘ 𝒯′ with 𝒮′,𝒯′ affine maps
and ℱ′ ∈ ℭ.

42

2.3 – Post-Quantum Hash-and-Sign Schemes

Similarly to the Distinguishing Problem for codes, there are no known results
on the difficulty of solving the (E)IP problem. For this reason, bivariate schemes do
not enjoy direct reduction to difficult problems and require ad-hoc assumptions.

UOV Trapdoor Function

The Unbalanced Oil and Vinegar (UOV) signature scheme is based on the bivariate
construction, so that there is a hidden central map ℱ ∶ 𝔽𝑛

𝑞 → 𝔽𝑚
𝑞 which is easy to

invert. In the original proposal [166], called only Oil and Vinegar, the map was
chosen with 𝑛 = 2𝑚. Subsequently, this construction was broken in [131] and the
current constructions use 𝑛 > 2𝑚. The UOV signature scheme is built following
the probabilistic Hash-and-Sign with retry paradigm. The use of the random
salt 𝑟 with resampling was introduced by [175] to recover EUF-CMA security. As
discussed in the previous section, the security proof of [175] has a flaw that was
later fixed in [134].

Instead of defining the central map, for the description of the UOV trapdoor
function we mainly use the formalism introduced by Beullens in [28]. The trap-
door secret information is a linear subspace 𝑂 ⊂ 𝔽𝑛

𝑞 of dimension dim(𝑂) = 𝑚.
The trapdoor public function is a multivariate quadratic map 𝒫 ∶ 𝔽𝑛

𝑞 ⟶ 𝔽𝑚
𝑞 that

vanishes on 𝑂, that is:
𝒫(𝒐) = 0, for all 𝒐 ∈ 𝑂.

In principle, key pair generation consists of choosing uniformly at random
an 𝑚-dimensional subspace 𝑂 ⊂ 𝔽𝑛

𝑞 and then choosing uniformly at random
a multivariate quadratic map 𝒫 ∶ 𝔽𝑛

𝑞 ⟶ 𝔽𝑚
𝑞 that vanishes on 𝑂. In practice,

a large part of 𝒫 can be chosen randomly before choosing 𝑂, for example by
deterministically expanding a seed to reduce the size of the public key, following
the approach of [170].

For a multivariate quadratic polynomial 𝑝 we can define its polar form:

𝑝′(𝒙, 𝒚) = 𝑝(𝒙 + 𝒚) − 𝑝(𝒙) − 𝑝(𝒚) + 𝑝(0).

Similarly, for a multivariate quadratic map 𝒫(𝒙) = (𝑝1(𝒙),… , 𝑝𝑚(𝒙)), its polar
form is defined as 𝒫′(𝒙, 𝒚) = (𝑝′

1(𝒙, 𝒚),… , 𝑝′
𝑚(𝒙, 𝒚)). It can be shown that the polar

form of a multivariate quadratic map is a symmetric and bilinear map. Given
a target 𝒕 ∈ 𝔽𝑚

𝑞 , we can use the secret information 𝑂 to find a preimage 𝒔 ∈ 𝔽𝑛
𝑞

reducing the MQ problem to a linear system. In detail, one randomly chooses a
vector 𝒗 ∈ 𝔽𝑛

𝑞 and solves 𝒫(𝒗 + 𝒐) = 𝒕 for 𝒐 ∈ 𝑂. Since

𝒕 = 𝒫(𝒗 + 𝒐) = 𝒫(𝒗)⏟
fixed

+𝒫(𝒐)⏟
=0

+𝒫′(𝒗, 𝒐)⏟⏟⏟⏟⏟⏟⏟⏟⏟
linear in 𝒐

,

the system reduces to the linear system 𝒫′(𝒗, 𝒐) = 𝒕 − 𝒫(𝒗) of 𝑚 equations and

43

Hash-and-Sign Paradigm

Algorithm 2.4: UOV Signature Scheme

𝖳𝗋𝖺𝗉𝖦𝖾𝗇uov(1𝜆):
1: 𝑂 ←$ 𝑚-dimensional subspace of 𝔽𝑛

𝑞
2: 𝒫 ←$ quadratic map 𝔽𝑛

𝑞 → 𝔽𝑚
𝑞 that

vanishes on 𝑂
3: return 𝖥uov ← 𝒫, 𝖨uov ← (𝒫,𝑂)

𝖨uov(𝒕):
1: repeat
2: 𝒗 ←$ 𝔽𝑛

𝑞
3: until {𝒐 ∈ 𝑂 ∣ 𝒫′(𝒗, 𝒐) = 𝒕−𝒫(𝒗)} ≠ ∅
4: 𝒐 ←$ {𝒐 ∈ 𝑂 ∣ 𝒫′(𝒗, 𝒐) = 𝒕 − 𝒫(𝒗)}
5: 𝒙 ← 𝒗 + 𝒐
6: return 𝒙

𝖪𝖦𝖾𝗇(1𝜆):
1: (𝖥uov, 𝖨uov) ←$ 𝖳𝗋𝖺𝗉𝖦𝖾𝗇uov(1𝜆)
2: return (𝖥uov, 𝖨uov)

𝖲𝗂𝗀𝗇(𝖨uov, 𝑚):
1: 𝑟 ←$ 𝖱
2: 𝒙 ←$ 𝖨uov(𝖧(𝑟,𝑚))
3: return (𝑟, 𝒙)

𝖵𝗋𝖿𝗒(𝖥uov = 𝒫, 𝑚, 𝜎 = (𝑟, 𝒙)):
1: 𝒕 ← 𝖧(𝑟,𝑚)
2: 𝒕 ′ ← 𝒫(𝒙)
3: return 𝒕 = 𝒕 ′.

𝑚 variables 𝒐. Notice that whenever the linear map 𝒫′(𝒗, ⋅) is non-singular3, the
system has a unique solution 𝒐 ∈ 𝑂 and the preimage is 𝒔 = 𝒗 + 𝒐. If the linear
map is singular, one can simply repeat by choosing a new random value for 𝒗.

Original Unbalanced Oil and Vinegar

Let 𝖳uov = (𝖳𝗋𝖺𝗉𝖦𝖾𝗇uov𝖥uov, 𝖨uov) be the TDF based on the description of the previ-
ous section. Unbalanced Oil and Vinegar (UOV) [130] is a 𝖯𝖧𝖺𝖲 signature scheme
based on 𝖳uov. The key generation and the signing procedure with the trapdoor
functions are shown in Algorithm 2.4.

In the original version of the UOV signature, the signer samples a random
salt 𝑟 ←$ {0,1}𝜆 and repeatedly samples 𝒗 ←$ 𝔽𝑛

𝑞 until there is a solution to the
linear system 𝒫′(𝒗, 𝒐) = 𝖧(𝑚, 𝑟) − 𝒫(𝒗). Notice that since 𝑟 is fixed, the UOV
signature lies in the 𝖯𝖧𝖺𝖲 without retry paradigm. Moreover, a preimage sampled
with 𝒙 ←$ 𝖨uov(𝒚) for 𝒚 ←$ 𝔽𝑚

𝑞 is not uniformly distributed in 𝔽𝑛
𝑞 . Therefore, to

apply Theorem 2.13 we need to assume the preimage sampleability of 𝖳uov, i.e.
𝖠𝖽𝗏PS𝖳uov(𝒟) must be negligible.

𝖳uov is the underlying trapdoor function of the UOV scheme [31] submitted to
the NIST PQC Standardization of Additional Digital Signature. The proposed
parameters for UOV are shown in Table 2.4.

44

2.3 – Post-Quantum Hash-and-Sign Schemes

Algorithm 2.5: Provable UOV Signature Scheme

𝖳𝗋𝖺𝗉𝖦𝖾𝗇puov(1𝜆):
1: 𝑂 ←$ 𝑜-dimensional subspace of 𝔽𝑛

𝑞
2: 𝒫 ←$ quadratic map 𝔽𝑛

𝑞 → 𝔽𝑚
𝑞 that

vanishes on 𝑂
3: return 𝖥puov ← 𝒫, 𝖨puov ← (𝒫,𝑂)

𝖨1puov():
1: 𝒗 ←$ 𝔽𝑛

𝑞
2: return 𝒗

𝖨2puov(𝒗, 𝒕):
1: if {𝒐 ∈ 𝑂 ∣ 𝒫′(𝒗, 𝒐) = 𝒕 − 𝒫(𝒗)} ≠ ∅

then return ⊥
2: 𝒐 ←$ {𝒐𝑖𝑛𝑂 ∣ 𝒫′(𝒗, 𝒐) = 𝒕 − 𝒫(𝒗)}
3: 𝒙 ← 𝒗 + 𝒐
4: return 𝒙

𝖪𝖦𝖾𝗇(1𝜆):
1: (𝖥puov, 𝖨puov) ←$ 𝖳𝗋𝖺𝗉𝖦𝖾𝗇puov(1𝜆)
2: return (𝖥puov, 𝖨puov)

𝖲𝗂𝗀𝗇(𝖨puov, 𝑚):
1: 𝒗 ←$ 𝖨1puov()
2: repeat
3: 𝑟 ←$ 𝖱
4: 𝒙 ←$ 𝖨2puov(𝒗,𝖧(𝑟,𝑚))
5: until 𝒙 ≠ ⊥
6: return (𝑟, 𝒙)

𝖵𝗋𝖿𝗒(𝖥puov = 𝒫, 𝑚, 𝜎 = (𝑟, 𝒙)):
1: 𝒕 ← 𝖧(𝑟,𝑚)
2: 𝒕 ′ ← 𝒫(𝒙)
3: return 𝒕 = 𝒕 ′.

Provable Unbalanced Oil and Vinegar

By adopting the probabilistic𝖧𝖺𝖲with retry paradigm, the UOV signature scheme
can be proven EUF-CMA secure in the random oracle model [134]. Let 𝖳puov =
(𝖳𝗋𝖺𝗉𝖦𝖾𝗇puov𝖥puov, 𝖨puov) be the TDF of the provable variant of UOV. To obtain
uniformpreimages over𝔽𝑛

𝑞 , the provableUOV (PUOV) signing procedure is slightly
different from the generic one described in Algorithm 2.1. The signer starts by
fixing a random 𝒗 ←$ 𝔽𝑛

𝑞 , then it repeatedly samples 𝑟 ←$ 𝖱 until there is a
solution to the linear system 𝒫′(𝒗, 𝒐) = 𝖧(𝑚, 𝑟) − 𝒫(𝒗). Equivalently, the trapdoor
𝖨puov can be split in two distinct functions 𝖨1puov and 𝖨2puov. The former is invoked
only once and randomly chooses 𝒗 ←$ 𝔽𝑛

𝑞 . The latter is part of the repeat loop and
tries to find a preimage 𝒔 of the corresponding linear system. The key generation
and the signing procedure with the modified trapdoor functions are shown in
Algorithm 2.5.

With this procedure, the authors of [175] proved that the preimages produced
from 𝖲𝗂𝗀𝗇(𝖨puov, ⋅) are indistinguishable from the output of 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥puov), so that
𝖠𝖽𝗏PS𝖳puov(𝒟) = 0. The signing procedure start by sampling 𝒗 ←$ 𝖨1puov uniformly at
random in 𝔽𝑛

𝑞 . Suppose dim𝑂 = 𝑜 ≥ 𝑚, once 𝒗 is fixed, 𝒫′(𝒗, ⋅) restricted to 𝑂 is a
linear map from 𝔽𝑚

𝑞 to itself of rank at most 𝑚. Let 𝑖 be the rank of 𝒫′(𝒗, ⋅), if 𝖧
is a random oracle over 𝔽𝑚

𝑞 , then after about 𝑞𝑚−𝑖 tries a random salt 𝑟 is chosen
such that 𝒫′(𝒗, ⋅) = 𝖧(𝑟,𝑚) admits a solution. Then 𝒐 is sampled from the 𝑞𝑚−𝑖

3This happens with probability approximately 1 − 1/𝑞

45

Hash-and-Sign Paradigm

Algorithm 2.6: MAYO Signature Scheme

𝖳𝗋𝖺𝗉𝖦𝖾𝗇mayo(1𝜆):
1: 𝐎 ←$ 𝔽𝑜×(𝑛−𝑜)

𝑞
2: 𝑂 ←$ RowSpace(𝐎𝐈𝑜)
3: 𝒫 ←$ quadratic map 𝔽𝑛

𝑞 → 𝔽𝑚
𝑞 that

vanishes on 𝑂
4: return 𝖥mayo ← 𝒫, 𝖨mayo ← (𝒫,𝐎)

𝖨mayo(𝒕):
1: 𝒫∗(𝒙1,… , 𝒙𝑘) ← ∑𝑘

𝑖=1 𝐄𝑖,𝑖𝒫(𝒙𝑖) +
∑1≤𝑖<𝑗≤𝑘 𝐄𝑖,𝑗𝒫′(𝒙𝑖, 𝒙𝑗)

2: 𝒗1,… , 𝒗𝑘 ←$ (𝔽𝑛
𝑞 × 0𝑚)𝑘

3: if𝒫∗(𝒗1+𝒐1,… , 𝒗𝑘+𝒐𝑘)does not have
full rank then

4: return ⊥
5: 𝒐1,… , 𝒐𝑘 ←$ {𝒐1,… , 𝒐𝑘 ∈ 𝑂 ∣ 𝒫∗(𝒗1+

𝒐1,… , 𝒗𝑘 + 𝒐𝑘) = 𝒕}
6: 𝒔 ← (𝒗1 + 𝒐1,… , 𝒗𝑘 + 𝒐𝑘)
7: return 𝒔

𝖪𝖦𝖾𝗇(1𝜆):
1: (𝖥mayo, 𝖨mayo) ←$ 𝖳𝗋𝖺𝗉𝖦𝖾𝗇mayo(1𝜆)
2: return (𝖥mayo, 𝖨mayo)

𝖲𝗂𝗀𝗇(𝖨mayo, 𝑚):
1: repeat
2: 𝑟 ←$ 𝖱
3: 𝒔 ←$ 𝖨mayo(𝖧(𝑟,𝑚))
4: until 𝒔 ≠ ⊥
5: return (𝑟, 𝒔)

𝖵𝗋𝖿𝗒(𝖥mayo = 𝒫, 𝑚, 𝜎 = (𝑟, 𝒔)):
1: 𝒫∗(𝒙1,… , 𝒙𝑘) ← ∑𝑘

𝑖=1 𝐄𝑖,𝑖𝒫(𝒙𝑖) +
∑1≤𝑖<𝑗≤𝑘 𝐄𝑖,𝑗𝒫′(𝒙𝑖, 𝒙𝑗)

2: 𝒕 ← 𝖧(𝑟,𝑚)
3: 𝒕 ′ ← 𝒫∗(𝒔)
4: return 𝒕 = 𝒕 ′.

solutions in 𝑂 and 𝒙 = 𝒗 + 𝒐 is uniformly distributed over 𝔽𝑛
𝑞 .

𝖳puov is the underlying trapdoor function of the PROV scheme [115] submitted
to the NIST PQC Standardization of Additional Digital Signature. The parameters
of PROV are selected so that the dimension of the trapdoor subspace is 𝑜 = 𝑚 + 𝛿.
This choice significantly reduces the probability that the rank of 𝒫′(𝒗, ⋅) is smaller
than 𝑚, reducing the number of retries. The proposed parameters for PROV are
shown in Table 2.5.

MAYO

MAYO [29] is a 𝖯𝖧𝖺𝖲 signature scheme based on the UOV trapdoor function
that employs a new technique to use a smaller secret subspace 𝑂 of dimension
dim(𝑂) = 𝑜 < 𝑚. Let 𝖳mayo = (𝖳𝗋𝖺𝗉𝖦𝖾𝗇mayo, 𝖥mayo, 𝖨mayo) be the TDF of MAYO.
The key generation process is the same as for UOV and produces a multivariate
quadratic map 𝒫 ∶ 𝔽𝑛

𝑞 → 𝔽𝑚
𝑞 that vanishes on a subspace 𝑂 ⊂ 𝔽𝑛

𝑞 with dim𝑂 = 𝑜.
In the signing procedure,𝒫 is deterministically transformed into a larger (whipped)
map 𝒫∗ ∶ 𝔽𝑘𝑛

𝑞 → 𝔽𝑚
𝑞 , for some 𝑘 > 1, which vanishes on 𝑂𝑘 ⊂ 𝔽𝑘𝑛

𝑞 of dimension
𝑘𝑜 ≥ 𝑚. In [29], the whipping transformation is obtained by choosing 𝑘(𝑘 + 1)/2

46

2.3 – Post-Quantum Hash-and-Sign Schemes

random invertible matrices { 𝐄𝑖,𝑗 ∈ GL𝑚(𝔽𝑞) }1≤𝑖≤𝑗≤𝑘 and defining

𝒫∗(𝒙1,… , 𝒙𝑘) =
𝑘

∑
𝑖=1

𝐄𝑖,𝑖𝒫(𝒙𝑖) + ∑
1≤𝑖<𝑗≤𝑘

𝐄𝑖,𝑗𝒫′(𝒙𝑖, 𝒙𝑗).

Similarly to UOV, to find a preimage for 𝒕 ∈ 𝔽𝑚
𝑞 , we randomly choose 𝒗1,… , 𝒗𝑘 ∈

𝔽𝑛−𝑚
𝑞 × 0𝑚. Then, 𝒫∗(𝒗1 + 𝒐1,… , 𝒗𝑘 + 𝒐𝑘) = 𝒕 is a system of 𝑚 linear equation in

𝑘𝑜 ≥ 𝑚 variables, so it will be solvable with high probability. The key generation
and the preimage computation via 𝖨mayo are shown in Algorithm 2.6.

Instead of evaluating the advantage 𝖠𝖽𝗏PS𝖳mayo
(𝒟) of the PS adversary, we can use

the result of [29, Lemma 2] that bounds the probability 𝖡 that𝒫∗(𝒗1+𝒐1,… , 𝒗𝑘+𝒐𝑘)
does not have full rank. It can be shown that if 𝖨mayo has never output ⊥, then the
preimages produced by 𝖲𝗂𝗀𝗇(𝖨mayo, ⋅) are indistinguishable from 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥mayo).

𝖳mayo is the underlying trapdoor function of the MAYO scheme [30] submitted
to the NIST PQC Standardization of Additional Digital Signature. The proposed
parameters for MAYO are shown in Table 2.6.

47

Hash-and-Sign Paradigm

Table 2.4: Proposed parameters for UOV [31] with corresponding key/signature
sizes.

Set NIST
SL

Parameters |pk| |sig|
𝑛 𝑚 𝑞 (B) (B)

ov-Ip I 112 44 256 43,576 128
ov-Is I 160 64 16 66,576 96
ov-III III 184 72 256 189,232 200
ov-V V 244 96 256 446,992 200

Table 2.5: Proposed parameters for PROV [115] with corresponding key/signature
sizes.

Set NIST
SL

Parameters |pk| |sig|
𝑛 𝑚 𝛿 𝑞 (B) (B)

PROV-I I 142 49 8 256 81,045 166
PROV-III III 206 74 8 256 251,894 238
PROV-V V 270 100 8 256 588,696 310

Table 2.6: Proposed parameters for MAYO [30] with corresponding key/signature
sizes.

Set NIST
SL

Parameters |pk| |sig|
𝑛 𝑚 𝑜 𝑘 𝑞 (B) (B)

𝖬𝖠𝖸𝖮𝟣 I 66 64 8 9 16 1168 321
𝖬𝖠𝖸𝖮𝟤 I 78 64 18 4 16 5488 180
𝖬𝖠𝖸𝖮𝟥 III 99 96 10 11 16 2656 577
𝖬𝖠𝖸𝖮𝟧 V 133 128 12 12 16 5008 838

48

Chapter 3

History-Free Sequential Aggregation
of Hash-and-Sign Signatures

In this chapter, we address the extension of permutation-based SAS schemes
to generic trapdoor functions, making them applicable to a broader range of
post-quantum signatures. We start by presenting the original SAS scheme for
trapdoor permutation of [143, 156], following up in Section 3.2 with an analysis
on the possibility of extending these techniques to generic trapdoor functions.
In particular, we argue that these simpler approaches are not viable without
additional properties on trapdoor functions. As evidence, we show in Section 3.3
how two existing multivariate-quadratic-based aggregate signature schemes [92,
56] are universally forgeable when instantiated with UOV and discuss their lack
of provable security.

In Section 3.4, we present a partial-signature history-free SAS scheme based
on generic trapdoor functions. In a history-free SAS, introduced in [49], signers
receive only the so-far aggregated signature without requiring previous users’
public keys and messages. The partial-signature variant, initially presented in
[58], reduces the amount of information the signer needs to receive from the
previous one, but requires a final (public) aggregation step.

Our approach can be seen as a generalization of the work of Brogle, Goldberg,
and Reyzin [49] for trapdoor permutations, adapting the encoding technique of
[156, 91] to include trapdoor functions beyond permutations. Themain novelty of
our work is the extension of the probabilistic Hash-and-Sign with retry paradigm,
introduced in Section 2.2, to sequential aggregate signature schemes. As a result,
we are able to reduce the security of our scheme to the non-invertibility (Def-
inition 2.4) of the trapdoor function and to the additional notion of Preimage
Sampling (PS) indistinguishability (Definition 2.8). While this further notion
may appear restrictive in the choice of trapdoor functions, it turns out to be quite
natural in security proofs of post-quantum Hash-and-Sign schemes, as recently
shown in [134].

49

History-Free Sequential Aggregation of Hash-and-Sign Signatures

In Section 3.5 we show that the scheme and security reduction can be further
refined if the considered trapdoor functions feature the additional properties
of (A)PSFs. Finally, in Section 3.6, we apply our scheme to MQ-based signature
schemes, specifically UOV [130] and MAYO [29], and the code-based scheme
Wave [71]. For each scheme, we evaluate its compression capabilities and review
its PS security so that it can be covered in our security proof.

The results of this chapter are contained in [149] and have been presented at
CT-RSA 2024.

3.1 Sequential Aggregation from Trapdoor Permuta-
tion

SAS schemes were originally introduced by Lysyanskaya et al. in [143] for trapdoor
permutations with the FDH approach. The main intuition behind the aggregation
process is to “embed” the previous aggregate signature into the new message
to be signed in order for it to be recovered during verification. Using TDP, a
public key is a permutation 𝗉𝗄𝑖 = 𝜋𝑖 and the corresponding private key is 𝗌𝗄𝑖 =
𝜋−1
𝑖 . To sign a message 𝑚1 with the FDH approach, the first signer computes

ℎ1 ← 𝖧(𝗉𝗄1,𝑚1), for an opportune hash function over the domain of 𝜋𝑖, and the
signature is Σ1 ← 𝜋−1

1 (ℎ1). Now, if the second signer wants to add a signature
of a message 𝑚2 on Σ1, they compute ℎ2 ← Σ1 ⊕ 𝖧(𝗉𝗄1, 𝗉𝗄2,𝑚1,𝑚2) and gets
the aggregate signature Σ2 ← 𝜋−1

2 (ℎ2). The overall signed data is (𝑚1,𝑚2,Σ2)
and the verifier can recover Σ1 ← 𝜋2(Σ2) ⊕ 𝖧(𝗉𝗄1, 𝗉𝗄2,𝑚1,𝑚2) and accepts if and
only if 𝜋1(Σ1) = 𝖧(𝗉𝗄1,𝑚1). More in detail, the LMRS scheme is a tuple of three
algorithms 𝖫𝖬𝖱𝖲 = (𝖪𝖦𝖾𝗇,𝖠𝗀𝗀𝖲𝗂𝗀𝗇,𝖠𝗀𝗀𝖵𝗋𝖿𝗒):

• 𝖪𝖦𝖾𝗇(1𝜆): takes as input a security parameter 1𝜆 and generates a key pair
(𝗉𝗄, 𝗌𝗄) = (𝖥, 𝖨) ←$ 𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝜆).

• 𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝗌𝗄𝑖,𝑚𝑖,𝐿𝑖−1,Σ𝑖−1): takes as input the secret key 𝗌𝗄𝑖 and the message
𝑚𝑖 of the 𝑖-th user and the previous aggregate signature Σ𝑖−1 for the full
history 𝐿𝑖−1 = (𝗉𝗄1,𝑚1),… , (𝗉𝗄𝑖−1,𝑚𝑖−1) of public key, message pairs. If
𝑖 = 1, it simply returns Σ1 ←$ 𝖨1(𝖧(𝗉𝗄1,𝑚1)). Otherwise, the algorithm
checks that 𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑖−1,Σ𝑖−1) = 1 and computes

Σ𝑖 ←$ 𝖨𝑖(Σ𝑖−1 ⊕ 𝖧(𝐿𝑖−1 ∪ {(𝗉𝗄𝑖,𝑚𝑖)})).

• 𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑛,Σ𝑛): takes as input the full history 𝐿𝑛 = (𝗉𝗄1,𝑚1),… , (𝗉𝗄𝑛,𝑚𝑛)
of public key, message pairs, and an aggregate signature Σ𝑛. The algorithm
recovers the previous signature Σ𝑛−1 as follows:

Σ𝑛−1 ← 𝖥(Σ𝑛) ⊕ 𝖧(𝐿𝑛).

50

3.1 – Sequential Aggregation from Trapdoor Permutation

𝖧
𝗉𝗄1,… , 𝗉𝗄𝑖
𝑚1,… ,𝑚𝑖

𝖨𝑖 Σ𝑖

Σ𝑖−1…

⋮

Figure 3.1: Simplified description of SAS scheme from [143]

Next, the algorithm iterates the process until obtaining Σ1. It returns 1 if
and only if 𝖥1(Σ1) = 𝖧(𝗉𝗄1,𝑚1) and 0 otherwise.

A simplified diagram of the aggregation process is shown in Figure 3.1.
This is a streamlined idea to provide an insight, to achieve a safe construction

some additional steps are needed. The generic construction provided in [143]
requires certified trapdoor permutation [23] for the security proof. A trapdoor
permutation family is certified if for any 𝖥 ∶ 𝒳 → 𝒳 is easy to determine whether 𝖥
has been obtained as the output of 𝖳𝗋𝖺𝗉𝖦𝖾𝗇, ensuring that 𝖥 is a permutation.
Remark. This is important when 𝖥 can be generated by an adversary and the use
of a malicious function may compromise the security of a cryptographic scheme.
For instance, proving that a RSA public key (𝑁, 𝑒) generated by a third party
determines a permutation over ℤ∗

𝑁 is non-trivial [128].
This was later addressed in [156] where a new construction was presented,

removing the requirement for certified permutations. Both schemes further re-
quire that each signer in the sequence must verify the current aggregate signature
before adding their own. In particular, unlike the generic SAS scheme described
in Section 1.3.5, here the aggregation algorithm 𝖠𝗀𝗀𝖲𝗂𝗀𝗇 also requires the mes-
sages and public keys of previous signers as input. This problem was investigated
in [90, 49]. The latter proposed the first sequential aggregate signature scheme
with lazy verification, in which verification is deferred until the final signature.
As a consequence, the full-history of the aggregate signature, corresponding to
the list of public-keys and messages of previous signers, are not required during
aggregation. This approach is also known as history-free aggregation [98].

The main challenge in extending previous schemes to trapdoor functions that
are not permutations lies in their lack of injectivity. This issue was addressed
in [91] within the context of lattice-based signatures by employing an encoding
technique derived from [156]. Subsequently, this idea was applied to MQ-based
schemes instantiated with HFEv- [92] and UOV [56]. The proposed solution is to
use a suitable encoding function, which splits the signature into two components.
The first component can be injected into the codomain of the trapdoor function
and subsequentlymade part of the computation of the aggregate signature, similar

51

History-Free Sequential Aggregation of Hash-and-Sign Signatures

to the approach used in [143]. The second component is transmitted to the next
signer and becomes part of the final aggregate signature. During the verification
phase, this component is used to recover the partial aggregate signature through
a corresponding decoding function. Notice that this method has a drawback in
terms of the efficiency of the SAS scheme. In fact, storing part of the signature
of each user without further aggregation causes a linear growth of the aggregate
signature in the number of users. Therefore, it is currently unknown how to
achieve sequential aggregate signatures of constant size in the post-quantum
setting, where there are no one-way TDPs.

The proposed schemes employ concrete lattice-based and multivariate-based
trapdoor functions, but for the latter no explicit use is made of unique features of
these functions. In this regard, [91] can be considered an extension of [156] for
PSFs, while [92, 56] an extension of [143] for generic TDFs, which only differ in
the use of signers’ public identities in the signature calculation. In Section 3.2 we
will describe the construction of [92], which is slightly more general, and discuss
the security of its approach in the case of generic TDFs, finally showing an explicit
universal forgery of the scheme when instantiated with UOV in Section 3.3.

3.2 LMRS Scheme for Generic Trapdoor Functions
In this section, we adapt the Multivariate Quadratic SAS schemes from [92, 56]
for the general case of TDFs and analyse its formal security. Both schemes are
based on the variant with encoding of [143] and require an alternative definition
of SAS with the notion of full-history: at each aggregation step, the signer needs
the so-far aggregated signature and the complete list of messages and public keys
of previous signers. Moreover, knowledge of the full description of the aggregate
signature is required, as the signer needs to check its validity before adding its
own.

Definition 3.1. A Full-History Sequential Aggregate Signature (FH-SAS) is a
tuple of three algorithms (𝖪𝖦𝖾𝗇,𝖠𝗀𝗀𝖲𝗂𝗀𝗇,𝖠𝗀𝗀𝖵𝗋𝖿𝗒):

• 𝖪𝖦𝖾𝗇(1𝜆): takes as input a security parameter 1𝜆 and generates a key pair
(𝗉𝗄, 𝗌𝗄).

• 𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝗌𝗄𝑖,𝑚𝑖,𝐿𝑖−1,Σ𝑖−1): takes as input the secret key 𝗌𝗄𝑖 and the mes-
sage 𝑚𝑖 of the 𝑖-th user, a list 𝐿𝑖−1 = (𝗉𝗄1,𝑚1),… , (𝗉𝗄𝑖−1,𝑚𝑖−1) of public key,
message pairs, and the previous aggregate signature Σ𝑖−1. If 𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑖−1,
Σ𝑖−1) = 1, it returns an updated aggregate signature Σ𝑖.

• 𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑛,Σ𝑛): takes as input the full history 𝐿𝑛 = (𝗉𝗄1,𝑚1),… , (𝗉𝗄𝑛,𝑚𝑛)
of public key, message pairs, and an aggregate signature Σ𝑛. Returns 1 if Σ𝑛
is a valid aggregate signature and 0 otherwise.

52

3.2 – LMRS Scheme for Generic Trapdoor Functions

Experiment 3.1: FH-UF-CMA𝖲𝖠𝖲

1: (𝗉𝗄⋆, 𝗌𝗄⋆) ←$ 𝖪𝖦𝖾𝗇(1𝜆)
2: 𝒬 ← ∅
3: (𝐿𝑛,Σ𝑛) ←$ 𝒜𝖮,𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝗉𝗄⋆)
4: (𝗉𝗄1,𝑚1),… , (𝗉𝗄𝑛,𝑚𝑛) ← 𝐿𝑛
5: if ∄𝑖⋆ ∶ (𝗉𝗄𝑖⋆ = 𝗉𝗄⋆ ∧ (𝑚𝑖⋆,𝐿𝑖⋆) ∉ 𝒬)

then
6: return ⊥
7: return 𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑛,Σ𝑛)

𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝑚𝑖, 𝐿𝑖−1, Σ𝑖−1):
1: if 𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑖−1,Σ𝑖−1) = 0 then
2: return ⊥
3: 𝒬 ← 𝒬 ∪ {(𝑚𝑖,𝐿𝑖−1)}
4: Σ𝑖 ←$ 𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝗌𝗄⋆,𝑚𝑖,𝐿𝑖−1,Σ𝑖−1)
5: return Σ𝑖

Belowwe show the definition of Full-History existential Unforgeability against
Chosen-Message Attacks (FH-UF-CMA). Compared to the generic security notion
for SAS described in Section 1.3.5, the signing oracle 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇 requires sending
the list 𝐿𝑖−1 of public keys and messages along with the aggregate signature Σ𝑖−1
and returns the updated signature if and only if Σ𝑖−1 is valid.

Definition 3.2 (FH-UF-CMA Security). Let 𝖮 be a random oracle, let 𝖲𝖠𝖲 =
(𝖪𝖦𝖾𝗇,𝖠𝗀𝗀𝖲𝗂𝗀𝗇,𝖠𝗀𝗀𝖵𝗋𝖿𝗒) be a 𝖥𝖧-𝖲𝖠𝖲 scheme, let 𝒜 be an adversary. We define
the advantage of 𝒜 playing the FH-UF-CMA game (Experiment 3.1) against 𝖲𝖠𝖲
as follows:

𝖠𝖽𝗏FH-UF-CMA
𝖲𝖠𝖲 (𝒜) = Pr[FH-UF-CMA𝖲𝖠𝖲(𝒜) = 1].

We say that 𝖲𝖠𝖲 is full-history unforgeable against chosen message attacks if the
advantage 𝖠𝖽𝗏FH-UF-CMA

𝖲𝖠𝖲 (𝒜) is negligible for any adversary 𝒜.

3.2.1 The Scheme
The 𝖥𝖧-𝖲𝖠𝖲 schemes of [92, 56] are instantiated with HFEv- and UOV, respectively,
but no explicit use is made of unique features of these trapdoor functions. The de-
scription of Algorithm 3.1 refers to a generic trapdoor function 𝖳 (as in Section 2.1)
and is based on the construction of [92], which is slightly more general.

In Algorithm 3.1, the random oracle is𝖧 ∶ {0,1}∗ → 𝒴. The encoding function is
𝖾𝗇𝖼 ∶ 𝒳 → 𝒴×𝒳′ that splits an element 𝑥𝑖 as 𝖾𝗇𝖼(𝑥𝑖) = (𝛼𝑖, 𝛽𝑖) and the corresponding
decoding function is 𝖽𝖾𝖼 ∶ 𝒴 ×𝒳′ → 𝒳 such that 𝖽𝖾𝖼(𝖾𝗇𝖼(𝑥)) = 𝑥. To simplify the
description, we will also use the notation 𝛼(𝑥𝑖) = 𝛼𝑖 and 𝛽(𝑥𝑖) = 𝛽𝑖, where 𝛼(⋅), 𝛽(⋅)
are implicitly defined by 𝖾𝗇𝖼.

A simplified diagram of the aggregation process is shown in Figure 3.2.

3.2.2 Provable Security
Both [92] and [56] provide a similar claim on the formal security of their sequen-
tial aggregate signature scheme. In the following, we are considering a generic
trapdoor function, since its choice does not influence the security claim.

53

History-Free Sequential Aggregation of Hash-and-Sign Signatures

Algorithm 3.1: 𝖥𝖧-𝖲𝖠𝖲𝖳 Scheme for Generic TDF
Let Σ0 = (∅, 𝜀).

𝖪𝖦𝖾𝗇(1𝜆):
1: (𝖥, 𝖨) ←$ 𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝜆)
2: return 𝗉𝗄 ← 𝖥, 𝗌𝗄 ← (𝖥, 𝖨)

𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑛, Σ𝑛):
1: (𝖥1,𝑚1),… , (𝖥𝑛,𝑚𝑛) ← 𝐿𝑛
2: (#«𝛽𝑛−1, 𝑥𝑛) ← Σ𝑛
3: for 𝑖 ← 𝑛,… , 2 do
4: 𝐿𝑖 ← (𝖥1,𝑚1),… , (𝖥𝑖,𝑚𝑖)
5: ℎ𝑖 ← 𝖧(𝐿𝑖)
6: 𝛼𝑖−1 ← 𝖥𝑖(𝑥𝑖) ⊕ ℎ𝑖
7: 𝑥𝑖−1 ← 𝖽𝖾𝖼(𝛼𝑖−1, 𝛽𝑖−1)
8: return 𝖥1(𝑥1) = 𝖧(𝖥1,𝑚1)

𝖠𝗀𝗀𝖲𝗂𝗀𝗇((𝖥𝑖, 𝖨𝑖), 𝑚𝑖, 𝐿𝑖−1, Σ𝑖−1):
1: (#«𝛽 𝑖−2, 𝑥𝑖−1) ← Σ𝑖−1
2: if 𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑖−1,Σ𝑖−1) = 0 then
3: return ⊥
4: 𝐿𝑖 ← 𝐿𝑖−1 ∪ {(𝖥𝑖,𝑚𝑖)}
5: (𝛼𝑖−1, 𝛽𝑖−1) ← 𝖾𝗇𝖼(𝑥𝑖−1)
6: ℎ𝑖 ← 𝖧(𝐿𝑖)
7: 𝑥𝑖 ←$ 𝖨𝑖(𝛼𝑖−1 ⊕ ℎ𝑖)
8:

#«𝛽 𝑖−1 ← #«𝛽 𝑖−2 ∪ {𝛽𝑖−1}
9: return Σ𝑖 ← (#«𝛽 𝑖−1, 𝑥𝑖)

𝖧
𝗉𝗄1,… , 𝗉𝗄𝑖
𝑚1,… ,𝑚𝑖

𝖨𝑖 𝜎𝑖

𝜎𝑖−1…

𝖾𝗇𝖼 𝛽𝑖−1

𝛽1,… , 𝛽𝑖−2

⋮ ⋮ ⋮

𝛼𝑖−1

Figure 3.2: Simplified description of 𝖥𝖧-𝖲𝖠𝖲

Theorem 3.3 ([92]). Let 𝖳 be a trapdoor function. Let𝒜 be a FH-UF-CMA adversary
against the 𝖥𝖧-𝖲𝖠𝖲 scheme on 𝖳 in the random oracle model, which makes 𝗊𝖲 signing
queries and 𝗊𝖧 queries to the random oracle. Then, there exists an OW adversary ℬ
against 𝖳 such that

𝖠𝖽𝗏FH-UF-CMA
𝖥𝖧-𝖲𝖠𝖲𝖳 (𝒜) ≤ (𝗊𝖲 + 𝗊𝖧 + 1) ⋅ 𝖠𝖽𝗏OW𝖳 (ℬ)

and the running time of ℬ is about that of 𝒜.

In [56], the authors omit the proof for their security claim, while in [92] the
authors provide a sketch of the proof in which they state that almost all the steps
of the security proof follow [143] with only some slight modifications taking into
account the use of the encoding function.

In the remaining of this section, we provide some insights into why the security
proof of [143] cannot be applied to multivariate schemes, and more generally to
signature schemes based on trapdoor functions that are not permutations. Then,

54

3.2 – LMRS Scheme for Generic Trapdoor Functions

in Section 3.3 we show an explicit universal forgery on 𝖥𝖧-𝖲𝖠𝖲 when instantiated
with the Unbalanced Oil and Vinegar signature scheme.

The proof for trapdoor permutations

To facilitate the discussion in the case of generic trapdoor functions, we give below
a sketch of the proof of [143] for trapdoor permutations. We refer to the original
paper for an in-depth discussion of the proof.

We show that if there exists a forger 𝒜 for the aggregate signature scheme,
then we can build a forger ℬ that uses 𝒜 to break the one-wayness assumption
of the underlying trapdoor permutation. The goal for ℬ is to find a preimage
of a target public key 𝗉𝗄⋆ = 𝖥⋆ on a given input 𝑦 ∈ 𝒴. ℬ will use the resulting
forged aggregate signature Σ of 𝒜 on 𝑛 messages 𝑚1,… ,𝑚𝑛 under public keys
𝗉𝗄1,… , 𝗉𝗄𝑛.

For simplicity, we will make the following assumptions on the forger 𝒜:

• In the resulting forged aggregate signature, the target public key appears
last, that is 𝗉𝗄𝑛 = 𝗉𝗄⋆. Every adversary can be modified to achieve this
property: in fact, suppose that 𝗉𝗄⋆ appears at position 𝑖⋆ < 𝑛, then we
apply the verification procedure of 𝖠𝗀𝗀𝖵𝗋𝖿𝗒 on Σ = (𝛽1,… , 𝛽𝑛−1,𝜎𝑛) for 𝑛− 𝑖⋆
iterations to recover 𝜎𝑖⋆ and output Σ𝑖⋆ = (𝛽1,… , 𝛽𝑖⋆−1,𝜎𝑖⋆) as a new forgery
on messages 𝑚1,… ,𝑚𝑖⋆ under public keys 𝗉𝗄1,… , 𝗉𝗄𝑖⋆ with 𝗉𝗄𝑖⋆ = 𝗉𝗄⋆.

• The resulting forged aggregate signature Σ is valid, and the forger computes
the verification procedure on Σ before returning it by making all the nec-
essary queries to the random oracle. Moreover, we assume that the forger
only makes queries for valid input data.

For the reduction, ℬ supplies 𝒜 with the target public key 𝗉𝗄⋆ and answers
their oracle queries as follows.

Hash Queries 𝒜 asks a query 𝑄 = (
«

𝗉𝗄, #«𝑚) and expects an answer 𝖧(𝑄) = ℎ ∈ 𝒴.
To answer on query 𝑄, ℬ maintains an originally empty list 𝖧𝖳 of tuples (𝑤, 𝑟, 𝑐).
If 𝖧𝖳[𝑄] ≠ ⊥, then it returns 𝖧(𝑄) ← 𝑤. Otherwise, it sets 𝑖 = |

«

𝗉𝗄| = | #«𝑚| and
proceeds as follows:

• If 𝑖 > 1, ℬ gets the values (𝑤′, 𝑟 ′, 𝑐′) ← 𝖧𝖳[
«

𝗉𝗄𝑖−1,
#«𝑚𝑖−1]. If 𝑖 = 1, it fixes 𝑟 ′ = 𝜀.

• If the challenge public key 𝗉𝗄⋆ does not belong to
«

𝗉𝗄, ℬ samples 𝑟 ←$ 𝒴,
computes 𝑤 ← 𝖥𝑖(𝑟) ⊕ 𝑟 ′ and sets 𝑐 ← ⊥.

• Otherwise, if 𝗉𝗄⋆ ∈
«

𝗉𝗄 (assume for simplicity that 𝗉𝗄𝑖 = 𝗉𝗄⋆), then for every
query, with the exception of one randomly chosen among all 𝑞𝐻 + 𝑞𝑆 + 1

55

History-Free Sequential Aggregation of Hash-and-Sign Signatures

Hash Queries, ℬ sample 𝑟 ←$ 𝒴, computes 𝑤 ← 𝖥⋆(𝑟) ⊕ 𝑟 ′ and sets 𝑐 ← 1. In
the only special case, ℬ sets 𝑟 ← ⊥, computes 𝑤 ← 𝑦 ⊕ 𝑟 ′ and sets 𝑐 ← 0.

• Finally, ℬ records 𝖧𝖳[𝑄] ← (𝑤, 𝑟, 𝑐) and returns 𝖧(𝑄) ← 𝑤.

Aggregate Signature Queries 𝒜 asks query 𝑄 = (
«

𝗉𝗄, #«𝑚,𝜎𝑛−1) with 𝑛 = |
«

𝗉𝗄| =
| #«𝑚|, 𝗉𝗄𝑛 = 𝗉𝗄⋆ and 𝜎𝑛−1 a valid aggregate signature for messages #«𝑚𝑛−1 under public
keys

«

𝗉𝗄𝑛−1, and expects an answer 𝜎𝑛 which aggregates the message 𝑚𝑛 with 𝗉𝗄⋆
on 𝜎𝑛−1.

ℬ use the previous hash algorithm on𝑄′ ← (
«

𝗉𝗄, #«𝑚) to obtain (𝑤, 𝑟, 𝑐) ← 𝖧𝖳[𝑄′].
If 𝑄′ is the special query with 𝑐 = 0, ℬ aborts. Otherwise, ℬ returns 𝜎𝑛 ← 𝑟.

Output Eventually, 𝒜 will output a valid non-trivial aggregate signature 𝜎𝑛
on 𝑛 messages #«𝑚 under public keys

«

𝗉𝗄 with 𝗉𝗄𝑛 = 𝗉𝗄⋆. The forgery will satisfy
𝖥⋆(𝜎𝑛) = 𝑡 for some 𝑡 produced in the hash algorithm. ℬ can then examine the value
(𝑤, 𝑟, 𝑐) ← 𝖧𝖳[(

«

𝗉𝗄, #«𝑚)]. If 𝑐 = 1 it aborts; otherwise, it returns 𝜎𝑛 as a preimage of
𝖥⋆ on 𝑦. Observe that this preimage, produced without aborts with probability
reduced by a factor of 𝑞𝐻 + 𝑞𝑆 + 1 with respect to the forging probability of 𝒜,
is correct since 𝖥⋆(𝜎𝑛) = 𝖧(

«

𝗉𝗄𝑛,
#«𝑚𝑛) ⊕ 𝜎𝑛−1 and, if 𝑐 = 0, by construction we have

𝖧(
«

𝗉𝗄, #«𝑚) = 𝑦 ⊕ 𝜎𝑛−1.

Attempt for generic trapdoor functions

In the following, we will attempt to adapt the previous proof to generic trapdoor
functions, arguing how provable security cannot be achieved in this case.

Hash Queries Observe that for a correct simulation of 𝒜’s view, ℬ must answer
with a uniformly random value in𝒴. It is easy to see how this is verified in the case
of trapdoor permutation 𝖥: ℬ sample a uniformly random 𝑥 ←$ 𝒳 and answers
with 𝖥(𝑥) ⊕ 𝑧, which is uniformly distributed in 𝒴 = 𝒳.

For a generic trapdoor function, we can not assume that the image of 𝖥 is
uniform. Therefore, to provide a correct simulation, we must answer with a
uniformly random value in 𝒴. In particular, we modify the original procedure for
TDPs by sampling𝑤 ←$ 𝒴, recording𝖧𝖳[𝑄] ← 𝑤 and finally returning𝖧(𝑄) ← 𝑤.

Observe that, if the trapdoor function is a PSF, the uniformity property on
the image of 𝖥 follows from Property 1 of Definition 2.6. We will argue in the
analysis of the Aggregate Signature Queries that this property is still not enough
to maintain the same approach applied to TDPs.

56

3.2 – LMRS Scheme for Generic Trapdoor Functions

Aggregate Signature Queries In the case of generic TDFs, 𝒜 asks query 𝑄 =
(

«

𝗉𝗄, #«𝑚,Σ𝑛−1) with 𝑛 = |
«

𝗉𝗄| = | #«𝑚|, 𝗉𝗄𝑛 = 𝗉𝗄⋆ and Σ𝑛−1 = (𝛽1,… , 𝛽𝑛−2,𝜎𝑛−1) a valid
aggregate signature for messages #«𝑚𝑛−1 under public keys

«

𝗉𝗄𝑛−1.
In the original procedure for TDPs, ℬ used the hash algorithm to prepare a

valid response to the signature query. As we discussed, this approach requires
the uniformity property of PSFs and is therefore not applicable to generic TDFs.
On the other hand, we argue that this property alone is not sufficient. In fact,
the correctness of the response to the aggregate signature query is based on
the following fact of TDP-based constructions: fixed an input (

«

𝗉𝗄, #«𝑚), there is a
unique aggregate signature onmessages #«𝑚 under public keys

«

𝗉𝗄. Otherwise, if the
aggregate signature is not unique, ℬ is unable to provide a valid response to the
aggregate signature query. In fact, on input𝑄,ℬwould take (𝑤, 𝑟, 𝑐) ← 𝖧𝖳[(

«

𝗉𝗄, #«𝑚)],
where 𝖥⋆(𝑟) = 𝑟 ′ ⊕ 𝖧(

«

𝗉𝗄, #«𝑚), but without the knowledge that 𝑟 ′ is equal1 to the
aggregate signature Σ𝑛−1 computed by 𝒜 on messages #«𝑚𝑛−1 under public keys
«

𝗉𝗄𝑛−1. Therefore, the aggregate signature produced by ℬ may not be properly
verified, invalidating the oracle simulation.

Since the previous aggregate signature is not part of the input of the hash
function, it is not possible to construct an a priori uniquely determined signature
in the hash algorithm, even in the case of PSFs. We are therefore restricted to the
generic case in whichℬ always responds to aHashQuerywith a uniformly random
value in 𝒴. In this case, it is still possible to answer the aggregate signature query
correctly, as follows:

• From our simplified assumptions, the query is correct. Thus, ℬ samples
𝑟 ←$ 𝒳 and computes 𝑤 ← 𝖥⋆(𝑟) ⊕ 𝛼(𝜎𝑛−1).

• ℬ checks that there was no previous Hash Query on input 𝑄′ ← (
«

𝗉𝗄, #«𝑚),
otherwise it aborts.

• Finally, ℬ records 𝖧𝖳[𝑄′] ← 𝑤 and returns Σ𝑛 = (𝛽1,… , 𝛽𝑛−2, 𝛽(𝜎𝑛−1), 𝑟).

Observe that in the described procedureℬ aborts whenever it receives an input
in which𝑄′ = (

«

𝗉𝗄, #«𝑚) has been previously prompted by𝒜 to the hash oracle. This
event cannot be ruled out or bounded by a probabilistic argument. Therefore, for
this modified approach to be valid, it would be necessary to introduce a random
salt during aggregation, similar to what was proposed in [49]. This way, the
probability of ℬ to abort can be arbitrarily bounded by varying the length of the
salt.

1For simplicity, we are assuming that ℬ constructed the response to the Hash Query in a way
that takes into account the encoding function.

57

History-Free Sequential Aggregation of Hash-and-Sign Signatures

Output Eventually, 𝒜 will output a valid non-trivial aggregate signature Σ𝑛 =
(𝛽1,… , 𝛽𝑛−1,𝜎𝑛) on 𝑛 messages #«𝑚 under public keys

«

𝗉𝗄 with 𝗉𝗄𝑛 = 𝗉𝗄⋆. Since the
aggregate signature is correct, it follows that 𝖥⋆(𝜎𝑛) = 𝖧(

«

𝗉𝗄, #«𝑚) ⊕ 𝛼(𝜎𝑛−1) = 𝑡. In
the case of TDPs, we have shown that, with probability (𝑞𝐻 + 𝑞𝑆 + 1)−1 this 𝑡 is
equal to the target 𝑦 and ℬ can output Σ𝑛 as a valid preimage of 𝖥⋆ on 𝑦.

In the case of generic TDFs, we have seen that the previous approach is not
valid, and it is necessary to modify the simulation of oracles as above. On the
other hand, we claim that in this setting, it is not possible to correctly simulate
the responses to the oracles to obtain a preimage of 𝑦. In fact, to obtain a valid
preimage, ℬwould need that 𝖥⋆(𝜎𝑛) = 𝖧(

«

𝗉𝗄, #«𝑚)⊕𝜎𝑛−1 = 𝑦 and therefore𝖧(
«

𝗉𝗄, #«𝑚) =
𝑦 ⊕ 𝜎𝑛−1. ℬ should then have been able to simulate the hash oracle in order to
return 𝑦 ⊕ 𝜎𝑛−1 on input (

«

𝗉𝗄, #«𝑚). But it is not possible to provide this answer since
𝜎𝑛−1 is not part of the query input and is not uniquely determined.

3.3 Security of Existing Multivariate SAS Schemes
In this section, we show a universal forgery for the sequential aggregate signature
schemes of Section 3.2.1 when instantiated with the UOV signature scheme.

3.3.1 Description of the Forgery
We recall that in UOV, the trapdoor function is a multivariate quadratic map
𝒫 ∶ 𝔽𝑛

𝑞 → 𝔽𝑚
𝑞 that vanishes on a secret linear subspace 𝑂 ⊂ 𝔽𝑛

𝑞 of dimension 𝑚. A
more in-depth description can be found in Section 2.3.3.

In the following, we are assuming that the encoding function 𝖾𝗇𝖼(𝒙) can be
expressed via an appropriate affine map and, accordingly, 𝛼(𝒙) = 𝑅(𝒙) = 𝐀𝒙 + 𝒃,
where 𝐀 ∈ 𝔽𝑚×𝑛

𝑞 ,𝒃 ∈ 𝔽𝑚
𝑞 . In [92, 56], 𝖾𝗇𝖼(𝒙) is always the projection in the first 𝑚

and the last 𝑛 − 𝑚 components2 of 𝒙. This is a slight generalization that captures
the intuition that there must be a corresponding efficient decoding function.

Lemma 3.4. The 𝖥𝖧-𝖲𝖠𝖲𝖳 scheme of Section 3.2.1, instantiated with UOV, is not
FH-UF-CMA.

Proof. Let 𝗉𝗄𝑖 = 𝒫𝑖 be the target public key and assume that the forger ℱ knows a
valid aggregate signature Σ𝑖 = (𝜷1,… ,𝜷𝑖−1, 𝒙𝑖) for an honest history 𝐿𝑖 = (𝗉𝗄1,𝑚1),
… , (𝗉𝗄𝑖,𝑚𝑖). This is a typical attack environment, much weaker than the notion
of FH-UF-CMA that we introduced in Definition 3.2. Then, ℱ select a message
𝑚⋆

𝑖 on which it will produce a forged signature for the target user.

2In this case we would have that 𝛼(𝒙) = 𝐀𝒙 with 𝐀 = [𝐈𝑚 | 𝟎𝑚,𝑛−𝑚].

58

3.3 – Security of Existing Multivariate SAS Schemes

The forger ℱ computes a forged signature by replacing the (𝑖 − 1)-th honest
signer, as follows:

1. First, ℱ appropriately generates a UOV key pair (𝗉𝗄ℱ, 𝗌𝗄ℱ) = (𝒫ℱ,𝑂ℱ) by
randomly choosing an 𝑚-dimensional linear subspace 𝑂ℱ ⊂ ker𝐀 and
uses the same procedure of 𝖳𝗋𝖺𝗉𝖦𝖾𝗇𝗎𝗈𝗏 (Algorithm 2.4) to sample 𝒫ℱ that
vanishes on 𝑂ℱ.

2. Then,ℱ arbitrarily chooses a message𝑚ℱ, computes a corresponding forged
history 𝐿⋆ = 𝐿𝑖−2 ∪ {(𝗉𝗄ℱ,𝑚ℱ), (𝗉𝗄𝑖,𝑚𝑖)} and computes 𝜶⋆ ← 𝒫𝑖(𝒙𝑖) ⊕ 𝖧(𝐿⋆).

3. Finally, ℱ finds a preimage 𝒙ℱ under 𝒫ℱ for 𝐿ℱ = 𝐿𝑖−2 ∪ {(𝗉𝗄ℱ,𝑚ℱ)} such
that

𝒫ℱ(𝒙ℱ) = 𝜶𝑖−2 ⊕ 𝖧(𝐿ℱ) and 𝛼(𝒙ℱ) = 𝜶⋆. (3.1)

ThenΣ⋆ = (𝜷1,… ,𝜷𝑖−2, 𝛽(𝒙ℱ), 𝒙𝑖) is a valid aggregate signature for the forged
history 𝐿⋆.

Finding a preimage 𝒙ℱ that satisfies Equation (3.1) is equivalent to finding a
partially fixed preimage for 𝒫ℱ under the map 𝑅. In particular, the forger can
use the appropriately generated secret key 𝑂ℱ to restrict the preimage search
to an appropriate affine subspace and guarantee the condition 𝑅(𝒙ℱ) = 𝜶⋆. The
forger searches for a preimage of 𝒕 = 𝜶𝑖−2 ⊕𝖧(𝐿ℱ) by using a procedure similar to
the 𝖲𝗂𝗀𝗇 procedure described in Algorithm 2.5: on Line 1, instead of randomly
sampling the vector 𝒗 from 𝔽𝑛

𝑞 , samples 𝒗 from ker𝑅′, with 𝑅′(𝒙) = 𝐀𝒙 + (𝒃 − 𝜶⋆).
Then, when a preimage 𝒙ℱ ∈ 𝔽𝑛

𝑞 of 𝒕 is found, the forger would have 𝒙ℱ ∈ ker𝑅′,
since 𝒙ℱ = 𝒗 + 𝒐 with 𝒗 ∈ ker𝑅′ and 𝒐 ∈ ker𝐀. Therefore, 𝛼(𝒙ℱ) = 𝑅(𝒙ℱ) = 𝜶⋆.

We then show that Σ⋆ passes the verification correctly for the forged history
𝐿⋆:

1. The verifier applies the first iteration of 𝖠𝗀𝗀𝖵𝗋𝖿𝗒 (Algorithm 3.1) to recover
the previous signature 𝒙ℱ from 𝒙𝑖 as follows:

𝛼(𝒙ℱ) ← 𝒫𝑖(𝒙𝑖) ⊕ 𝖧(𝐿⋆) = 𝛼⋆, 𝒙ℱ ← 𝖽𝖾𝖼(𝛼(𝒙ℱ), 𝛽(𝒙ℱ))

2. Since 𝒙ℱ is a preimage of 𝜶𝑖−2 ⊕ 𝖧(𝐿ℱ), the verifier correctly obtains 𝒙𝑖−2
proceeding in the iterations of 𝖠𝗀𝗀𝖵𝗋𝖿𝗒:

𝜶𝑖−2 ← 𝒫ℱ(𝒙ℱ) ⊕ 𝖧(𝐿ℱ), 𝒙𝑖−2 ← 𝖽𝖾𝖼(𝜶𝑖−2,𝜷𝑖−2).

3. The (𝑖−2)-th signer was not tampered and, hence, the intermediate signature
Σ𝑖−2 = (𝜷1,… ,𝜷𝑖−3, 𝒙𝑖−2) can be correctly verified with 𝖠𝗀𝗀𝖵𝗋𝖿𝗒 on honest
history 𝐿𝑖−2.

Therefore, the verifier determines the forged signature Σ⋆ as valid.

59

History-Free Sequential Aggregation of Hash-and-Sign Signatures

3.3.2 Discussion
The previous forging procedure can be directly applied to constructions derived
from [143] and instantiated via UOV, such as [92, 56]. In particular, we have
shown how the existential unforgeability claims of [92, 56] are incorrect when
the schemes are instantiated with UOV. The attack essentially involves finding a
partially fixed preimage, following an adversarial key generation based on the
public parameters of the aggregate signature scheme, specifically the encoding
function. Although this attack may have applicability beyond UOV, it is not a
universal forgery for generic trapdoor functions. However, this result aligns with
the analysis of critical issues encountered when attempting to extend the security
proof of [143] to generic trapdoor functions, as summarized in the following.

Programming the Random Oracle

In [143], the random oracle can be simulated to determine preimages for any
permutation 𝜋 ∶ 𝒳 → 𝒳. This is typically achieved by sampling a uniformly
random 𝑥 ←$ 𝒳 and returning 𝜋(𝑥), which is uniformly distributed in 𝒴 = 𝒳.
However, in the case of a generic trapdoor function, we cannot assume that the
image of 𝖥 is uniform. Consequently, to provide an accurate simulation, we must
sample and return a uniformly random value in 𝒴.

Uniqueness of the Aggregate Signature

If we relax the previous condition and assume a uniformity property of the
trapdoor functions3 we may attempt to replicate the process described in [143]
to answer the signing oracle. Indeed, on input 𝑄 = (𝑚⋆,𝐿𝑛−1,Σ𝑛−1) the simulator
can use the knowledge of appropriate preimages for 𝖥𝑖 to craft a valid aggregate
signature on 𝐿𝑛−1 ∪ { (𝖥⋆,𝑚⋆) }. However, we argue that this property alone is
not sufficient for a correct simulation, which is instead based on the following
fact of TDP-based constructions: for a fixed input 𝐿𝑛 = (𝖥1,𝑚1),… , (𝖥𝑛,𝑚𝑛) there
exists a unique aggregate signature on 𝐿𝑛. Otherwise, if the aggregate signature
is not unique, the simulator would be unable to provide a valid response to the
aggregate signature query. In fact, on input 𝑄, the simulator would take the
preimage 𝑥⋆ for 𝖥⋆ on 𝛼(𝑥𝑛−1) ⊕ 𝖧(𝐿𝑛) associated to the random oracle query on
input 𝐿𝑛 = 𝐿𝑛−1 ∪ { (𝖥⋆,𝑚⋆) }. But, without the knowledge that 𝑥𝑛−1 is equal to
the preimage computed by the adversary on input 𝐿𝑛−1, the aggregate signature
produced by the simulator may not be properly verified, resulting in an invalid
response.

3For instance, this is the case for Trapdoor Preimage Sampleable Functions [108].

60

3.3 – Security of Existing Multivariate SAS Schemes

Reduction to OW

Eventually, the adversary will produce a valid non-trivial aggregate signature Σ𝑛
on input 𝐿𝑛 = (𝖥1,𝑚1),… , (𝖥𝑛,𝑚𝑛), where we assume, for simplicity, that 𝖥𝑛 = 𝖥⋆
is the target public key. Since the aggregate signature is correct, it follows that
𝖥⋆(𝑥𝑛) = 𝛼(𝑥𝑛−1) ⊕ 𝖧(𝐿𝑛) = 𝑦. In the context of TDPs, [143] shows that 𝑦 is equal
to the target 𝑦⋆ of the OW game, with probability (𝗊𝖧 + 𝗊𝖲 + 1)−1.

When we consider generic TDFs, the previously mentioned approach is not
valid, and it is necessary to modify the simulation of 𝖧 by returning a fresh
random value for each query. Moreover, we claim that in this setting, it is not
possible to correctly simulate the response to the oracles in order to obtain a
preimage of 𝑦⋆. In fact, to obtain a valid preimage, the simulator would require
𝖥⋆(𝑥𝑛) = 𝛼(𝑥𝑛−1) ⊕ 𝖧(𝐿𝑛) = 𝑦⋆ and therefore 𝖧(𝐿𝑛) = 𝑦⋆ ⊕ 𝛼(𝑥𝑛−1). It should then
have been able to simulate the random oracle to return 𝑦⋆ ⊕ 𝛼(𝑥𝑛−1) when given
the input 𝐿𝑛. However, it is not possible to provide this answer, as 𝑥𝑛−1 is not part
of the query input and is not uniquely determined.

Fixing the Forging Vulnerability

The main vulnerability of 𝖥𝖧-𝖲𝖠𝖲 concerns the overall malleability of the aggre-
gate signature. In the original scheme for TDPs, once the input 𝐿𝑛 = (𝖥1,𝑚1),
… , (𝖥𝑛,𝑚𝑛) is fixed, it was observed that there is a unique aggregate signature
on messages 𝑚1,… ,𝑚𝑛 under public keys 𝖥1,… , 𝖥𝑛. Instead, in the extended
version, uniqueness is lost due to the probabilistic nature of the inversion process.
Consequently, it is always possible to construct two aggregate signatures on the
same input, Σ = (𝛽1,… , 𝛽𝑖−1, 𝑥𝑛) and Σ′ = (𝛽1,… , 𝛽𝑖−1, 𝑥′𝑖), which differ only in the
aggregation of the last signature. Furthermore, as shown in the forgery presented
in Section 3.3.1, it is possible to have two aggregate signatures on the same input
Σ = (𝛽1,… , 𝛽𝑖−1, 𝑥𝑖) and Σ′ = (𝛽1,… , 𝛽′

𝑖−1, 𝑥𝑖) which differ only in the intermediate
partial encodings. While the loss of uniqueness is unavoidable, it is possible to
modify the scheme to prevent this additional form of malleability by making
partial 𝛽 encodings part of the random oracle input. We modify the aggregation
step of 𝖠𝗀𝗀𝖲𝗂𝗀𝗇((𝖥𝑖, 𝖨𝑖),𝑚𝑖,𝐿𝑖−1,Σ𝑖−1) (Algorithm 3.1): let Σ𝑖−1 = (𝛽1,… , 𝛽𝑖−2, 𝑥𝑖−1)
and compute

(𝛼𝑖−1, 𝛽𝑖−1) ← 𝖾𝗇𝖼(𝑥𝑖−1), 𝑥𝑖 ← 𝖨𝑖(𝛼𝑖−1 ⊕ 𝖧(𝐿𝑖,
#«𝛽 𝑖−1)),

where 𝐿𝑖 = 𝐿𝑖−1 ∪ { (𝖥𝑖,𝑚𝑖) } and
#«𝛽 𝑖−1 = (𝛽1,… , 𝛽𝑖−1).

Observe that now, once a new signature has been aggregated, it is no longer
possible to modify the previous partial encodings while maintaining the validity
of the aggregated signature. That is, ifΣ = (𝛽1,… , 𝛽𝑖−1, 𝑥𝑖) andΣ′ = (𝛽1,… , 𝛽′

𝑖−1, 𝑥′𝑖)
are valid aggregate signatures on the same input with 𝛽𝑖−1 ≠ 𝛽′

𝑖−1, then 𝑥𝑖 ≠ 𝑥′𝑖 . As
a result, the forging procedure described in Section 3.3.1 is no longer applicable,

61

History-Free Sequential Aggregation of Hash-and-Sign Signatures

as the adversary now needs to guess the partial encoding 𝛽(𝑥ℱ) of their own
signature. However, in doing so, 𝛽(𝑥ℱ) becomes fixed and 𝛼⋆ is not under the
adversary’s direct control. Once 𝛼⋆ is computed, the entire signature 𝑥ℱ is fixed,
and with high probability, it is not a valid signature.

This minor modification addresses the vulnerability exploited by our attack.
However, from a provable security perspective, this construction presents similar
problems to the original attempt to generalize [143]. As a result, we are unable to
provide a formal proof of security.

3.4 Sequential Aggregation of Hash-and-Sign Signa-
tures

In this section, we propose a partial-signature history-free sequential aggregate
signature based on generic trapdoor functions. To obtain a secure instantiation,
we only require the trapdoor function to be non-invertible (Definition 2.4) and
preimage-sampleable (Definition 2.8). We argue that these are the weakest prop-
erties required to extend the sequential aggregate framework of [143, 156, 49]
beyond trapdoor permutations and PSFs [91].

In the following, we introduce the notion of (partial-signature) history-free
SAS and the relevant security model. Next, we introduce the scheme by giving a
basic intuition and an algorithmic description of the aggregation process. The
remainder of the section is devoted to the security proof of the scheme, where we
provide a reduction from the non-invertibility and the preimage sampleability of
the trapdoor function to the existential unforgeability of the SAS scheme.

3.4.1 History-Free Sequential Aggregate Signature
History-Free Sequential Aggregate Signatures were first introduced in [49, 98] as
a variant of the original Full-History construction of [143] that does not require
knowledge of previous messages and public keys in the aggregation step.

Definition 3.5. A History-Free Sequential Aggregate Signature (HF-SAS) is a
tuple of three algorithms (𝖪𝖦𝖾𝗇,𝖠𝗀𝗀𝖲𝗂𝗀𝗇,𝖠𝗀𝗀𝖵𝗋𝖿𝗒):

• 𝖪𝖦𝖾𝗇(1𝜆): takes as input a security parameter 1𝜆 and generates a key pair
(𝗉𝗄, 𝗌𝗄).

• 𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝗌𝗄𝑖,𝑚𝑖,Σ𝑖−1): takes as input the secret key 𝗌𝗄𝑖 and the message𝑚𝑖 of
the 𝑖-th user and the previous aggregate signatureΣ𝑖−1. Returns an aggregate
signature Σ𝑖.

62

3.4 – Sequential Aggregation of Hash-and-Sign Signatures

Experiment 3.2: strong PS-HF-UF-CMA𝖲𝖠𝖲

1: (𝗉𝗄⋆, 𝗌𝗄⋆) ←$ 𝖪𝖦𝖾𝗇(1𝜆)
2: 𝒬 ← ∅
3: (𝐿𝑛, Σ̄𝑛) ←$ 𝒜𝖮,𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝗉𝗄⋆)
4: (𝗉𝗄1,𝑚1),… , (𝗉𝗄𝑛,𝑚𝑛) ← 𝐿𝑛
5: if ∄𝑖⋆ ∶ (𝗉𝗄𝑖⋆ = 𝗉𝗄⋆ ∧ (𝑚𝑖⋆, 𝜍𝑖⋆) ∉ 𝒬)

then
6: return ⊥
7: return 𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑛, Σ̄𝑛)

𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝑚, 𝜚):
1: (𝜚′, 𝜍′) ←$ 𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝗌𝗄⋆,𝑚, 𝜚)
2: 𝒬 ← 𝒬 ∪ { (𝑚, 𝜍′) }
3: return 𝜚′, 𝜍′

• 𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑛,Σ𝑛): takes as input the full history 𝐿𝑛 = (𝗉𝗄1,𝑚1),… , (𝗉𝗄𝑛,𝑚𝑛)
of public key, message pairs and an aggregate signature Σ𝑛. Returns 1 if Σ𝑛
is a valid aggregate signature and 0 otherwise.

Note that the aggregation algorithm 𝖠𝗀𝗀𝖲𝗂𝗀𝗇 does not require the public keys
andmessages from the previous signers. Finally, the verifier can check the validity
of the aggregate signature by running 𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑛,Σ𝑛).

In the following, we define a slight modification of HF-SAS, as formalized in
[48]. In this variant, the aggregation step requires only partial knowledge about
the so-far aggregated signature. This description better captures the intuition
behind the use of the encoding function and is better suited to our proposed
scheme. During each aggregation step, the signer produces a partial signature
information, which will be sent to the next signer, along with a complementary
component. At the end of the aggregation sequence, an additional 𝖢𝗈𝗆𝖻𝗂𝗇𝖾 step is
performed, potentially by a third party. This step combines all the complementary
information and the last signature of the sequence, resulting in the complete
aggregated signature.

Definition 3.6. A Partial-Signature History-Free Sequential Aggregate Signature
(PS-HF-SAS) is a tuple of four algorithms (𝖪𝖦𝖾𝗇,𝖠𝗀𝗀𝖲𝗂𝗀𝗇,𝖠𝗀𝗀𝖵𝗋𝖿𝗒,𝖢𝗈𝗆𝖻𝗂𝗇𝖾):

• 𝖪𝖦𝖾𝗇 and 𝖠𝗀𝗀𝖵𝗋𝖿𝗒 as described in Definition 3.5.

• 𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝗌𝗄𝑖,𝑚𝑖, 𝜚𝑖−1): takes as input the secret key 𝗌𝗄𝑖 and the message 𝑚𝑖
of the 𝑖-th user and a partial description 𝜚𝑖−1 of the previous aggregate
signature Σ𝑖−1. Computes an updated aggregate signature Σ𝑖 and returns a
partial description 𝜚𝑖 and some complementary information 𝜍𝑖.

• 𝖢𝗈𝗆𝖻𝗂𝗇𝖾(𝜍1,… , 𝜍𝑛−1,Σ𝑛): takes as input the complementary information 𝜍𝑖
of the first 𝑛 − 1 signatures and the full description of the last signature Σ𝑛.
Returns the complete description of the aggregate signature Σ̄𝑛.

63

History-Free Sequential Aggregation of Hash-and-Sign Signatures

Below, we show the definition of Partial-Signature History-Free existential
Unforgeability against Chosen-Message Attacks (PS-HF-UF-CMA). In this model,
the forger controls all signers’ private keys except for at least one honest signer.
The forger can choose the keys of the rogue signers and adaptively query an
aggregate signature oracle. Finally, towin the experiment, the forgermust produce
a valid, non-trivial aggregate signature involving the public key of the honest
signer. A stronger notion is also considered in [48], where the adversary may
produce forgery on messages already queried to the signing oracle, provided
that the complementary part of the corresponding signature is distinct from the
oracle’s response. We denote this variant as strong PS-HF-UF-CMA.

Definition 3.7 (PS-HF-UF-CMA Security). Let 𝖮 be a random oracle, let 𝖲𝖠𝖲 =
(𝖪𝖦𝖾𝗇,𝖠𝗀𝗀𝖲𝗂𝗀𝗇,𝖠𝗀𝗀𝖵𝗋𝖿𝗒,𝖢𝗈𝗆𝖻𝗂𝗇𝖾) be a 𝖯𝖲-𝖧𝖥-𝖲𝖠𝖲 scheme, let 𝒜 be an adversary.
We define the advantage of 𝒜 playing the strong PS-HF-UF-CMA game (Experi-
ment 3.2) against 𝖲𝖠𝖲 as follows:

𝖠𝖽𝗏PS-HF-UF-CMA
𝖲𝖠𝖲 (𝒜) = Pr[PS-HF-UF-CMA𝖲𝖠𝖲(𝒜) = 1].

We say that 𝖲𝖠𝖲 is strongly partial-signature history-free unforgeable against chosen
message attacks if the advantage 𝖠𝖽𝗏PS-HF-UF-CMA

𝖲𝖠𝖲 (𝒜) is negligible for any adversary
𝒜.

3.4.2 The Scheme
We present a 𝖯𝖲-𝖧𝖥-𝖲𝖠𝖲 scheme following the probabilistic Hash-and-Sign with
retry paradigm. The intuition behind our scheme closely follows the one of [156,
49]. We use a two-step hash procedure: first, the signature 𝑥𝑖−1 of the previous
signer and the message 𝑚𝑖 are contracted to a short value ℎ𝑖, and then expanded
to the codomain of the trapdoor function. The value ℎ𝑖 can be aggregated and
made available to the verifier, who can expand it before knowing 𝑥𝑖−1. In this
way, Neven [156] showed that the verifier does not need to check the validity
of the signers’ public keys. When calculating the first hash, we also require the
signer to concatenate a random salt 𝑟𝑖, which will later be part of the aggregate
signature. In [49], the salt is introduced to prevent a chosen message attack in
the history-free setting. In our scheme, the use of the salt descends from the
probabilistic Hash-and-Sign paradigm and provides a solution to overcome the
technical challenges of using trapdoor functions that are not permutations. As
discussed later in Section 3.3, attempting to remove the random salt would make
the construction insecure even in the full-history setting.

A high-level description of the scheme 𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 is shown in Figure 3.3
while a detailed description is given in Algorithm 3.2. The properties of the
underlying trapdoor function are as described in Section 2.1.

64

3.4 – Sequential Aggregation of Hash-and-Sign Signatures

𝖧

𝑥𝑖−1
𝖥𝑖
𝑚𝑖
𝑟𝑖

𝖦 𝖨𝑖 𝑥𝑖

𝑥𝑖−1ℎ𝑖−1

𝖾𝗇𝖼 𝛽𝑖−1

𝛽1,… , 𝛽𝑖−2𝑟1,… , 𝑟𝑖−1

𝜂𝑖 ℎ𝑖 𝑔𝑖 𝑦𝑖
𝛼𝑖−1

ℎ𝑖

𝖠𝗀𝗀𝖲𝗂𝗀𝗇

Figure 3.3: High-level description of 𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 scheme. The dashed arrows in
the output represent the complementary part of the signature.

Algorithm 3.2: Hash-and-Sign History-Free SAS (𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲)
Let ℎ0 = 𝜀, 𝑥0 = 𝜀. The random oracles are 𝖧 ∶ {0,1}∗ → {0,1}2𝜆 and 𝖦 ∶ {0,1}2𝜆 → 𝒴.
The encoding function is 𝖾𝗇𝖼 ∶ 𝒳 → 𝒴×𝒳′ and the corresponding decoding function
is 𝖽𝖾𝖼 ∶ 𝒴 ×𝒳′ → 𝒳 such that 𝖽𝖾𝖼(𝖾𝗇𝖼(𝑥)) = 𝑥. 𝜚𝑖 and 𝜍𝑖 are the partial description
and the complementary information of the aggregate signature Σ𝑖, respectively.

𝖪𝖦𝖾𝗇(1𝜆):
1: (𝖥, 𝖨) ←$ 𝖳𝗋𝖺𝗉𝖦𝖾𝗇(1𝜆)
2: return 𝗉𝗄 ← 𝖥, 𝗌𝗄 ← (𝖥, 𝖨)

𝖠𝗀𝗀𝖲𝗂𝗀𝗇((𝖥𝑖, 𝖨𝑖), 𝑚𝑖, 𝜚𝑖−1):
1: (ℎ𝑖−1, 𝑥𝑖−1) ← 𝜚𝑖−1
2: (𝛼𝑖−1, 𝛽𝑖−1) ← 𝖾𝗇𝖼(𝑥𝑖−1)
3: repeat
4: 𝑟𝑖 ←$ 𝖱
5: 𝜂𝑖 ← 𝖧(𝖥𝑖,𝑚𝑖, 𝑟𝑖, 𝑥𝑖−1)
6: ℎ𝑖 ← ℎ𝑖−1 ⊕ 𝜂𝑖
7: 𝑔𝑖 ← 𝖦(ℎ𝑖)
8: 𝑦𝑖 ← 𝑔𝑖 ⊕ 𝛼𝑖−1
9: 𝑥𝑖 ←$ 𝖨𝑖(𝑦𝑖)

10: until 𝑥𝑖 ≠ ⊥
11: 𝜚𝑖 ← (ℎ𝑖, 𝑥𝑖)
12: 𝜍𝑖 ← (𝑟𝑖, 𝛽𝑖−1)
13: return 𝜚𝑖, 𝜍𝑖

𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑛, Σ̄𝑛):
1: (𝖥1,𝑚1),… , (𝖥𝑛,𝑚𝑛) ← 𝐿𝑛
2: (#«𝑟 𝑛,

#«𝛽𝑛−1, ℎ𝑛, 𝑥𝑛) ← Σ̄𝑛
3: for 𝑖 ← 𝑛,… , 2 do
4: 𝑦𝑖 ← 𝖥𝑖(𝑥𝑖)
5: 𝑔𝑖 ← 𝖦(ℎ𝑖)
6: 𝛼𝑖−1 ← 𝑔𝑖 ⊕ 𝑦𝑖
7: 𝑥𝑖−1 ← 𝖽𝖾𝖼(𝛼𝑖−1, 𝛽𝑖−1)
8: 𝜂𝑖 ← 𝖧(𝖥𝑖,𝑚𝑖, 𝑟𝑖, 𝑥𝑖−1)
9: ℎ𝑖−1 ← ℎ𝑖 ⊕ 𝜂𝑖

10: return ℎ1 = 𝖧(𝖥1, 𝑟1,𝑚1, 𝜀)∧𝖥1(𝑥1) =
𝖦(ℎ1)

𝖢𝗈𝗆𝖻𝗂𝗇𝖾(𝜍1, …, 𝜍𝑛−1, Σ𝑛):
1: (𝑟𝑖, 𝛽𝑖−1) ← 𝜍𝑖
2: (𝑟𝑛, 𝛽𝑛−1, ℎ𝑛, 𝑥𝑛) ← Σ𝑛
3: #«𝑟 𝑛 ← (𝑟1,… , 𝑟𝑛)
4:

#«𝛽𝑛−1 ← (𝛽1,… , 𝛽𝑛−1)
5: return Σ̄𝑛 ← (#«𝑟 𝑛,

#«𝛽𝑛−1, ℎ𝑛, 𝑥𝑛)

3.4.3 Security Proof
In the following, we prove the strong PS-HF-UF-CMA security of Algorithm 3.2.

65

History-Free Sequential Aggregation of Hash-and-Sign Signatures

Theorem 3.8. Let 𝖳 be a TDF. Let 𝒜 be a strong PS-HF-UF-CMA adversary against
the 𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 scheme on 𝖳 in the random oracle model, which runs in time 𝑡 and
makes 𝗊𝖲 signing queries, 𝗊𝖧 queries to the random oracle 𝖧 and 𝗊𝖦 queries to the
random oracle 𝖦. Then, there exists an INV adversary ℬ against 𝖳 that runs in time
𝑡 +𝒪((𝗊𝖧 + 𝗊𝖲 + 1) ⋅ 𝗉𝗈𝗅𝗒(len(𝒳), len(𝒴))), and a PS adversary 𝒟 against 𝖳 issuing 𝗊𝖲
sampling queries that runs in time 𝑡 +𝒪(𝗊𝖲 ⋅ 𝗉𝗈𝗅𝗒(len(𝒳), len(𝒴))), such that

𝖠𝖽𝗏PS-HF-UF-CMA
𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 (𝒜) ≤(𝜓𝗊𝖧) ⋅ 𝖠𝖽𝗏INV

𝖳 (ℬ) + 𝖠𝖽𝗏PS𝖳 (𝒟) +
(𝗊𝖲 + 𝗊𝖧)(𝗊′𝖲 + 𝗊𝖧 + 𝗊𝖦)

22𝜆

+
𝗊𝖲(𝗊′𝖲 + 𝗊𝖧)

|𝖱|
+

𝜓𝗊2𝖧
2|𝒴|

+
(𝜓𝗊𝖧)

𝜓+1|𝒳|
(𝜓 + 1)! ⋅ |𝒴|𝜓+1

,

where 𝜓 ≥ ⌈len(𝒳)/ len(𝒴)⌉, and 𝗊′𝖲 is a bound on the total number of queries to 𝖧 in
all the signing queries.

In the following, we sketch the high-level idea of the proof; full details can be
found after Lemmas 3.9 to 3.11 at the end of this section. We prove the reduction
by showing that the strong PS-HF-UF-CMA game can be simulated by the INV
adversary ℬ. First, we modify the PS-HF-UF-CMA game such that in 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇
the salt 𝑟 is chosen uniformly at random in 𝖱 and the preimage is generated
by 𝑥 ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥⋆) instead of iterating until 𝖨⋆(𝑦) ≠ ⊥. The PS adversary 𝒟
can simulate the two games by either playing PS0 or PS1 and the advantage in
distinguishing the two games can therefore be estimated with 𝖠𝖽𝗏PS𝖳 (𝒟). Once
the preimages are produced by 𝑥 ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥⋆) without retry, we can adapt
the techniques for trapdoor permutations of [49] to complete the reduction. In
particular, we will use a labelled tree 𝖧𝖳𝗋𝖾𝖾 whose nodes will be populated by
some of the queries to the random oracle 𝖧. The 𝖧𝖳𝗋𝖾𝖾 is initialized with a root
node with a single value ℎ0 = 𝜀. Each subsequent node 𝑁𝑖 is added following a
query to the random oracle 𝖧 with input 𝑄𝑖 = (𝖥𝑖,𝑚𝑖, 𝑟𝑖, 𝑥𝑖−1) and will store the
following values:

• a reference to its parent node 𝑁𝑖−1;

• the query 𝑄𝑖 to the random oracle 𝖧;

• the hash response to the query 𝜂𝑖 ← 𝖧(𝑄𝑖);

• the hash state ℎ𝑖 ← ℎ𝑖−1 ⊕𝜂𝑖, where ℎ𝑖−1 is the hash state stored in the parent
node 𝑁𝑖−1;

• an additional value 𝑦𝑖 ← 𝖦(ℎ𝑖)⊕𝛼𝑖−1 (where 𝛼𝑖−1 is computed from 𝖾𝗇𝖼(𝑥𝑖−1))
that will be used to establish if future nodes can be added as children of 𝑁𝑖.

66

3.4 – Sequential Aggregation of Hash-and-Sign Signatures

A node 𝑁𝑖 can be added as a child of a node 𝑁𝑖−1 if it satisfies the relation
𝖥𝑖−1(𝑥𝑖−1) = 𝑦𝑖−1, where 𝖥𝑖−1 and 𝑦𝑖−1 are stored in 𝑁𝑖−1, while 𝑥𝑖−1 is stored in 𝑁𝑖.
This relationship establishes that the query 𝑄𝑖 can be properly used by the signer
with key 𝖥𝑖 to aggregate their signature on message 𝑚𝑖 with previous signature
𝑥𝑖−1, produced by key 𝖥𝑖−1 and hash state ℎ𝑖−1, which in turn are stored in 𝑁𝑖−1.
Whenever a query 𝑄𝑖 = (𝖥𝑖,𝑚𝑖, 𝑟𝑖, 𝑥𝑖−1), with 𝑥𝑖−1 ≠ 𝜀, satisfies this relation with a
node 𝑁𝑖−1 we say that 𝑄𝑖 can be tethered to 𝑁𝑖−1. If 𝑥𝑖−1 = 𝜀, then 𝑄𝑖 can always be
tethered to the root of the 𝖧𝖳𝗋𝖾𝖾.

Eventually, when the adversary 𝒜 outputs a valid aggregate signature Σ̄𝑛
for the history 𝐿𝑛 = (𝗉𝗄1,𝑚1),… , (𝗉𝗄𝑛,𝑚𝑛), the simulator takes 𝑖⋆ ∈ [𝑛] such that
𝗉𝗄𝑖⋆ = 𝗉𝗄⋆ and (𝑚𝑖⋆, 𝜍𝑖⋆) ∉ 𝒬 (the index 𝑖⋆ is guaranteed to exist when𝒜 is winning).
It then recovers 𝑥𝑖⋆ by iterating the procedure of Lines 3 to 9 in 𝖠𝗀𝗀𝖵𝗋𝖿𝗒 for 𝑛 − 𝑖⋆
steps. Then, the simulator checks if 𝑥𝑖⋆ is a preimage of a 𝑦𝑖⋆ in the𝖧𝖳𝗋𝖾𝖾 as a child
of the node𝑁𝑖⋆−1 storing𝑄𝑖⋆−1 = (𝗉𝗄𝑖⋆−1,𝑚𝑖⋆−1, 𝑟𝑖⋆−1, 𝑥𝑖⋆−2), which is itself a child of
the node 𝑁𝑖⋆−2, and so on until the node 𝑁1. If this is not the case, the simulator
aborts by raising 𝖻𝖺𝖽𝗍𝖾𝗍𝗁. Otherwise, the value 𝑥𝑖⋆ produced by the forgery will
satisfy 𝖥⋆(𝑥𝑖⋆) = 𝑦𝑖⋆ for some 𝑦𝑖⋆ produced either on Line 19 or on Line 21 of 𝖧
and stored in 𝑁𝑖⋆. With probability 1/(𝜓𝗊𝖧), we have that 𝑦𝑖⋆ was produced on
Line 21 of 𝖧 and it is equal to 𝑦⋆. Therefore, 𝖥⋆(𝑥𝑖⋆) = 𝑦⋆ and ℬwins his INV game
by returning 𝑥𝑖⋆.

For the complete proof of Theorem 3.8 we need the following technical lem-
mas.

Lemma 3.9. When a new node is added to the 𝖧𝖳𝗋𝖾𝖾 as a result of a call to 𝖧, the
additional value 𝑦′ is chosen uniformly at random from 𝒴.

Proof. When a new node is added to the 𝖧𝖳𝗋𝖾𝖾 on Line 23 of 𝖧, there are two
possibilities for the additional value 𝑦′. In both cases, 𝑦′ is chosen uniformly
at random from 𝒴 and is independent of the view of 𝒜. In fact, whenever the
query to 𝖧 is not the special random guess 𝑐⋆ chosen by the simulator, we have
𝑦′ ← 𝖦(ℎ′) ⊕ 𝛼. Here, 𝖦(ℎ′) is guaranteed to be a fresh uniformly random value
since, otherwise, 𝖧 would abort on Line 16 and the node would not be added to
the 𝖧𝖳𝗋𝖾𝖾. If, on the other hand, the query 𝑐⋆ was made to 𝖧, then we set 𝑦′ ← 𝑦⋆
for one of the new nodes to be added. Since 𝑐⋆ was chosen randomly among all
queries to 𝖧, the assignment of 𝑦⋆ is made independently of the view of 𝒜 and
previous interactions with 𝖧.

Lemma 3.10. For any 𝑘 > 𝜓 functions 𝖥1,… , 𝖥𝑘 ∶ 𝒳 → 𝒴 and uniformly random
𝑦1,… , 𝑦𝑘 ∈ 𝒴, there exists 𝑥 ∈ 𝒳 such that 𝖥𝑖(𝑥) = 𝑦𝑖, for every 𝑖 = 1,… , 𝑘, with
probability at most |𝒳|/|𝒴|𝑘.

Proof. Let 𝑆𝖥
𝑦 = {𝑥 ∈ 𝒳 ∶ 𝖥(𝑥) = 𝑦} be the set of preimages of 𝑦 under 𝖥. For

a random choice of 𝑦1 it holds that |𝑆𝖥1
𝑦1 | = 𝛼 for some 0 ≤ 𝛼 ≤ |𝒳|. Then,

67

History-Free Sequential Aggregation of Hash-and-Sign Signatures

Algorithm 3.3: Full Reduction OW ⟹ PS-HF-UF-CMA

ℬ(𝖥⋆, 𝑦⋆):
1: 𝒬 ← ∅; 𝑐⋆ ←$ [𝗊𝖧]; 𝑐 ← 0
2: (𝐿𝑛, Σ̄𝑛) ←$ 𝒜𝖧,𝖦,𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝖥⋆)
3: (𝖥1,𝑚1),… , (𝖥𝑛,𝑚𝑛) ← 𝐿𝑛
4: if 𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑛,Σ𝑛) ∧ ∃𝑖⋆ ∶ (𝖥𝑖⋆ = 𝖥⋆ ∧

𝑚𝑖⋆ ∉ 𝒬) then
5: Recover 𝑥𝑖⋆ as in 𝖠𝗀𝗀𝖵𝗋𝖿𝗒
6: 𝖭𝖫𝗂𝗌𝗍 ← 𝖫𝗈𝗈𝗄𝗎𝗉(𝑥𝑖⋆)
7: if 𝖭𝖫𝗂𝗌𝗍 = ⊥ then
8: raise 𝖻𝖺𝖽𝗍𝖾𝗍𝗁
9: for 𝑁𝑖⋆ ∈ 𝖭𝖫𝗂𝗌𝗍 do

10: Retrieve 𝑦𝑖⋆ from 𝑁𝑖⋆

11: if 𝑦𝑖⋆ = 𝑦⋆ then
12: return 𝑥𝑖⋆
13: raise 𝖻𝖺𝖽𝗂𝗇𝗏

𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝑚, 𝜚 = (ℎ, 𝑥)):
1: 𝒬 ← 𝒬 ∪ {𝑚}
2: (𝛼, 𝛽) ← 𝖾𝗇𝖼(𝑥)
3: 𝑟 ←$ 𝖱
4: if 𝖧𝖳[𝖥⋆,𝑚, 𝑟, 𝑥] ≠ ⊥ then
5: raise 𝖻𝖺𝖽𝗁𝖼𝗈𝗅
6: 𝜂 ←$ {0,1}2𝜆
7: 𝖧𝖳[𝖥⋆,𝑚, 𝑟, 𝑥] ← 𝜂
8: ℎ′ ← ℎ ⊕ 𝜂
9: if 𝖦𝖳[ℎ′] ≠ ⊥ then

10: raise 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟣
11: 𝑥′ ←$ 𝒳
12: 𝑦′ ← 𝖥⋆(𝑥′)
13: 𝖦𝖳[ℎ′] ← 𝑦′ ⊕ 𝛼
14: return (𝑟, 𝛽), (ℎ′, 𝑥′)

𝖦(ℎ):
1: if 𝖦𝖳[ℎ] = ⊥ then
2: 𝑔 ←$ 𝒴
3: 𝖦𝖳[ℎ] ← 𝑔
4: return 𝖦𝖳[ℎ]

𝖧(𝖥, 𝑚, 𝑟, 𝑥):
1: 𝑄 ← (𝖥,𝑚, 𝑟, 𝑥)
2: 𝑐 ← 𝑐 + 1
3: if 𝖧𝖳[𝑄] = ⊥ then
4: 𝜂 ←$ {0,1}2𝜆
5: 𝖧𝖳[𝑄] ← 𝜂
6: 𝖭𝖫𝗂𝗌𝗍 ← 𝖫𝗈𝗈𝗄𝗎𝗉(𝑥)
7: if 𝖥 = 𝖥⋆ ∧ 𝑐 = 𝑐⋆ then
8: 𝑖⋆ ←$ [|𝖭𝖫𝗂𝗌𝗍|]
9: for 𝑖 ∈ [|𝖭𝖫𝗂𝗌𝗍|] do

10: 𝑁𝑖 ← 𝖭𝖫𝗂𝗌𝗍[𝑖]
11: 𝑁 ′

𝑖 ← new node with parent 𝑁𝑖
12: Retrieve ℎ𝑖 from 𝑁𝑖
13: ℎ′𝑖 ← ℎ𝑖 ⊕ 𝜂
14: (𝛼, 𝛽) ← 𝖾𝗇𝖼(𝑥)
15: if 𝖦𝖳[ℎ′𝑖] ≠ ⊥ then
16: raise 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟤
17: if 𝖥 ≠ 𝖥⋆ ∨ 𝑐 ≠ 𝑐⋆ ∨ 𝑖 ≠ 𝑖⋆ then
18: 𝑔 ′𝑖 ← 𝖦(ℎ′𝑖)
19: 𝑦′𝑖 ← 𝑔 ′𝑖 ⊕ 𝛼
20: else
21: 𝑦′𝑖 ← 𝑦⋆𝑖
22: 𝖦𝖳[ℎ′𝑖] ← 𝑦′𝑖 ⊕ 𝛼
23: Populate node 𝑁 ′

𝑖 with
𝑄, 𝜂, ℎ′𝑖, 𝑦′𝑖

24: return 𝖧𝖳[𝑄]

𝖫𝗈𝗈𝗄𝗎𝗉(𝑥):
1: if 𝑥 = 𝜀 then
2: return Root of 𝖧𝖳𝗋𝖾𝖾
3: 𝖭𝖫𝗂𝗌𝗍 ← {𝑁 ∈ 𝖧𝖳𝗋𝖾𝖾 ∶ (𝖥, 𝑦) ∈ 𝑁 ∧

𝖥(𝑥) = 𝑦}
4: if |𝖭𝖫𝗂𝗌𝗍| > 𝜓 then
5: raise 𝖻𝖺𝖽𝗍𝖼𝗈𝗅
6: else if |𝖭𝖫𝗂𝗌𝗍| = 0 then
7: return ⊥
8: else
9: return 𝖭𝖫𝗂𝗌𝗍

68

3.4 – Sequential Aggregation of Hash-and-Sign Signatures

there are at most 𝛼 possible values for the tuple (𝑦2,… , 𝑦𝑘), corresponding to
{ (𝖥2(𝑥),… , 𝖥𝑘(𝑥)) ∶ 𝑥 ∈ 𝑆𝖥1

𝑦1 }, such that ⋂𝑆𝖥𝑖
𝑦𝑖 ≠ ∅. Since 𝑦2,… , 𝑦𝑘 are uniformly

chosen in 𝒴, the probability of a non-empty intersection is at most 𝛼|𝒴|1−𝑘. There-
fore, the desired probability is bounded by varying over the possible values of
𝛼:

|𝒳|

∑
𝛼=0

𝛼
|𝒴|𝑘−1

Pr𝑦1←$𝒴[|𝑆
𝖥1
𝑦1 | = 𝛼] = 1

|𝒴|𝑘−1

|𝒳|

∑
𝛼=0

𝛼 ⋅
|{ 𝑦1 ∈ 𝒴 ∶ |𝑆𝖥1

𝑦1 | = 𝛼 }|
|𝒴|

=
|𝒳|
|𝒴|𝑘

.

Lemma 3.11. If an input 𝑄 has not been entered in the 𝖧𝖳𝗋𝖾𝖾 after being queried to 𝖧,
the probability that it will ever become tethered to a node in 𝖧𝖳𝗋𝖾𝖾 is at most 𝜓𝗊′/|𝒴|,
where 𝗊′ is the number of queries made to 𝖧 after 𝑄.

Proof. Suppose that 𝑄 = (𝖥,𝑚, 𝑟, 𝑥) was queried to 𝖧 and was not added to the
𝖧𝖳𝗋𝖾𝖾, i.e. 𝖫𝗈𝗈𝗄𝗎𝗉(𝑥) = ⊥. Now suppose that a query 𝑄′ = (𝖥′,𝑚′, 𝑟 ′, 𝑥′) was
subsequently sent to𝖧 andwas added to𝖧𝖳𝗋𝖾𝖾 as part of a node𝑁 ′ with additional
value 𝑦′. For 𝑄 to be tethered to 𝑁 ′, it must hold that 𝖥′(𝑥) = 𝑦′. Following
Lemma 3.9, when a new node is added to the 𝖧𝖳𝗋𝖾𝖾 as a result of a call to 𝖧,
the additional value 𝑦′ is chosen uniformly at random from 𝒴. In particular, 𝑦′
is random and independent of 𝖥′ and 𝑥. Therefore, the probability of having
𝖥′(𝑥) = 𝑦′ is |𝒴|−1. Since there are at most 𝗊′ queries to 𝖧 after 𝑄 and each query
can add at most 𝜓 nodes to the 𝖧𝖳𝗋𝖾𝖾, the desired probability follows by the union
bound.

Proof for strong PS-HF-UF-CMA security (Theorem 3.8)

Proof. We prove the reduction by presenting a sequence of hybrid games, modify-
ing the strong PS-HF-UF-CMA game (Experiment 3.2) until it can be simulated
by the INV adversary ℬ. The complete reduction is described in Algorithm 3.3.
In the following, we use the notation Pr[𝖦𝖺𝗆𝖾𝗇(𝒜) = 1] to denote the probability
that 𝖦𝖺𝗆𝖾𝗇 returns 1 when played by 𝒜. The game sequence 𝖦𝖺𝗆𝖾𝟢-𝖦𝖺𝗆𝖾𝟥 for
𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇 is detailed in Argument 3.1. The game sequence 𝖦𝖺𝗆𝖾𝟥-𝖦𝖺𝗆𝖾𝟧 for 𝖧 is
detailed in Argument 3.2.

𝖦𝖺𝗆𝖾𝟢 This is the original strong PS-HF-UF-CMA game against the 𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲
scheme, except that it uses programmable random oracles. At the start of
the game, the challenger initializes two tables, 𝖧𝖳 for 𝖧 and 𝖦𝖳 for 𝖦. When
a query 𝑄 for 𝖧 is received, if 𝖧𝖳[𝑄] = ⊥ it uniformly samples 𝜂 ←$ {0,1}2𝜆
and stores 𝖧𝖳[𝑄] ← 𝜂, finally it returns 𝖧𝖳[𝑄] (similarly for 𝖦). It follows
that Pr[𝖦𝖺𝗆𝖾𝟢(𝒜) = 1] = 𝖠𝖽𝗏PS-HF-UF-CMA

𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 (𝒜).

69

History-Free Sequential Aggregation of Hash-and-Sign Signatures

Hybrid Argument 3.1: Games for 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝑚, 𝜚 = (ℎ, 𝑥))
𝖦𝖺𝗆𝖾𝟢:
1: (𝛼, 𝛽) ← 𝖾𝗇𝖼(𝑥)
2: repeat
3: 𝑟 ←$ 𝖱
4: 𝜂 ← 𝖧(𝖥⋆,𝑚, 𝑟, 𝑥)
5: ℎ′ ← ℎ ⊕ 𝜂
6: 𝑔 ′ ← 𝖦(ℎ′)
7: 𝑦′ ← 𝑔 ′ ⊕ 𝛼
8: 𝑥′ ←$ 𝖨⋆(𝑦′)
9: until 𝑥′ ≠ ⊥

10: return (𝑟, 𝛽), (ℎ′, 𝑥′)

𝖦𝖺𝗆𝖾𝟣-𝖦𝖺𝗆𝖾𝟤:
1: (𝛼, 𝛽) ← 𝖾𝗇𝖼(𝑥)
2: repeat
3: 𝑟 ←$ 𝖱
4: if𝖧𝖳[𝖥⋆,𝑚, 𝑟, 𝑥] ≠ ⊥

then
5: raise 𝖻𝖺𝖽𝗁𝖼𝗈𝗅
6: 𝜂 ←$ {0,1}2𝜆
7: 𝖧𝖳[𝖥⋆,𝑚, 𝑟, 𝑥] ← 𝜂
8: ℎ′ ← ℎ ⊕ 𝜂
9: if 𝖦𝖳[ℎ′] ≠ ⊥ then

10: raise 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟣
11: 𝑦′ ←$ 𝒴
12: 𝖦𝖳[ℎ′] ← 𝑦′ ⊕ 𝛼
13: 𝑥′ ← 𝖨⋆(𝑦′)
14: until 𝑥′ ≠ ⊥
15: return (𝑟, 𝛽), (ℎ′, 𝑥′)

𝖦𝖺𝗆𝖾𝟥-𝖦𝖺𝗆𝖾𝟧:
1: (𝛼, 𝛽) ← 𝖾𝗇𝖼(𝑥)
2: 𝑟 ←$ 𝖱
3: if 𝖧𝖳[𝖥⋆,𝑚, 𝑟, 𝑥] ≠ ⊥

then
4: raise 𝖻𝖺𝖽𝗁𝖼𝗈𝗅
5: 𝜂 ←$ {0,1}2𝜆
6: 𝖧𝖳[𝖥⋆,𝑚, 𝑟, 𝑥] ← 𝜂
7: ℎ′ ← ℎ ⊕ 𝜂
8: if 𝖦𝖳[ℎ′] ≠ ⊥ then
9: raise 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟣

10: 𝑥′ ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥⋆)
11: 𝑦′ ← 𝖥⋆(𝑥′)
12: 𝖦𝖳[ℎ′] ← 𝑦′ ⊕ 𝛼
13: return (𝑟, 𝛽), (ℎ′, 𝑥′)

𝖦𝖺𝗆𝖾𝟣 This game is identical to 𝖦𝖺𝗆𝖾𝟢 except that 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇 aborts by raising
𝖻𝖺𝖽𝗁𝖼𝗈𝗅 if on query (𝑚, 𝜚 = (ℎ, 𝑥)) it samples a salt 𝑟 such that the random
oracle 𝖧 was already queried at input 𝑄 = (𝖥⋆,𝑚, 𝑟, 𝑥), i.e. 𝖧𝖳[𝑄] ≠ ⊥.
Otherwise, it samples 𝜂 ←$ {0,1}2𝜆 and programs 𝖧𝖳[𝑄] ← 𝜂. It follows that
|Pr[𝖦𝖺𝗆𝖾𝟢(𝒜) = 1] − Pr[𝖦𝖺𝗆𝖾𝟣(𝒜) = 1]| ≤ Pr[𝖻𝖺𝖽𝗁𝖼𝗈𝗅].

𝖦𝖺𝗆𝖾𝟤 This game is identical to 𝖦𝖺𝗆𝖾𝟣 except that 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇 aborts by raising
𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟣 if on query (𝑚, 𝜚 = (ℎ, 𝑥)), after sampling 𝜂 ←$ {0,1}2𝜆 it computes
ℎ′ ← ℎ ⊕ 𝜂 such that the random oracle 𝖦 was already queried at input ℎ′,
i.e.𝖦𝖳[ℎ′] ≠ ⊥. Otherwise, it samples 𝑦′ ←$ 𝒴 and programs𝖦𝖳[ℎ′] ← 𝑦′⊕𝛼.
It follows that |Pr[𝖦𝖺𝗆𝖾𝟣(𝒜) = 1] − Pr[𝖦𝖺𝗆𝖾𝟤(𝒜) = 1]| ≤ Pr[𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟣].

𝖦𝖺𝗆𝖾𝟥 This game is identical to 𝖦𝖺𝗆𝖾𝟤 except that 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇 directly samples
𝑟 ←$ 𝖱, 𝑥′ ←$ 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥⋆) and computes 𝑦′ ← 𝖥⋆(𝑥′) instead of computing
𝑥′ ← 𝖨⋆(𝑦′) after sampling 𝑦′ ←$ 𝒴. The PS adversary 𝒟 can simulate both
𝖦𝖺𝗆𝖾𝟤 and 𝖦𝖺𝗆𝖾𝟥, noticing that 𝑦′ = 𝖥⋆(𝑥′) and programming 𝖦 accordingly.
More precisely, on receiving a query 𝑄 = (𝑚, 𝜚 = (ℎ, 𝑥)) for 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇, 𝒟
computes (𝑟, 𝑥′) ←$ 𝖲𝖺𝗆𝗉𝗅𝖾𝑏 and programs 𝖦𝖳[ℎ′] ← 𝖥⋆(𝑥′) ⊕ 𝛼. Both 𝖦𝖺𝗆𝖾𝟤
and 𝖦𝖺𝗆𝖾𝟥 are equivalently modified by moving the programming step
of 𝖧 and 𝖦 to the end of the 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇. It now follows that when 𝒟 is
playing PS0 their simulation coincides with 𝖦𝖺𝗆𝖾𝟤, while when it is playing
PS1 it coincides with 𝖦𝖺𝗆𝖾𝟥. Either way, 𝒟 simulates the games with at
most the same running time of 𝒜 plus the time required for answering

70

3.4 – Sequential Aggregation of Hash-and-Sign Signatures

the queries to the sampling oracle. The latter takes 𝒪(𝗉𝗈𝗅𝗒(len(𝒳), len(𝒴)))
and is repeated at most 𝗊𝖲 times. Finally, we have that |Pr[𝖦𝖺𝗆𝖾𝟤(𝒜) = 1] −
Pr[𝖦𝖺𝗆𝖾𝟥(𝒜) = 1]| ≤ 𝖠𝖽𝗏PS𝖳 (𝒟).

𝖦𝖺𝗆𝖾𝟦 This game is identical to 𝖦𝖺𝗆𝖾𝟥 except that the random oracle 𝖧 is sim-
ulated as follows. At the start of the game, the challenger initializes a
labelled tree 𝖧𝖳𝗋𝖾𝖾, as described at the beginning of the proof. When 𝖧
receives a query 𝑄 = (𝖥,𝑚, 𝑟, 𝑥), if 𝖧𝖳[𝑄] ≠ ⊥ it returns it. Otherwise, it
samples a uniformly random 𝜂 ←$ {0,1}2𝜆 and programs 𝖧𝖳[𝑄] ← 𝜂. Then,
it checks if 𝑄 can be added as a child node of existing nodes in 𝖧𝖳𝗋𝖾𝖾. To
determine whether this is the case, it uses the 𝖫𝗈𝗈𝗄𝗎𝗉 function (see Algo-
rithm 3.3) on input 𝑥 that checks if it can be tethered to existing nodes,
i.e. there exists a node 𝑁𝑖 ∈ 𝖧𝖳𝗋𝖾𝖾 such that 𝖥𝑖(𝑥) = 𝑦𝑖. If 𝑄 can be teth-
ered to more than 𝜓 nodes, the game aborts by raising 𝖻𝖺𝖽𝗍𝖼𝗈𝗅. Otherwise,
𝖧 add a new node 𝑁 ′

𝑖 with parent 𝑁𝑖 for each node 𝑁𝑖 ∈ 𝖧𝖳𝗋𝖾𝖾 returned
by 𝖫𝗈𝗈𝗄𝗎𝗉(𝑥). 𝑁 ′

𝑖 contains the original query 𝑄, the hash response 𝜂, the
hash state ℎ′𝑖 ← ℎ𝑖 ⊕ 𝜂 (where ℎ𝑖 is stored in 𝑁𝑖) and an additional value
𝑦′𝑖 ← 𝖦(ℎ′𝑖) ⊕ 𝛼 (where 𝛼 is computed from 𝖾𝗇𝖼(𝑥)) that will be used to
check if a future node can be tethered via 𝖫𝗈𝗈𝗄𝗎𝗉 queries. It holds that
|Pr[𝖦𝖺𝗆𝖾𝟥(𝒜) = 1] − Pr[𝖦𝖺𝗆𝖾𝟦(𝒜) = 1]| ≤ Pr[𝖻𝖺𝖽𝗍𝖼𝗈𝗅].

𝖦𝖺𝗆𝖾𝟧 This game is identical to 𝖦𝖺𝗆𝖾𝟦 except that the random oracle 𝖧 is simu-
lated as follows. At the beginning of the game, the challenger uniformly
chooses an index 𝑐⋆ ←$ [𝗊𝖧] among the queries to the random oracle
𝖧, initializes a counter 𝑐 ← 0 and uniformly samples 𝑦⋆ ←$ 𝒴. When
𝖧 receives a query 𝑄 = (𝖥,𝑚, 𝑟, 𝑥) it increments 𝑐 ← 𝑐 + 1. Then, if
𝖥 = 𝖥⋆ and 𝑐 = 𝑐⋆, it samples a random index 𝑖⋆ from the number of
nodes in 𝖭𝖫𝗂𝗌𝗍. If, for any of the new nodes to be added, it computes
ℎ′𝑖 ← ℎ𝑖 ⊕ 𝜂 such that the random oracle 𝖦 was already queried at input
ℎ′𝑖, i.e. 𝖦𝖳[ℎ′𝑖] ≠ ⊥, it aborts by raising 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟤. Otherwise, if 𝖥 = 𝖥⋆, 𝑐 = 𝑐⋆
and 𝑖 = 𝑖⋆, it sets 𝑦′𝑖 ← 𝑦⋆ and programs 𝖦𝖳[ℎ′𝑖] ← 𝑦′𝑖 ⊕ 𝛼. It holds that
|Pr[𝖦𝖺𝗆𝖾𝟦(𝒜) = 1] − Pr[𝖦𝖺𝗆𝖾𝟧(𝒜) = 1]| ≤ Pr[𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟤].

If none of the 𝖻𝖺𝖽 events happen, ℬ perfectly simulate 𝖦𝖺𝗆𝖾𝟧 and we have that

𝖠𝖽𝗏INV
𝖳 (ℬ) = 1

𝜓𝗊𝖧
Pr[𝖦𝖺𝗆𝖾𝟧(𝒜) = 1]

≥ 1
𝜓𝗊𝖧

(𝖠𝖽𝗏PS-HF-UF-CMA
𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 (𝒜) − Pr[𝖻𝖺𝖽𝗁𝖼𝗈𝗅] − Pr[𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟣]

− 𝖠𝖽𝗏PS𝖳 (𝒟) − Pr[𝖻𝖺𝖽𝗍𝖼𝗈𝗅] − Pr[𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟤] − Pr[𝖻𝖺𝖽𝗍𝖾𝗍𝗁]).

ℬ can simulate𝖦𝖺𝗆𝖾𝟧 with atmost the same running time of𝒜 plus the time re-
quired for running 𝖠𝗀𝗀𝖵𝗋𝖿𝗒 and answering the queries to the random oracles 𝖧,𝖦,

71

History-Free Sequential Aggregation of Hash-and-Sign Signatures

Hybrid Argument 3.2: Games for 𝖧(𝖥,𝑚, 𝑟, 𝑥)
𝖦𝖺𝗆𝖾𝟢-𝖦𝖺𝗆𝖾𝟥:
1: 𝑄 ← (𝖥,𝑚, 𝑟, 𝑥)
2: if 𝖧𝖳[𝑄] = ⊥ then
3: 𝜂 ←$ {0,1}2𝜆
4: 𝖧𝖳[𝑄] ← 𝜂
5: return 𝖧𝖳[𝑄]

𝖦𝖺𝗆𝖾𝟦:
1: 𝑄 ← (𝖥,𝑚, 𝑟, 𝑥)
2: if 𝖧𝖳[𝑄] = ⊥ then
3: 𝜂 ←$ {0,1}2𝜆
4: 𝖧𝖳[𝑄] ← 𝜂
5: 𝖭𝖫𝗂𝗌𝗍 ← 𝖫𝗈𝗈𝗄𝗎𝗉(𝑥)
6: for 𝑖 ∈ [|𝖭𝖫𝗂𝗌𝗍|] do
7: 𝑁𝑖 ← 𝖭𝖫𝗂𝗌𝗍[𝑖]
8: 𝑁 ′

𝑖 ← new node with parent 𝑁𝑖
9: Retrieve ℎ𝑖 from 𝑁𝑖

10: ℎ′𝑖 ← ℎ𝑖 ⊕ 𝜂
11: (𝛼, 𝛽) ← 𝖾𝗇𝖼(𝑥)
12: 𝑔 ′𝑖 ← 𝖦(ℎ′𝑖)
13: 𝑦′𝑖 ← 𝑔 ′𝑖 ⊕ 𝛼
14: 𝑁 ′

𝑖 ← (𝑄, 𝜂, ℎ′𝑖, 𝑦′𝑖)
15: return 𝖧𝖳[𝑄]

𝖦𝖺𝗆𝖾𝟧:
1: 𝑄 ← (𝖥,𝑚, 𝑟, 𝑥)
2: 𝑐 ← 𝑐 + 1
3: if 𝖧𝖳[𝑄] = ⊥ then
4: 𝜂 ←$ {0,1}2𝜆
5: 𝖧𝖳[𝑄] ← 𝜂
6: 𝖭𝖫𝗂𝗌𝗍 ← 𝖫𝗈𝗈𝗄𝗎𝗉(𝑥)
7: if 𝖥 = 𝖥⋆ ∧ 𝑐 = 𝑐⋆ then
8: 𝑖⋆ ←$ [|𝖭𝖫𝗂𝗌𝗍|]
9: for 𝑖 ∈ [|𝖭𝖫𝗂𝗌𝗍|] do

10: 𝑁𝑖 ← 𝖭𝖫𝗂𝗌𝗍[𝑖]
11: 𝑁 ′

𝑖 ← new node with parent 𝑁𝑖
12: Retrieve ℎ𝑖 from 𝑁𝑖
13: ℎ′𝑖 ← ℎ𝑖 ⊕ 𝜂
14: (𝛼, 𝛽) ← 𝖾𝗇𝖼(𝑥)
15: if 𝖦𝖳[ℎ′𝑖] ≠ ⊥ then
16: raise 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟤
17: if 𝖥 ≠ 𝖥⋆ ∨ 𝑐 ≠ 𝑐⋆ ∨ 𝑖 ≠ 𝑖⋆ then
18: 𝑔 ′𝑖 ← 𝖦(ℎ′𝑖)
19: 𝑦′𝑖 ← 𝑔 ′𝑖 ⊕ 𝛼
20: else
21: 𝑦′𝑖 ← 𝑦⋆
22: 𝖦𝖳[ℎ′𝑖] ← 𝑦′𝑖 ⊕ 𝛼
23: 𝑁 ′

𝑖 ← (𝑄, 𝜂, ℎ′𝑖, 𝑦′𝑖)
24: return 𝖧𝖳[𝑄]

and to the signing oracle 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇. These operations take 𝒪(𝗉𝗈𝗅𝗒(len(𝒳), len(𝒴)))
and are repeated at most 𝗊𝖧 + 𝗊𝖲 + 1 times.

In the following, we bound the probability of each 𝖻𝖺𝖽 event happening.

Probability of 𝖻𝖺𝖽𝗁𝖼𝗈𝗅 The event 𝖻𝖺𝖽𝗁𝖼𝗈𝗅 occurs on Line 5 of 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇 on input
(𝑚, 𝜚 = (ℎ, 𝑥)) when it samples 𝑟 ←$ 𝖱 such that a value for 𝑄 = (𝖥⋆,𝑚, 𝑟, 𝑥)
was already assigned in the𝖧𝖳. The table𝖧𝖳 is populated by either𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇
or 𝖧, so its entries are at most 𝗊′𝖲 + 𝗊𝖧. The probability that a uniformly
random 𝑟 produces a collision with one of the entries is then at most (𝗊′𝖲 +
𝗊𝖧)/|𝖱|. Since at most 𝗊𝖲 are made to 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇, then Pr[𝖻𝖺𝖽𝗁𝖼𝗈𝗅] ≤ 𝗊𝖲(𝗊′𝖲 +
𝗊𝖧)/|𝖱|.

Probability of 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟣 The event 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟣 occurs on Line 10 of 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇 on input
(𝑚, 𝜚 = (ℎ, 𝑥)) when, after sampling 𝜂 ←$ {0,1}2𝜆, it computes ℎ′ ← ℎ ⊕ 𝜂
such that a value for ℎ′ was already assigned in the 𝖦𝖳. The table 𝖦𝖳 is

72

3.4 – Sequential Aggregation of Hash-and-Sign Signatures

populated by either 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇, 𝖧 or 𝖦 so its entries are at most 𝗊′𝖲 + 𝗊𝖧 + 𝗊𝖦.
The probability that a uniformly random 𝜂 produces a collision with one of
the entries is then at most (𝗊′𝖲 + 𝗊𝖧 + 𝗊𝖦)2−2𝜆. Since at most 𝗊𝖲 are made to
𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇, then Pr[𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟣] ≤ 𝗊𝖲(𝗊′𝖲 + 𝗊𝖧 + 𝗊𝖦)2−2𝜆.

Probability of 𝖻𝖺𝖽𝗍𝖼𝗈𝗅 The event 𝖻𝖺𝖽𝗍𝖼𝗈𝗅 occurs on Line 5 of 𝖫𝗈𝗈𝗄𝗎𝗉 on input 𝑥
when the 𝖧𝖳𝗋𝖾𝖾 contains 𝑘 > 𝜓 nodes 𝑁1,… ,𝑁𝑘 such that 𝖥𝑖(𝑥) = 𝑦𝑖 for
𝑖 = 1,… , 𝑘, where 𝖥𝑖, 𝑦𝑖 are stored in their respective nodes 𝑁𝑖. The 𝖧𝖳𝗋𝖾𝖾
is populated by the simulation of the random oracle 𝖧. There are at most
𝗊𝖧 queries to 𝖧 and each query contributes a maximum of 𝜓 nodes to the
tree. Consequently, the total number of nodes in 𝖧𝖳𝗋𝖾𝖾 does not exceed 𝜓𝗊𝖧.
Therefore, we need to bound the probability that any (𝜓 + 1)-tuple of nodes
produce a collision on 𝑥.
To conclude, we prove that for any (𝜓 + 1)-tuple (possibly adversarially
chosen) of functions 𝖥𝑖 ∶ 𝒳 → 𝒴 and uniformly random 𝑦𝑖 ∈ 𝒴, there exists
𝑥 ∈ 𝒳 such that 𝖥𝑖(𝑥) = 𝑦𝑖, for any 𝑖 = 1,… ,𝜓 + 1, with probability at most
|𝒳|/|𝒴|𝜓+1 (Lemma 3.10). Indeed, the adversary can issue 𝜓 + 1 queries to
𝖧 with inputs any functions 𝖥𝑖 to be stored in 𝜓 + 1 nodes 𝑁𝑖 in the 𝖧𝖳𝗋𝖾𝖾.
However, from Lemma 3.9, we know that when a new node is added to the
𝖧𝖳𝗋𝖾𝖾 on Line 23 of 𝖧, the value 𝑦′𝑖 is chosen uniformly at random from
𝒴 and is independent of the view of 𝒜. Therefore, the adversary would
receive 𝜓 + 1 random, independent values 𝑦𝑖.
Since the number of (𝜓+1)-tuple of nodes in the𝖧𝖳𝗋𝖾𝖾 are at most (𝜓𝗊𝖧)𝜓+1/
(𝜓 + 1)!, by the union bound, we obtain Pr[𝖻𝖺𝖽𝗍𝖼𝗈𝗅] ≤ (𝜓𝗊𝖧)𝜓+1|𝒳|/((𝜓 + 1)! ⋅
|𝒴|𝜓+1).

Probability of 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟤 The event 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟤 occurs on Line 16 of𝖧 on input (𝖥,𝑚, 𝑟, 𝑥)
when, after sampling 𝜂 ←$ {0,1}2𝜆 and retrieving ℎ𝑖−1 from the parent node
𝑁𝑖−1, it computes ℎ𝑖 ← ℎ𝑖−1 ⊕ 𝜂 such that a value for ℎ𝑖 was already assigned
in the 𝖦𝖳. The same argument from the bound of Pr[𝖻𝖺𝖽𝗀𝖼𝗈𝗅] can be used to
prove that Pr[𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟤] ≤ 𝗊𝖧(𝗊′𝖲 + 𝗊𝖧 + 𝗊𝖦)2−2𝜆.

Probability of 𝖻𝖺𝖽𝗍𝖾𝗍𝗁 The event 𝖻𝖺𝖽𝗍𝖾𝗍𝗁 occurs on Line 8 of the simulation of ℬ
when, after the adversary 𝒜 outputs a valid aggregate signature Σ̄𝑛 for the
history 𝐿𝑛 = (𝗉𝗄1,𝑚1),… , (𝗉𝗄𝑛,𝑚𝑛), the simulator recovers 𝑥𝑖⋆, with 𝑖⋆ ∈ [𝑛]
such that 𝗉𝗄𝑖⋆ = 𝗉𝗄⋆ and (𝑚𝑖⋆, 𝜍𝑖⋆) ∉ 𝒬, but 𝑥𝑖⋆ cannot be tethered to any node
in the 𝖧𝖳𝗋𝖾𝖾.
When 𝖻𝖺𝖽𝗍𝖾𝗍𝗁 happens, the aggregate signature Σ̄𝑛 must be valid on 𝐿𝑛.
In particular, the inputs 𝑄1 = (𝖥1,𝑚1, 𝑟1, 𝜀),𝑄2 = (𝖥2,𝑚2, 𝑟2, 𝑥1),… ,𝑄𝑖⋆ =
(𝖥𝑖⋆,𝑚𝑖⋆, 𝑟𝑖⋆, 𝑥𝑖⋆−1) have been queried to 𝖧 in 𝖮𝖠𝗀𝗀𝖵𝗋𝖿𝗒. Let 𝜂1,… , 𝜂𝑖⋆ be the
outputs of these queries, so that 𝖧𝖳[𝑄𝑗] = 𝜂𝑗. Each of these entries has
been populated by 𝖧. In fact, the only exception could occur if (𝑚𝑖⋆, 𝑥𝑖⋆−1)

73

History-Free Sequential Aggregation of Hash-and-Sign Signatures

was queried to 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇. Suppose (𝑟, 𝛽) is the complementary part of the
signature produced by the oracle as a response. Since the forgery is valid,
the complementary part 𝜍𝑖⋆ = (𝑟𝑖⋆, 𝛽𝑖⋆−1) produced by 𝒜 must be different
from (𝑟, 𝛽). However, both 𝛽𝑖⋆−𝑖 and 𝛽 must be the same partial encoding of
𝑥𝑖⋆−1, so that 𝑟𝑖⋆ ≠ 𝑟. Therefore, 𝑥𝑖⋆ must have been produced following a
query to 𝖧 with a fresh salt 𝑟𝑖⋆.
Each step of 𝖮𝖠𝗀𝗀𝖵𝗋𝖿𝗒 also recovers a value ℎ𝑗 ← ℎ𝑗+1 ⊕ 𝜂𝑗 which is the
input of the 𝖦 query. Since the aggregate signature is correct, we obtain
that ℎ1 = 𝜂1. Observe that since 𝑄1 was queried to 𝖧, it must be tethered
to the root of 𝖧𝖳𝗋𝖾𝖾 and was therefore inserted as a node of 𝖧𝖳𝗋𝖾𝖾 with
additional values 𝜂1, ℎ1 = 𝜂1, 𝑦1 = 𝖦(ℎ1). Then, since 𝖥1(𝑥1) = 𝑦1, the query
𝑄2 is tethered to 𝑁1. Now we prove that either all 𝑄1,… ,𝑄𝑖⋆ are part of a
path of nodes in 𝖧𝖳𝗋𝖾𝖾, or there exists an input 𝑄𝑗 that was queried to 𝖧, is
tethered to a node in 𝖧𝖳𝗋𝖾𝖾 and is not itself in a node of 𝖧𝖳𝗋𝖾𝖾. We proceed
by induction on 𝑗 ≤ 𝑖⋆: we have already shown that 𝑄1 is in 𝖧𝖳𝗋𝖾𝖾; suppose
that 𝑄𝑗 is in the 𝖧𝖳𝗋𝖾𝖾, then, since 𝖥𝑗(𝑥𝑗) = 𝑦𝑗, the query 𝑄𝑗+1 is tethered to
𝑄𝑗 and it may or may not be part of 𝖧𝖳𝗋𝖾𝖾. To conclude, we prove that if
an input 𝑄 has not been entered in the 𝖧𝖳𝗋𝖾𝖾 after being queried to 𝖧, the
probability that it will ever become tethered to a node in 𝖧𝖳𝗋𝖾𝖾 is at most
𝜓𝗊′/|𝒴|, where 𝗊′ is the number of queries made to 𝖧 after 𝑄 (Lemma 3.11).
Since there are at most 𝗊𝖧 queries that add new nodes to 𝖧𝖳𝗋𝖾𝖾, we obtain,
by the union bound, that Pr[𝖻𝖺𝖽𝗍𝖾𝗍𝗁] ≤ 𝜓𝗊2𝖧/(2|𝒴|).

Combining the previous bound on 𝖻𝖺𝖽 events, we obtain the claimed estimate
of 𝖠𝖽𝗏PS-HF-UF-CMA

𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 (𝒜).

Incurred Security Loss

The security loss in Theorem 3.8 is comparable to that of EUF-CMA reduction
for the single signature (Theorem 2.12), based on the same underlying trapdoor
function. In both cases, the main loss is given by a multiplicative factor in 𝗊𝖧. In
our reduction, there are also quadratic additive terms in 𝗊𝖲 and 𝗊𝖧, but these are
negligible in the security parameter for an appropriate choice of hash functions
and salt length. More in detail, the reduction of Theorem 3.8 loses advantage
by one multiplicative factor 𝜓 ⋅ 𝗊𝖧 and five additive terms corresponding to
the occurrence of the bad events 𝖻𝖺𝖽𝗁𝖼𝗈𝗅, 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟣, 𝖻𝖺𝖽𝗍𝖼𝗈𝗅, 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟤, 𝖻𝖺𝖽𝗍𝖾𝗍𝗁. In the
following 𝗊𝖧, 𝗊𝖦 are the number of queries to the random oracles 𝖧 and 𝖦, 𝗊𝖲 is
the number of queries to the signing oracle and 𝜆 is the security parameter. For a
concrete discussion, let us consider typical values 128 ≤ 𝜆 ≤ 256, 1 ≤ 𝗊𝖧, 𝗊𝖦 ≤ 264,
and 1 ≤ 𝗊𝖲 ≤ 232.

The additive loss is given by the following terms:

74

3.4 – Sequential Aggregation of Hash-and-Sign Signatures

• The terms (𝗊𝖲 + 𝗊𝖧)(𝗊′𝖲 + 𝗊𝖧 + 𝗊𝖦)2−2𝜆 corresponding to 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟣 and 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟤
are related to the output collision of the hash function 𝖧. If we choose 𝖧 to
be a hash function with at least 2𝜆 output bits, the terms are negligible in
the security parameter 𝜆.

• The term (𝜓𝗊𝖧)𝜓+1|𝒳|/((𝜓 + 1)! ⋅ |𝒴|𝜓+1) corresponding to 𝖻𝖺𝖽𝗍𝖼𝗈𝗅 is related
to the probability of finding more than 𝜓 tethered nodes during a query to
the random oracle 𝖧. This term is an artefact of the security proof. For an
appropriate choice of 𝜓, this term is negligible in the security parameter.
More details on the role and suitable choice of 𝜓 are provided at the end of
this section.

• The term 𝜓𝗊2𝖧/(2|𝒴|) corresponding to 𝖻𝖺𝖽𝗍𝖼𝗈𝗅 is related to the probability
that a query become tethered after it was queried to the random oracle 𝖧,
so that is not in the 𝖧𝖳𝗋𝖾𝖾 and cannot be used to win the INV game after the
adversary supplies a forged aggregate signature. This term is negligible for
appropriate choices of the trapdoor function. For instance, it is negligible
for all parameterization of the schemes considered in Section 3.6.

• The term 𝗊𝖲(𝗊′𝖲 + 𝗊𝖧)/|𝖱| corresponding to 𝖻𝖺𝖽𝗁𝖼𝗈𝗅 is related to the collision
of the random salt. To make the term negligible, it is enough to take the
salt of appropriate length (e.g. |𝖱| = 2𝜆 for 𝜆 = 128). Notice that a similar
term also appears in the security proof of the related signature schemes
considered in Section 3.6 and in the generic reductions of Section 2.2.1
for Hash-and-Sign schemes with retry. Therefore, the salt length in our
constructions will typically be equal to that of the single signature scheme.

The multiplicative loss of 𝜓 ⋅ 𝗊𝖧 constitutes the main loss in advantage in the
security proof. Towin the INV game, the INV adversaryℬ provides their challenge
𝑦⋆ to the PS-HF-UF-CMA adversary 𝒜 in one of 𝗊𝖧 queries to the random oracle
𝖧 (this is the same strategy as the EUF-CMA reduction of Theorem 2.12). For this
special query, only one of 𝜓 branches of the 𝖧𝖳𝗋𝖾𝖾 lead to finding a preimage for
𝑦⋆. Hence, if 𝒜 outputs a valid forgery, ℬ wins the INV game with probability
(𝜓 ⋅ 𝗊𝖧)−1.
Remark. The multiplicative loss is inevitable without stronger assumptions on
the trapdoor function. In the next section, we discuss the extension of the scheme
to PSFs and APSFs, and we show that a tighter reduction can be achieved by
considering collision-resistant PSFs.

Branching Parameter 𝜓

In Theorem 3.8, the term 𝜓 identifies the maximum number of nodes added to the
𝖧𝖳𝗋𝖾𝖾 in each query to the random oracle 𝖧. This term is an artefact of the proof

75

History-Free Sequential Aggregation of Hash-and-Sign Signatures

and does not address a practical attack. If during a query to 𝖧, the simulator
identifies a number of nodes tethered to the input greater than 𝜓, the 𝖻𝖺𝖽𝗍𝖼𝗈𝗅 event
would occur. For a fixed 𝜓, the probability of this happening is mainly studied in
Lemma 3.11. Accordingly, 𝜓 should be taken as the minimum positive integer
such that the additive security loss of the 𝖻𝖺𝖽𝗍𝖼𝗈𝗅 event is negligible in the security
parameter. The condition 𝜓 ≥ ⌈len(𝒳)/ len(𝒴)⌉ is necessary to have a meaningful
reduction in Theorem 3.8, otherwise the former additive security loss would be
greater than 1. By choosing 𝜓 = ⌈len(𝒳)/ len(𝒴)⌉, Lemma 3.11 tells us that the
probability of getting 𝜓 + 1 nodes tethered to the input at each query to 𝖧 is
at most 1/|𝒴|. This is often enough to make the additive term negligible, but
depending on the specific choices of 𝒳 and 𝒴 it will sometimes be necessary to
choose 𝜓 = ⌈len(𝒳)/ len(𝒴)⌉ + 1. We note that it is desirable to choose a small 𝜓
since its choice also results in a multiplicative security loss of a factor 𝜓 ⋅ 𝗊𝖧, as
analysed above.

For the selected schemes in Section 3.6, the minimum value for 𝜓 that meets
the previous requirements is provided.

3.5 Optimizing the Scheme for (Average) Preimage
Sampleable Functions

In this section we discuss how the construction of Section 3.4 can be modified in
the presence of PSFs and APSFs. In particular, we will show how the additional
properties of these classes of trapdoor functions allow further optimizations of
the security proof.

3.5.1 PSF-based Signatures
In Section 2.3.1 we gave a brief overview of lattice-based Hash-and-Sign schemes
within the GPV framework. The trapdoor functions underlying these signature
schemes are Preimage Sampleable Functions (PSF). In the following, we consider
the notion of PSFs given in Definition 2.6.

First, since for a PSF 𝖳 it holds that 𝖠𝖽𝗏OW𝖳 (𝒜) = 𝖠𝖽𝗏INV
𝖳 (ℬ), when adapting

the security proof of Theorem 3.8 we can obtain a reduction from OW. Then,
notice that due to Property 3 of Definition 2.6, the signature associated with a
PSF can be described in the 𝖯𝖧𝖺𝖲 without retry paradigm. In particular, in the
aggregation procedure of Algorithm 3.2 we can remove the repeat loop on Line 3.
It follows that 𝗊′𝖲 = 𝗊𝖲 in Theorem 3.8. Finally, we can remove the advantage of the
PS adversary and obtain a tighter reduction when the PSF is collision resistant.

76

3.5 – Optimizing the Scheme for (Average) Preimage Sampleable Functions

One-way PSFs

We start by considering a PSFwithout collision resistance. We obtain the following
reduction from OW to PS-HF-UF-CMA.

Theorem 3.12. Let 𝖳 be a PSF. Let 𝒜 be a strong PS-HF-UF-CMA adversary against
the 𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 scheme on 𝖳 in the random oracle model, which runs in time 𝑡 and
makes 𝗊𝖲 signing queries, 𝗊𝖧 queries to the random oracle 𝖧 and 𝗊𝖦 queries to the
random oracle 𝖦. Then, there exists an OW adversary ℬ against 𝖳 that runs in time
𝑡 +𝒪((𝗊𝖧 + 𝗊𝖲 + 1) ⋅ 𝗉𝗈𝗅𝗒(len(𝒳), len(𝒴))), such that

𝖠𝖽𝗏PS-HF-UF-CMA
𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 (𝒜) ≤(𝜓𝗊𝖧) ⋅ 𝖠𝖽𝗏OW𝖳 (ℬ) +

(𝗊𝖲 + 𝗊𝖧)(𝗊𝖲 + 𝗊𝖧 + 𝗊𝖦)
22𝜆

+
𝗊𝖲(𝗊𝖲 + 𝗊𝖧)

|𝖱|
+

𝜓𝗊2𝖧
2|𝒴|

+
(𝜓𝗊𝖧)

𝜓+1|𝒳|
(𝜓 + 1)! ⋅ |𝒴|𝜓+1

,

where 𝜓 ≥ ⌈len(𝒳)/ len(𝒴)⌉.

Proof. The proof is identical to that of Theorem 3.8, except that the distinguishing
advantage of the PS adversary is 0. In fact, the PS notion of Definition 2.8 is
a weaker condition for indistinguishability on preimages than Property 2 of
Definition 2.6. As a result, we can modify the reduction of Algorithm 3.3 by
merging 𝖦𝖺𝗆𝖾𝟤 and 𝖦𝖺𝗆𝖾𝟥 in Argument 3.1, without the need to introduce the
PS adversary.

Remark. Notice that the proof share the same reduction from OW, incurring in a
loss of a factor proportional to 𝗊𝖧.

Collision-Resistant PSFs

Conversely, if we consider a collision-resistant PSF, we can further modify Theo-
rem 3.8 to obtain a tighter reduction from CR to PS-HF-UF-CMA. In fact, when
the reduction is performed from the OW/INV game as in the original proof of
Theorem 3.8, the OW adversary provides their challenge to the PS-HF-UF-CMA
adversary in one of the 𝗊𝖧 queries to the random oracle 𝖧. This results in a
multiplicative loss of advantage by a factor 𝗊𝖧. However, when the reduction is
performed from collision-resistance, the CR adversary can prepare responses that
will lead to a collision in each query to 𝖧 involving the target public key. As a
result, we get a tight reduction with only negligible losses from additive terms.

Theorem 3.13. Let 𝖳 be a collision-resistant PSF. Let 𝒜 be a strong PS-HF-UF-CMA
adversary against the 𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 scheme on 𝖳 in the random oracle model, which
runs in time 𝑡 and makes 𝗊𝖲 signing queries, 𝗊𝖧 queries to the random oracle 𝖧 and

77

History-Free Sequential Aggregation of Hash-and-Sign Signatures

𝗊𝖦 queries to the random oracle 𝖦. Then, there exists a CR adversary ℬ against 𝖳 that
runs in time 𝑡 +𝒪((𝗊𝖧 + 𝗊𝖲 + 1) ⋅ 𝗉𝗈𝗅𝗒(len(𝒳), len(𝒴))), such that

𝖠𝖽𝗏PS-HF-UF-CMA
𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 (𝒜) ≤𝖠𝖽𝗏CR𝖳 (ℬ) +

(𝗊𝖲 + 𝗊𝖧)(𝗊𝖲 + 𝗊𝖧 + 𝗊𝖦)
22𝜆

+
𝗊𝖲(𝗊𝖲 + 𝗊𝖧)

|𝖱|
+

𝜓𝗊2𝖧
2|𝒴|

+
(𝜓𝗊𝖧)

𝜓+1|𝒳|
(𝜓 + 1)! ⋅ |𝒴|𝜓+1

,

where 𝜓 ≥ ⌈len(𝒳)/ len(𝒴)⌉.

Proof. We modify the proof of Theorem 3.12 by introducing a new intermediate
game𝖦𝖺𝗆𝖾𝟧𝖻. This game is identical to𝖦𝖺𝗆𝖾𝟧, except for how, on the simulation of
the random oracle𝖧 on query𝑄 = (𝖥,𝑚, 𝑟, 𝑥), the random oracle𝖦 is programmed
when 𝖥 = 𝖥⋆. In particular, in Algorithm 3.3, Line 21 is modified by taking a
random input 𝑥′ ←$ 𝑋, assigning 𝑦′ ← 𝐹⋆(𝑥′) and programming the 𝖦 on input ℎ′
with 𝑦′⊕𝛼. The modified game is described in Argument 3.3. Here, the simulation
of 𝖦 is correct since, from Property 1 of Definition 2.6, 𝑦′ obtained as 𝐹⋆(𝒰(𝒳))
is uniformly distributed in 𝒴. After the adversary returns a forged aggregate
signature, if none of the 𝖻𝖺𝖽 events happen, the value 𝑥𝑖⋆, from the forgery, and
the value 𝑥′, produced by 𝖧 and stored in the 𝖧𝖳𝗋𝖾𝖾, constitute a collision for 𝐹⋆.

Notice that the above changes, does not affect the analysis of the 𝖻𝖺𝖽 events.
In particular, all events of Theorem 3.8 occur with the same probability.

3.5.2 APSF-based Signatures
In the following, we consider the notion of Average PSFs given in Definition 2.7.
Similarly to the previous case of PSFs, for an APSF 𝖳 it holds that 𝖠𝖽𝗏OW𝖳 (𝒜) =
𝖠𝖽𝗏INV

𝖳 (ℬ), and following Property 1 of Definition 2.7 the signature associated
with an APSF can be described in the 𝖯𝖧𝖺𝖲 without retry paradigm. Therefore,
when adapting the security proof of Theorem 3.8 we can remove the repeat loop
in the aggregation procedure, and obtain a reduction from OW with 𝗊′𝖲 = 𝗊𝖲.
Moreover, we can use the weakened uniformity property on preimage to bound
the advantage of the PS adversary. We obtain the following reduction from OW
to PS-HF-UF-CMA.

Theorem 3.14. Let 𝖳 be an 𝜀-APSF. Let 𝒜 be a strong PS-HF-UF-CMA adversary
against the 𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 scheme on 𝖳 in the random oracle model, which runs in time 𝑡
and makes 𝗊𝖲 signing queries, 𝗊𝖧 queries to the random oracle 𝖧 and 𝗊𝖦 queries to the
random oracle 𝖦. Then, there exists an OW adversary ℬ against 𝖳 that runs in time

78

3.5 – Optimizing the Scheme for (Average) Preimage Sampleable Functions

Hybrid Argument 3.3: Modified 𝖦𝖺𝗆𝖾𝟧 for Collision-Resistant PSFs on 𝖧(𝖥,𝑚, 𝑟, 𝑥)
𝖦𝖺𝗆𝖾𝟧:
1: 𝑄 ← (𝖥,𝑚, 𝑟, 𝑥)
2: 𝑐 ← 𝑐 + 1
3: if 𝖧𝖳[𝑄] = ⊥ then
4: 𝜂 ←$ {0,1}2𝜆
5: 𝖧𝖳[𝑄] ← 𝜂
6: 𝖭𝖫𝗂𝗌𝗍 ← 𝖫𝗈𝗈𝗄𝗎𝗉(𝑥)
7: if 𝖥 = 𝖥⋆ ∧ 𝑐 = 𝑐⋆ then
8: 𝑖⋆ ←$ [|𝖭𝖫𝗂𝗌𝗍|]
9: for 𝑖 ∈ [|𝖭𝖫𝗂𝗌𝗍|] do

10: 𝑁𝑖 ← 𝖭𝖫𝗂𝗌𝗍[𝑖]
11: 𝑁 ′

𝑖 ← new node with parent 𝑁𝑖
12: Retrieve ℎ𝑖 from 𝑁𝑖
13: ℎ′𝑖 ← ℎ𝑖 ⊕ 𝜂
14: (𝛼, 𝛽) ← 𝖾𝗇𝖼(𝑥)
15: if 𝖦𝖳[ℎ′𝑖] ≠ ⊥ then
16: raise 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟤
17: if 𝖥 ≠ 𝖥⋆ ∨ 𝑐 ≠ 𝑐⋆ ∨ 𝑖 ≠ 𝑖⋆ then
18: 𝑔 ′𝑖 ← 𝖦(ℎ′𝑖)
19: 𝑦′𝑖 ← 𝑔 ′𝑖 ⊕ 𝛼
20: else
21: 𝑦′𝑖 ← 𝑦⋆
22: 𝖦𝖳[ℎ′𝑖] ← 𝑦′𝑖 ⊕ 𝛼
23: 𝑁 ′

𝑖 ← (𝑄, 𝜂, ℎ′𝑖, 𝑦′𝑖)
24: return 𝖧𝖳[𝑄]

𝖦𝖺𝗆𝖾𝟧𝖻:
1: 𝑄 ← (𝖥,𝑚, 𝑟, 𝑥)
2: if 𝖧𝖳[𝑄] = ⊥ then
3: 𝜂 ←$ {0,1}2𝜆
4: 𝖧𝖳[𝑄] ← 𝜂
5: 𝖭𝖫𝗂𝗌𝗍 ← 𝖫𝗈𝗈𝗄𝗎𝗉(𝑥)
6: for 𝑖 ∈ [|𝖭𝖫𝗂𝗌𝗍|] do
7: 𝑁𝑖 ← 𝖭𝖫𝗂𝗌𝗍[𝑖]
8: 𝑁 ′

𝑖 ← new node with parent 𝑁𝑖
9: Retrieve ℎ𝑖 from 𝑁𝑖

10: ℎ′𝑖 ← ℎ𝑖 ⊕ 𝜂
11: (𝛼, 𝛽) ← 𝖾𝗇𝖼(𝑥)
12: if 𝖦𝖳[ℎ′𝑖] ≠ ⊥ then
13: raise 𝖻𝖺𝖽𝗀𝖼𝗈𝗅𝟤
14: if 𝖥 ≠ 𝖥⋆ then
15: 𝑔 ′𝑖 ← 𝖦(ℎ′𝑖)
16: 𝑦′𝑖 ← 𝑔 ′𝑖 ⊕ 𝛼
17: else
18: 𝑥′𝑖 ←$ 𝒳
19: 𝑦′𝑖 ← 𝖥⋆(𝑥′𝑖)
20: 𝖦𝖳[ℎ′𝑖] ← 𝑦′𝑖 ⊕ 𝛼
21: 𝑁 ′

𝑖 ← (𝑄, 𝜂, ℎ′𝑖, 𝑦′𝑖)
22: return 𝖧𝖳[𝑄]

𝑡 +𝒪((𝗊𝖧 + 𝗊𝖲 + 1) ⋅ 𝗉𝗈𝗅𝗒(len(𝒳), len(𝒴))), such that

𝖠𝖽𝗏PS-HF-UF-CMA
𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 (𝒜) ≤(𝜓𝗊𝖧) ⋅ 𝖠𝖽𝗏OW𝖳 (ℬ) + 𝗊𝖲𝜀 +

(𝗊𝖲 + 𝗊𝖧)(𝗊𝖲 + 𝗊𝖧 + 𝗊𝖦)
22𝜆

+
𝗊𝖲(𝗊𝖲 + 𝗊𝖧)

|𝖱|
+

𝜓𝗊2𝖧
2|𝒴|

+
(𝜓𝗊𝖧)

𝜓+1|𝒳|
(𝜓 + 1)! ⋅ |𝒴|𝜓+1

,

where 𝜓 ≥ ⌈len(𝒳)/ len(𝒴)⌉.

Proof. The proof is identical to that of Theorem 3.8, except that the distinguishing
advantage of the PS adversary can be bounded with 𝗊𝖲𝜀. In fact, from Property 2
of Definition 2.7, consider the statistical distance 𝜀𝖥,𝖨 = Δ(𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥), 𝖨(𝒰(𝒴))).
Then, it holds that 𝔼(𝖥,𝖨)[𝜀𝖥,𝖨] ≤ 𝜀, where 𝜀 is negligible in the security parameter 𝜆.
We can use this condition and [52, Prop. 1] to bound the distinguishing advantage
on PS with 𝜀, obtaining 𝖠𝖽𝗏PS𝖳wave

(𝒟) ≤ 𝗊𝖲𝜀.

79

History-Free Sequential Aggregation of Hash-and-Sign Signatures

3.6 Instantiation and Evaluation
In this section, we will provide some concrete applications of the 𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 of
Section 3.4 to MQ-based and code-based 𝖧𝖺𝖲 signature schemes. In particular,
we analyse the compression capabilities of the scheme when instantiated with
UOV, MAYO, and Wave. More details on the trapdoor functions and the appli-
cation of Theorem 3.8 to these schemes are given in Section 2.3. Our scheme
could also be extended to lattice-based schemes, such as the NIST PQC selected
algorithm Falcon [172], and generally with PSF-based signatures [108]. In partic-
ular, applying our construction would allow achieving history-free aggregation
over existing schemes4. However, we already noted how different design choices
become feasible due to the additional properties of trapdoor PSF. Accordingly, a
direct application would lead to unnecessary loss of efficiency. An analysis of how
the 𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 scheme can be modified with PSF can be found in Section 3.5.1.

The main measure of the efficiency of an aggregate signature scheme is the
compression rate, i.e., the reduction in the length of the aggregate signature Σ̄𝑁 of
𝑁 users compared to the trivial concatenation of 𝑁 individual signatures 𝜎. The
compression rate of 𝑁 signatures is defined as 𝜏(𝑁) = 1 − |Σ̄𝑁|

𝑁⋅|𝜎|
. An 𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲

signature of 𝑁 users is the output of the 𝖢𝗈𝗆𝖻𝗂𝗇𝖾 algorithm on 𝜍1,… , 𝜍𝑁−1,Σ𝑁
and is given by Σ̄𝑁 = (#«𝑟 𝑁,

#«𝛽𝑁−1, ℎ𝑁, 𝑥). An individual signature of a generic 𝖧𝖺𝖲
scheme as described in Section 2.2 is given by 𝜎 = (𝑟, 𝑥). In the following, we
assume that the aggregation scheme is applied to the signature scheme without
further possible optimization, so that we have the same size for salts |𝑟| = len(𝖱)
and preimages |𝑥| = len(𝒳), where len(𝑋) denotes the bit size of an element in 𝑋.

The compression rate is thus given by

𝜏(𝑁) = 1 −
𝑁 ⋅ len(𝖱) + (𝑁 − 1) ⋅ len(𝒳′) + 2𝜆 + len(𝒳)

𝑁 ⋅ (len(𝖱) + len(𝒳))

= 1 −
𝑁 ⋅ (len(𝖱) + len(𝒳) − len(𝒴)) + 2𝜆 + len(𝒴)

𝑁 ⋅ (len(𝖱) + len(𝒳))

=
len(𝒴)

len(𝖱) + len(𝒳)
−

2𝜆 + len(𝒴)
𝑁 ⋅ (𝜆 + len(𝒳))

.

(3.2)

Notice that the aggregate signature is smaller than the trivial concatenation
whenever 𝑁 > 2𝜆

len(𝒴)
+ 1, which for typical parameters is as soon as 𝑁 > 2.

In [92, 56], the size of an aggregate signature of𝑁 users is𝑁 ⋅(len(𝒳)− len(𝒴))+
len(𝒴). Compared to our scheme, we have a small overhead of 𝑁 len(𝖱) + 2𝜆 bits
due to the aggregated hash state and the random salts. However, we already

4An attack on the previously unique history-free SAS of [191] was recently proposed in [48].

80

3.6 – Instantiation and Evaluation

argued that this increase in signature size is necessary to guarantee the security
of the scheme.

3.6.1 Original Unbalanced Oil and Vinegar
We consider the trapdoor function 𝖳uov described in Section 2.3.3 and the param-
eters proposed in [31] with respect to NIST security levels I, III, and V. For UOV,
the domain 𝒳 is given by 𝔽𝑛

𝑞 with elements of length len(𝒳) = 𝑛⌈log2 𝑞⌉. The
codomain 𝒴 is 𝔽𝑚

𝑞 with elements of length len(𝒴) = 𝑚⌈log2 𝑞⌉.
𝖳uov is a non-invertible trapdoor function; therefore we can build a strongly

PS-HF-UF-CMA sequential aggregate signature instantiated with UOV by apply-
ing Theorem 3.8.

Corollary 3.15. Let𝒜 be a strongPS-HF-UF-CMA adversary against the𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲
scheme on 𝖳uov in the random oracle model, which makes 𝗊𝖲 signing queries, 𝗊𝖧 queries
to the random oracle 𝖧 and 𝗊𝖦 queries to the random oracle 𝖦. Then, there exists an
INV adversary ℬ against 𝖳uov, and a PS adversary 𝒟 against 𝖳uov issuing 𝗊𝖲 sampling
queries, such that

𝖠𝖽𝗏PS-HF-UF-CMA
𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 (𝒜) ≤(𝜓𝗊𝖧) ⋅ 𝖠𝖽𝗏INV

𝖳uov(ℬ) + 𝖠𝖽𝗏PS𝖳uov(𝒟) +
(𝗊𝖲 + 𝗊𝖧)(𝗊𝖲 + 𝗊𝖧 + 𝗊𝖦)

22𝜆

+
𝗊𝖲(𝗊𝖲 + 𝗊𝖧)

|𝖱|
+
𝜓𝗊2𝖧
2𝑞𝑚

+
(𝜓𝗊𝖧)

𝜓+1𝑞𝑛

(𝜓 + 1)! ⋅ 𝑞𝑚(𝜓+1)
,

where 𝜓 ≥ ⌈𝑛/𝑚⌉, and the running time of ℬ and 𝒟 are about that of 𝒜.

Proof. We directly apply the proof of Theorem 3.8 to 𝖳uov. Recall that the UOV
signature lies in the 𝖯𝖧𝖺𝖲 without retry paradigm, therefore 𝗊′𝖲 = 𝗊𝖲 holds in
Theorem 3.8. On the other hand, the PS advantage term 𝖠𝖽𝗏PS𝖳uov(𝒟) cannot be
omitted since signature simulation requires knowledge of the trapdoor function.

For typical parameters, 𝑛 is chosen equal to 2.5𝑚. If we choose 𝜓 = 3, the
additive error terms in Corollary 3.15 are negligible for each parameterization in
Table 2.4.

Regardless of the security level, the parameterizations of [31] use 128-bit
salts. In our comparison, we consider salts of length 𝜆 = 128,192 and 256 bits,
respectively. The size of a single UOV signature is then given by

|𝜎| = 𝑛⌈log2 𝑞⌉ + 𝜆.

The size of a sequential aggregate signature instantiated with UOV is given by

|Σ̄𝑁| = 𝑁 ⋅ (𝜆 + (𝑛 − 𝑚)⌈log2 𝑞⌉) + 2𝜆 + 𝑚⌈log2 𝑞⌉.

81

Table 3.1: Aggregate signature sizes and compression rates for UOV [31].

Parameter ov-Ip ov-Is ov-III ov-V

NIST SL I I III V
(𝑛,𝑚, 𝑞) (112,44,256) (160,64,16) (184,72,256) (244,96,256)

len(𝖱) (bytes) 16 16 24 32
𝑁 ⋅ |𝜎| (bytes) 128 ⋅ 𝑁 96 ⋅ 𝑁 208 ⋅ 𝑁 276 ⋅ 𝑁
|Σ̄𝑁| (bytes) 84 ⋅ 𝑁 + 76 64 ⋅ 𝑁 + 64 136 ⋅ 𝑁 + 120 180 ⋅ 𝑁 + 160
𝜏(5) 0.23 0.20 0.23 0.23
𝜏(20) 0.31 0.30 0.32 0.32
𝜏(100) 0.34 0.33 0.34 0.34
Asym. 𝜏(𝑁) 0.34 0.33 0.35 0.35

Table 3.2: Aggregate signature sizes and compression rates for PROV [115].

Parameter PROV-I PROV-III PROV-V

NIST SL I III V
(𝑛,𝑚, 𝛿, 𝑞) (142,49,8,256) (206,74,8,256) (270,100,8,256)

len(𝖱) (bytes) 24 32 40
𝑁 ⋅ |𝜎| (bytes) 166 ⋅ 𝑁 238 ⋅ 𝑁 310 ⋅ 𝑁
|Σ̄𝑁| (bytes) 117 ⋅ 𝑁 + 97 164 ⋅ 𝑁 + 138 210 ⋅ 𝑁 + 180
𝜏(5) 0.18 0.19 0.21
𝜏(20) 0.27 0.28 0.29
𝜏(100) 0.29 0.31 0.32
Asym. 𝜏(𝑁) 0.30 0.31 0.32

Table 3.3: Aggregate signature sizes and compression rates for MAYO [30].

Parameter 𝖬𝖠𝖸𝖮1 𝖬𝖠𝖸𝖮2 𝖬𝖠𝖸𝖮3 𝖬𝖠𝖸𝖮5

NIST SL I I III V
(𝑛,𝑚, 𝑜, 𝑘, 𝑞) (66,64,8,9,16) (78,64,18,4,16) (99,96,10,11,16) (133,128,12,12,16)

len(𝖱) (bytes) 24 24 32 40
𝑁 ⋅ |𝜎| (bytes) 321 ⋅ 𝑁 180 ⋅ 𝑁 577 ⋅ 𝑁 838 ⋅ 𝑁
|Σ̄𝑁| (bytes) 289 ⋅ 𝑁 + 64 148 ⋅ 𝑁 + 64 529 ⋅ 𝑁 + 96 774 ⋅ 𝑁 + 128
𝜏(5) 0.06 0.11 0.05 0.05
𝜏(20) 0.09 0.16 0.07 0.07
𝜏(100) 0.10 0.17 0.08 0.07
Asym. 𝜏(𝑁) 0.10 0.18 0.08 0.08

3.6 – Instantiation and Evaluation

Applying Equation (3.2), we can see that the compression rate asymptotically goes
to 𝑚⌈log2 𝑞⌉/(𝜆 + 𝑛⌈log2 𝑞⌉). Concrete numbers for different security parameters
and the number of signers are given in Table 3.1.

3.6.2 Provable Unbalanced Oil and Vinegar
We consider the trapdoor function 𝖳puov described in Section 2.3.3 and the pa-
rameters proposed in [115] with respect to NIST security levels I, III, and V. For
PUOV, the domain 𝒳 is given by 𝔽𝑛

𝑞 with elements of length len(𝒳) = 𝑛⌈log2 𝑞⌉.
The codomain 𝒴 is 𝔽𝑚

𝑞 with elements of length len(𝒴) = 𝑚⌈log2 𝑞⌉.
𝖳puov is a non-invertible trapdoor function; therefore we can build a strongly

PS-HF-UF-CMA sequential aggregate signature instantiated with PUOV by ap-
plying Theorem 3.8.

Corollary 3.16. Let𝒜 be a strongPS-HF-UF-CMA adversary against the𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲
scheme on 𝖳puov in the random oracle model, which makes 𝗊𝖲 signing queries, 𝗊𝖧 queries
to the random oracle 𝖧 and 𝗊𝖦 queries to the random oracle 𝖦. Then, there exists an
INV adversary ℬ against 𝖳puov, such that

𝖠𝖽𝗏PS-HF-UF-CMA
𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 (𝒜) ≤(𝜓𝗊𝖧) ⋅ 𝖠𝖽𝗏INV

𝖳puov(ℬ) +
(𝗊𝖲 + 𝗊𝖧)(𝗊′𝖲 + 𝗊𝖧 + 𝗊𝖦)

22𝜆

+
𝗊𝖲(𝗊′𝖲 + 𝗊𝖧)

|𝖱|
+
𝜓𝗊2𝖧
2𝑞𝑚

+
(𝜓𝗊𝖧)

𝜓+1𝑞𝑛

(𝜓 + 1)! ⋅ 𝑞𝑚(𝜓+1)
,

where 𝜓 ≥ ⌈𝑛/𝑚⌉, 𝗊′𝖲 is a bound on the total number of queries to 𝖧 in all the signing
queries, and the running time of ℬ is about that of 𝒜.

Proof. Recall that the trapdoor 𝖨puov of PUOV can be split in two distinct func-
tions 𝖨1puov and 𝖨2puov as described in Algorithm 2.5. To apply Theorem 3.8 with
a split trapdoor, we can modify the signing oracle 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇 for 𝖦𝖺𝗆𝖾𝟢-𝖦𝖺𝗆𝖾𝟤
in Argument 3.1 and 𝖲𝖺𝗆𝗉𝗅𝖾0 in the PS game (Experiment 2.2). In particular,
we add 𝒗 ←$ 𝖨1puov at the start of the algorithm, and we replace 𝒙′ ←$ 𝖨(𝒚 ′) with
𝒙′ ←$ 𝖨2puov(𝒗, 𝒚 ′). Then, the PS adversary 𝒟 can simulate both 𝖦𝖺𝗆𝖾𝟤 and 𝖦𝖺𝗆𝖾𝟥
by playing PS0 and PS1, respectively. Moreover, in Section 2.3.3, we show that
the preimages produced from 𝖲𝗂𝗀𝗇(𝖨puov, ⋅) are indistinguishable from the output
of 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥puov), so that 𝖠𝖽𝗏PS𝖳puov(𝒟) = 0.

Remark. Unlike Corollary 3.15, we cannot explicitly take 𝗊′𝖲 = 𝗊𝖲, since in 𝖨2puov the
probability of 𝒙 ≠ ⊥ depends on the fixed value of 𝒗 sampled in 𝖨1puov. Depending
on the concrete parameters of 𝖳puov, we can give a meaningful bound on 𝗊′𝖲 so that
the probability of having a number of queries to 𝖧 greater than 𝗊′𝖲 is negligible.
𝖨2puov returns ⊥ on input (𝒗, 𝒕) if 𝒫′(𝒗, ⋅) does not have full rank and 𝒕 − 𝒫(𝒗) does
not belong to the image of 𝒫′(𝒗, ⋅). Let 𝗊𝑟𝑒𝑡 be a bound for the number of queries

83

History-Free Sequential Aggregation of Hash-and-Sign Signatures

to 𝖧 in each signing query and let 𝑋𝑖 be a random variable on the actual number
of queries to 𝖧 in the 𝑖-th query. Then

Pr[𝑋𝑖 > 𝗊𝑟𝑒𝑡] =
𝑚

∑
𝑗=1

Pr[rank(𝒫′(𝒗, ⋅)) = 𝑗](1 − 𝑞𝑗−𝑚)𝗊𝑟𝑒𝑡.

As done in [175], we can assume that for a random 𝒗 ←$ 𝔽𝑛
𝑞 , 𝒫′(𝒗, ⋅) is distributed

as a random 𝑜 × 𝑚 matrix. For 𝑜 ≥ 𝑚, the probability that a random 𝑜 × 𝑚 matrix
over 𝔽𝑞 has rank 1 ≤ 𝑗 ≤ 𝑚 is given in [139]:

𝑞(𝑗−𝑚)(𝑜−𝑗)
∏𝑜

𝑘=𝑜−𝑗+1(1 − 𝑞−𝑘)∏𝑚
𝑘=𝑚−𝑗+1(1 − 𝑞−𝑘)

∏𝑗
𝑘=1(1 − 𝑞−𝑘)

. (3.3)

Then, if we choose 𝗊𝑟𝑒𝑡 such that 𝗊𝖲 Pr[𝑋𝑖 > 𝗊𝑟𝑒𝑡] is negligible, we can use 𝗊′𝖲 = 𝗊𝑟𝑒𝑡𝗊𝖲
in the bound of the corollary.

The parameters of PROV in [115] are selected so that the dimension of the
trapdoor subspace is 𝑜 = 𝑚 + 𝛿. This choice significantly reduces the probability
of Equation (3.3) whenever 𝑗 < 𝑚. For instance, with the parameters of 𝖯𝖱𝖮𝖵-I
we have Pr[𝑋𝑖 > 1] ≤ 2−72 and Pr[𝑋𝑖 > 214] ≤ 2−160.

Similarly to Original UOV, if we choose 𝜓 = 3, the additive error terms in
Corollary 3.16 are negligible for each parameterization in [115].

In [115], the salt length len(𝖱) is slightly longer than the security parameter 𝜆
for consistency with the security proof, and is given by len(𝖱) = 𝜆 + 64. The size
of a single PROV signature is then given by

|𝜎| = 𝑛⌈log2 𝑞⌉ + len(𝖱).

The size of a sequential aggregate signature instantiated with PROV is given by

|Σ̄𝑁| = 𝑁 ⋅ (len(𝖱) + (𝑛 − 𝑚)⌈log2 𝑞⌉) + 2𝜆 + 𝑚⌈log2 𝑞⌉.

Applying Equation (3.2), we can see that the compression rate asymptotically
goes to 𝑚⌈log2 𝑞⌉/(len(𝖱) + 𝑛⌈log2 𝑞⌉). Concrete numbers for different security
parameters and the number of signers are given in Table 3.2.

3.6.3 MAYO
We consider the trapdoor function 𝖳mayo described in Section 2.3.3 and the pa-
rameters proposed in [30] with respect to NIST security levels I, III, and V. For
MAYO, the domain 𝒳 is given by 𝔽𝑘𝑛

𝑞 with elements of length len(𝒳) = 𝑘𝑛⌈log2 𝑞⌉.
The codomain 𝒴 is 𝔽𝑚

𝑞 with elements of length len(𝒴) = 𝑚⌈log2 𝑞⌉.
𝖳mayo is a non-invertible trapdoor function; therefore we can build a strongly

PS-HF-UF-CMA sequential aggregate signature instantiated with MAYO by ap-
plying Theorem 3.8.

84

3.6 – Instantiation and Evaluation

Corollary 3.17. Let𝒜 be a strongPS-HF-UF-CMA adversary against the𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲
scheme on 𝖳mayo in the random oracle model, which makes 𝗊𝖲 signing queries, 𝗊𝖧 queries
to the random oracle 𝖧 and 𝗊𝖦 queries to the random oracle 𝖦. Then, there exists an
INV adversary ℬ against 𝖳mayo, such that

𝖠𝖽𝗏PS-HF-UF-CMA
𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 (𝒜) ≤

𝜓𝗊𝖧
1 − 𝗊𝖲𝖡

⋅ 𝖠𝖽𝗏INV
𝖳mayo

(ℬ) +
(𝗊𝖲 + 𝗊𝖧)(𝗊𝖲 + 𝗊𝖧 + 𝗊𝖦)

22𝜆

+
𝗊𝖲(𝗊𝖲 + 𝗊𝖧)

|𝖱|
+
𝜓𝗊2𝖧
2𝑞𝑚

+
(𝜓𝗊𝖧)

𝜓+1𝑞𝑘𝑛

(𝜓 + 1)! ⋅ 𝑞𝑚(𝜓+1)
,

where 𝜓 ≥ ⌈𝑘𝑛/𝑚⌉, and the running time of ℬ is about that of 𝒜.

Proof. In Section 2.3.3, we observed that that if 𝖨mayo has never output ⊥, then the
preimages produced by 𝖲𝗂𝗀𝗇(𝖨mayo, ⋅) are indistinguishable from 𝖲𝖺𝗆𝗉𝖣𝗈𝗆(𝖥mayo).
In [29], the author provides an explicit bound on the failure probability, which
we denote as 𝖡.

To apply the proof of Theorem 3.8 to 𝖳mayo, we introduce a new intermediate
game 𝖦𝖺𝗆𝖾𝟤𝖻. This game is identical to 𝖦𝖺𝗆𝖾𝟤 except that 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇 aborts if
𝖨mayo outputs ⊥. Since at most 𝗊𝖲 queries are made to 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇, the probability
that 𝖦𝖺𝗆𝖾𝟤𝖻 does not abort is at least 1 − 𝗊𝖲𝖡. It follows that Pr[𝖦𝖺𝗆𝖾𝟤(𝒜) = 1] ≤

1
1−𝗊𝖲𝖡

Pr[𝖦𝖺𝗆𝖾𝟤𝖻(𝒜) = 1]. Now, when 𝖦𝖺𝗆𝖾𝟤𝖻 does not abort, the game is indis-
tinguishable from 𝖦𝖺𝗆𝖾𝟥, so that Pr[𝖦𝖺𝗆𝖾𝟥(𝒜) = 1] = Pr[𝖦𝖺𝗆𝖾𝟤𝖻(𝒜) = 1]. The
remainder of the proof proceeds as the original without the need to introduce the
PS adversary 𝒟. Finally, since MAYO now does not repeat any signature attempts,
we can set 𝗊′𝖲 = 𝗊𝖲.

In order to choose appropriate values for 𝜓, it is necessary to consider the
whipped map 𝒫∗ ∶ 𝔽𝑘𝑛

𝑞 → 𝔽𝑚
𝑞 , from which 𝜓 ≥ ⌈𝑘𝑛/𝑚⌉. If we consider the pa-

rameter sets of Table 2.6, we can choose 𝜓 equal to 10,5,12 and 13 for 𝖬𝖠𝖸𝖮1,
𝖬𝖠𝖸𝖮2,𝖬𝖠𝖸𝖮3 and 𝖬𝖠𝖸𝖮5 respectively, to obtain negligible additive terms in
Corollary 3.17.

Similarly to PROV, in [30] the salt length len(𝖱) is slightly longer than the
security parameter 𝜆 and is again given by len(𝖱) = 𝜆 + 64. The size of a single
MAYO signature is then given by

|𝜎| = 𝑘𝑛⌈log2 𝑞⌉ + len(𝖱).

The size of a sequential aggregate signature instantiated with MAYO is given by

|Σ̄𝑁| = 𝑁 ⋅ (len(𝖱) + (𝑘𝑛 − 𝑚)⌈log2 𝑞⌉) + 2𝜆 + 𝑚⌈log2 𝑞⌉.

Applying Equation (3.2), we can see that the compression rate asymptotically
goes to 𝑚⌈log2 𝑞⌉/(len(𝖱) + 𝑛𝑘⌈log2 𝑞⌉). Concrete numbers for different security
parameters and the number of signers are given in Table 3.3.

85

History-Free Sequential Aggregation of Hash-and-Sign Signatures

Table 3.4: Aggregate signature sizes and compression rates for Wave [71].

Parameter 128g

NIST SL I
(𝑛, 𝑘,𝑤, 𝑞) (8492,5605,7980,3)

len(𝖱) (bytes) 16
𝑁 ⋅ |𝜎| (bytes) 1699 ⋅ 𝑁
|Σ̄𝑁| (bytes) 1127 ⋅ 𝑁 + 604
𝜏(5) 0.27
𝜏(20) 0.32
𝜏(100) 0.33
Asym. 𝜏(𝑁) 0.34

3.6.4 Wave
We consider the trapdoor function 𝖳wave described in Section 2.3.2 and the param-
eters proposed in [71] with respect to NIST security level I. Notice that this is not
the same scheme later submitted to NIST’s call for additional digital signatures.
The submitted scheme incorporates an optimization derived from the Wavelet
variant [16], which cannot be used during aggregation and for which only an
asymptotically trivial compression rate can be obtained. More details on what
types of optimizations can be employed during aggregation are provided at the
end of this section.

For Wave, the domain 𝒳 is given by 𝑆𝑤,𝑛, the subset of 𝔽𝑛
𝑞 with vectors of

Hamming weight 𝑤, with elements of length len(𝒳) = ⌈𝑛 log2 𝑞⌉. The codomain
𝒴 is 𝔽𝑛−𝑘

𝑞 with elements of length len(𝒴) = ⌈(𝑛 − 𝑘) log2 𝑞⌉.
𝖳wave is a one-way 𝜀-APSF; therefore we can build a strongly PS-HF-UF-CMA

sequential aggregate signature instantiated with Wave by applying Theorem 3.14.

Corollary 3.18. Let𝒜 be a strongPS-HF-UF-CMA adversary against the𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲
scheme on the 𝜀-APSF 𝖳wave in the random oracle model, whichmakes 𝗊𝖲 signing queries,
𝗊𝖧 queries to the random oracle 𝖧 and 𝗊𝖦 queries to the random oracle 𝖦. Then, there
exists an OW adversary ℬ against 𝖳wave, such that

𝖠𝖽𝗏PS-HF-UF-CMA
𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 (𝒜) ≤(𝜓𝗊𝖧) ⋅ 𝖠𝖽𝗏OW𝖳wave

(ℬ) + 𝗊𝖲𝜀 +
(𝗊𝖲 + 𝗊𝖧)(𝗊𝖲 + 𝗊𝖧 + 𝗊𝖦)

22𝜆

+
𝗊𝖲(𝗊𝖲 + 𝗊𝖧)

2𝜆
+

𝜓𝗊2𝖧
2𝑞𝑛−𝑘

+
(𝜓𝗊𝖧)

𝜓+1|𝑆𝑤,𝑛|
(𝜓 + 1)! ⋅ 𝑞(𝑛−𝑘)(𝜓+1)

,

where 𝜓 ≥ ⌈𝑛/(𝑛 − 𝑘)⌉, and the running time of ℬ is about that of 𝒜.

86

3.6 – Instantiation and Evaluation

Proof. Since 𝖨wave is a 𝜀-APSF, we can directly apply Theorem 3.14 and obtain the
claim.

In Corollary 3.18, we can choose 𝜓 = 3 to have negligible additive error terms
with respect to the parameterization of Table 2.3.

In our comparison, we consider salts of length equal to the security parameter
𝜆. The size of a single Wave signature is given by

|𝜎| = ⌈𝑛 log2 𝑞⌉ + 𝜆.

The size of a sequential aggregate signature instantiated with Wave is given by

|Σ̄𝑁| = 𝑁 ⋅ (𝜆 + ⌈𝑘 log2 𝑞⌉) + 2𝜆 + ⌈(𝑛 − 𝑘) log2 𝑞⌉.

Applying Equation (3.2), we can see that the compression rate asymptotically
goes to ⌈(𝑛 − 𝑘) log2 𝑞⌉/(𝜆 + ⌈𝑛 log2 𝑞⌉). Concrete numbers for different security
parameters and the number of signers are given in Table 3.4.

3.6.5 Signature-Specific Optimizations
For proper evaluation of the efficiency of SAS, it is necessary to consider any
optimizations of the single signature that cannot be used in aggregation. Ignor-
ing possible optimizations can lead to an unfair comparison and an incorrect
calculation of the compression rate.

In [48], Boudgoust and Takahashi observe that in the context of lattice-based
signatures built on PSFs (e.g., Falcon) it is possible to reduce the size of signatures
considerably by slightly modifying the verification process. However, the same
variant is not applicable in the context of aggregate signatures. Similarly, as noted
in the previous section, the optimization introduced by theWavelet variant cannot
be applied in the aggregation phase, causing a significant loss of efficiency.

More generally, any compression method applied to a single Hash-and-Sign
signature can be employed in our construction, provided sufficient information
exists in the signature to recover the message hash. To elaborate further, consider
the generic Hash-and-Sign scheme outlined in Algorithm 2.1. Suppose that the
𝖲𝗂𝗀𝗇 algorithm returns the pair (𝑟,𝐶(𝑥)), where 𝐶 is a compression algorithm on
the preimage 𝑥. If, during the verification process, it is possible to recover 𝖧(𝑟,𝑚)
from the public key 𝖥 and 𝐶(𝑥), then the same optimization can be effectively
employed within the 𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 scheme. In fact, the aggregation process of
Algorithm 3.2 can be tweaked to aggregate part of the compressed preimage
𝐶(𝑥) without the need to modify the verification step further. However, the
optimized versions of Falcon and Wave(let) do not conform to this description, as
their verification process does not enable the recovery of the message hash from
the signature and the public key. Instead, the verification is based on a custom
assertion involving the knowledge of 𝖥, 𝐶(𝑥), and 𝖧(𝑟,𝑚).

87

88

Part II

Group Action-based Signature
Aggregation

89

Chapter 4

Signatures from Cryptographic
Group Actions

The Fiat-Shamir transform [96] is a popular paradigm to obtain digital signature
from Σ-protocols. A Σ-protocol is a 3-round zero knowledge proof of knowl-
edge that allows a prover to prove their knowledge of a witness for some public
statement. A large number of Σ-protocols are known, including the well-known
Schnorr identification scheme [177].

Recently, cryptographic group actions have emerged as a promising tool for
building post-quantum digital signatures. Schnorr’s signature, while enjoying
advanced properties not generally available to post-quantum group actions, also
falls within this paradigm. The first constructions in the post-quantum domain
were introduced by schemes based on isogenies between elliptic curves [51, 70].
More recently, numerous (non-abelian) group actions have been proposed from
the equivalence between linear [17] and matrix codes [61], alternate trilinear
forms [185] or various isomorphism problems such as that between lattices [89].
In NIST’s recent competition for digital signatures [161], three group action-based
schemes were submitted: LESS [13], MEDS [60], and ALTEQ [37].

In Section 4.1, we introduce the basic notions of Σ-protocol, and we describe
how a digital signature scheme can be derived with the Fiat-Shamir transform.
Then, in Section 4.2 we give an overview of cryptographic group actions, dis-
cussing the cryptographic assumptions and the relevant constructions for digital
signatures. In Section 4.3, we analyse the standard optimization employed in
group-action-based signatures, so that they can later be integrated into the ag-
gregation process. Finally, in Section 4.4 we provide some examples focusing on
the schemes submitted to NIST on-ramp process, which will be the subject of the
applications of aggregation schemes in the following chapter.

91

Signatures from Cryptographic Group Actions

4.1 Interactive Proofs
Consider a language ℒ ∈ 𝖭𝖯, a 𝖭𝖯 relation for ℒ is a binary relation 𝑅ℒ of pairs
(𝑥,𝑤) such that 𝑥 ∈ ℒ and 𝑤 allows verifying that 𝑥 ∈ ℒ in polynomial time. 𝑤 is
usually called a witness for the statement x.

From a language in 𝖭𝖯 we can then envision a protocol in which a prover
produces a proof of membership that can be verified in polynomial time. An
interactive proof is a generalization of this idea to prove the truth of a statement in
an arbitrary language. Interactive proofs were first introduced in two independent
works by Goldwasser, Micali, and Rackoff [113] and Babai [11].

Definition 4.1 (Relations and Languages). A binary relation is a finite set𝑅 ⊆ 𝑋×𝑊.
Given (𝑥,𝑤) ∈ 𝑅, we say that 𝑤 is a witness for the statement 𝑥. Moreover, the
set ℒ𝑅 = {𝑥 ∈ 𝑋 ∣ ∃𝑤 ∈ 𝑊 s.t. (𝑥,𝑤) ∈ 𝑅} of true statements for 𝑅 is called the
language of the relation 𝑅. We also say that 𝑤 ∈ 𝑅(𝑥) if (𝑥,𝑤) ∈ 𝑅.

Definition 4.2 (Interactive Proof). An interactive proof (𝒫,𝒱) for a binary relation
𝑅 ⊆ 𝑋 ×𝑊 is an interactive protocol between two probabilistic machines, a prover
𝒫 and a polynomial time verifier 𝒱. Both 𝒫 and 𝒱 take as public input a statement
𝑥 and, additionally, 𝒫 takes as private input a witness 𝑤 for 𝑥. We denote the
protocol instance as (𝒫(𝑤),𝒱)(𝑥). As the output of the protocol, 𝒱 either accepts
(returns 1) or rejects (return 0). Accordingly, we say the corresponding transcript
(i.e., the set of all messages exchanged in the protocol execution) is accepting or
rejecting.

An interactive proof is usually required to satisfy two additional properties.

Definition 4.3 (Completeness). An interactive proof (𝒫,𝒱) for a binary relation
𝑅 ⊆ 𝑋 ×𝑊 is complete with completeness error 𝜌(|𝑥|) if, for any (𝑥,𝑤) ∈ 𝑅, it holds

Pr[(𝒫(𝑤),𝒱)(𝑥) = 0] ≤ 𝜌(|𝑥|).

If 𝜌(𝑥) = 0 then the protocol is said to be perfectly complete.

Definition 4.4 (Soundness). An interactive proof (𝒫,𝒱) for a binary relation
𝑅 ⊆ 𝑋 ×𝑊 is sound with soundness error 𝜎(|𝑥|) if, for any 𝑥 ∉ ℒ𝑅 and any prover
𝒫∗, it holds

Pr[(𝒫∗,𝒱)(𝑥) = 1] ≤ 𝜎(|𝑥|).

In practical applications, we usually require the error probabilities to be
negligible in |𝑥|. Historically, a protocol is said to be complete (resp. sound) if
𝜌(|𝑥|) (resp. 𝜎(|𝑥|)) has the constant value 1/3. This value is arbitrary and can be
replaced by any other value in (0,1), since both the completeness error and the
soundness error can be decreased by sequential repetitions.

As a generalization of the class 𝖭𝖯 we can consider the class of all languages
that admits an interactive proof.

92

4.1 – Interactive Proofs

Definition 4.5 (Class 𝖨𝖯). The complexity class 𝖨𝖯 is the class of all languages ℒ
for which there exists an interactive proof that 𝑥 ∈ ℒ with a polynomial number
of rounds (in |𝑥|).

A key result showing that the class 𝖨𝖯 is strictly larger than the class 𝖭𝖯 was
given in [179], where Shamir proved that 𝖨𝖯 = 𝖯𝖲𝖯𝖠𝖢𝖤.

Definition 4.6 (Class 𝖯𝖲𝖯𝖠𝖢𝖤). The complexity class 𝖯𝖲𝖯𝖠𝖢𝖤 is the class of all
languages that can be decided by an algorithm in polynomial space and, possibly,
with unbounded running time.

In an interactive proof for a language in 𝖨𝖯, a verifier may keep their internal
state hidden to the prover. Such an interactive proof is also called private-coin.
Conversely, an interactive proof where the verifier is required to reveal their
random tape is called public-coin.

Definition 4.7 (Public-Coin). An interactive proof (𝒫,𝒱) is public-coin if all of
𝒱’s random choices are made public.

The corresponding complexity class were studied in [11].

Definition 4.8 (Class 𝖠𝖬). The complexity class 𝖠𝖬 (Arthur-Merlin) is the class
of all languages ℒ for which there exists a public-coin interactive proof that 𝑥 ∈ ℒ
with a polynomial number of rounds (in |𝑥|).

A strong result linking classes 𝖨𝖯 and 𝖠𝖬 was proved in [114], showing that
any language that admits a private-coin interactive proof with 𝑘 rounds also
admits a public-coin interactive proof with at most 𝑘 + 2 rounds. In particular,
this proves that the verifier does not gain particular power by hiding their input.
For this reason, in the following we will only consider public-coin interactive
proofs.

Interactive proofs provide a proof of membership for a statement 𝑥 ∈ ℒ𝑅. In
other words, they provide a proof of existence of a witness 𝑤 such that (𝑥,𝑤) ∈ 𝑅,
but there is no guarantee that the prover actually knows 𝑤. In fact, a negligible
soundness error only states that a prover can not convince a verifier of a false
statement 𝑥 ∉ ℒ𝑅. An interactive proof that also convinces a verifier of the prover’s
knowledge of a witness is called a proof of knowledge.

Informally, an interactive proof is a proof of knowledge if it is possible to extract
a witness from a prover that correctly answers to the challenges of the verifier with
sufficiently high probability. More in detail, it is necessary to describe a knowledge
extractor algorithm. The extractor 𝖤𝗑𝗍 is given oracle access to any prover 𝒫∗, such
that the probability of (𝒫∗,𝒱)(𝑥) = 1 is greater than a fixed threshold 𝜅(𝖤𝗑𝗍, 𝑥).
Then, 𝖤𝗑𝗍 should be able to efficiently compute a witness 𝑤 such that (𝑥,𝑤) ∈ 𝑅.
In particular, the running time of 𝖤𝗑𝗍 should be inversely proportional to the

93

Signatures from Cryptographic Group Actions

success probability of 𝒫∗. Given an extractor 𝖤𝗑𝗍, and the statement 𝑥, the fixed
threshold 𝜅(𝖤𝗑𝗍, 𝑥) ∈ [0,1] called knowledge error. It follows that no prover who
does not know a witness has a higher probability of success (also called cheating
probability) in interacting with a verifier than the knowledge error.

An interactive proof for which it is possible to build a knowledge extractor is
called knowledge-sound.

Definition 4.9 (Knowledge Soundness). An interactive proof (𝒫,𝒱) for a binary
relation 𝑅 ⊆ 𝑋 ×𝑊 is knowledge-sound with knowledge error 𝜅∶ ℕ → [0,1] if there
exists a positive polynomial 𝑞 and an algorithm 𝖤𝗑𝗍, called a knowledge extractor,
with the following properties. The extractor 𝖤𝗑𝗍, given input 𝑥 and rewindable
oracle access to a (potentially dishonest) prover 𝒫∗, runs in an expected number
of steps that is polynomial in |𝑥| and outputs a witness 𝑤 ∈ 𝑅(𝑥) with probability

Pr[(𝑥, 𝖤𝗑𝗍𝒫∗(𝑥)) ∈ 𝑅] ≥
𝜀(𝑥,𝒫∗) − 𝜅(𝑥)

𝑞(|𝑥|)
,

where 𝜀(𝑥,𝒫∗) ∶= Pr[(𝒫∗,𝒱)(𝑥) = 1].

In many scenarios, we want to use interactive proof systems which are knowl-
edge-sound with a negligible knowledge error. In such case, we can state that
the protocol is knowledge-sound without mentioning the knowledge error and the
associated knowledge extractor. In knowledge-sound interactive proof systems, a
prover that can produce a valid response to a verifier with non-negligible prob-
ability must know the witness, and therefore a prover who does not know a
witness can produce an accepting conversation with a verifier only with negligible
probability.

4.1.1 Zero-Knowledge Proofs
In an interactive proof (of knowledge), a verifier may be able to obtain some non-
trivial information fromhis interactionwith the prover. Instead, for cryptographic
applications we are interested in interactive protocols where a verifier only learns
whether a statement is true (for an interactive proof) or if the prover knows a
witness (for a proof of knowledge). An interactive proof where the prover is able
to convince the verifier without revealing any additional information is called
a zero-knowledge proof. First introduced by Goldwasser, Micali, and Rackoff in
[112], zero-knowledge proofs are pivotal in modern cryptography and the basis
of numerous applications.

In [112], the notion of zero-knowledge was formalized through the presence
of an efficient simulator for the protocol. In more detail, any information that
a malicious verifier could obtain from interacting with an honest prover on a
statement 𝑥 would be computable directly from the output of the simulator.

94

4.1 – Interactive Proofs

Definition 4.10 (Zero-Knowledge). An interactive proof (𝒫,𝒱) for a binary re-
lation 𝑅 is (Statistical) Zero-Knowledge if there exists a probabilistic polynomial
time algorithm 𝖲𝗂𝗆, called a simulator, such that for any 𝑥 ∈ ℒ𝑅 and any verifier 𝒱∗,
𝖲𝗂𝗆 produces a transcript in expected polynomial time which is statistically indis-
tinguishable from the execution (𝒫,𝒱∗)(𝑥). If the two distributions are identically
distributed, the interactive proof is Perfect Zero-Knowledge.

The above definition can be relaxed by requiring that the output of the simula-
tor and the transcript produced by the interaction with 𝒱∗ must be computationally
indistinguishable. This is particularly useful in applications, since in [112] was
proved that any language in 𝖭𝖯 admits a zero-knowledge proof1.

We can consider a further relaxation of the previous notion, requiring that the
algorithm 𝖲𝗂𝗆 is able to simulate the interaction between a prover and an honest
verifier. This weaker notion is called Honest-Verifier Zero-Knowledge (HVZK), and
can be seen as a specialization of the general notion of zero-knowledge on a single
type of verifier.

Definition 4.11 (Honest-Verifier Zero-Knowledge). An interactive proof (𝒫,𝒱)
for a binary relation 𝑅 is (statistical) Honest-Verifier Zero-Knowledge if there exists
a probabilistic polynomial time algorithm 𝖲𝗂𝗆, called a simulator, such that for
any 𝑥 ∈ ℒ𝑅, 𝖲𝗂𝗆 produces a transcript in expected polynomial time which is
statistically indistinguishable from the execution (𝒫,𝒱)(𝑥). If the two distributions
are identically distributed, the interactive proof is perfectly HVZK. Alternatively,
if the two distributions are computationally indistinguishable, the interactive
proof is computationally HVZK.

Although the notion of HVZK is strictly weaker, it captures roughly the same
class of languages for which zero-knowledge interactive proof exists. Particularly,
it can be shown that public-coin HVZK interactive proofs can be efficiently trans-
formed to zero-knowledge interactive proofs [68, 106]. Moreover, particularly
relevant to the purposes of a digital signature, a public-coin HVZK interactive
proof can be made a non-interactive proof by applying the Fiat-Shamir transform
[96].

4.1.2 Sigma-Protocols
For the remaining part of this thesis, we will focus solely on a particular type of
interactive proof: 3-round public-coin interactive proofs for 𝖭𝖯 relations.

Definition 4.12 (3-Round Protocol). A 3-round protocol Π for a 𝖭𝖯 relation 𝑅 ⊆
𝑋 × 𝑊 is a tuple of four probabilistic polynomial-time algorithms Π = (𝖯 =
(𝖯1,𝖯2),𝖵 = (𝖵1,𝖵2)), where 𝖯1,𝖯2 are assumed to share states, such that:

1No similar results are known for perfect or statistical zero-knowledge proofs.

95

Signatures from Cryptographic Group Actions

Algorithm 4.1: 3-Round Protocol
Let 𝑅 ⊆ 𝑋 ×𝑊 be a 𝖭𝖯 relation and let (𝑥,𝑤) ∈ 𝑅.

Prover(𝑤, 𝑥) Verifier(𝑥)
𝖼𝗈𝗆 ←$ 𝖯1(𝑤, 𝑥)

𝖼𝗈𝗆

𝖼𝗁 ←$ 𝖵1(𝖼𝗈𝗆)

𝖼𝗁

𝗋𝗌𝗉 ← 𝖯2(𝑤, 𝑥, 𝖼𝗈𝗆, 𝖼𝗁)

𝗋𝗌𝗉

𝐫𝐞𝐭𝐮𝐫𝐧 𝖵2(𝑥, 𝖼𝗈𝗆, 𝖼𝗁, 𝗋𝗌𝗉)

• 𝖼𝗈𝗆 ←$ 𝖯1(𝑤, 𝑥): given a statement 𝑥 ∈ 𝑋 and a corresponding witness
𝑤 ∈ 𝑅(𝑥), the prover generates a commitment 𝖼𝗈𝗆.

• 𝖼𝗁 ←$ 𝖵1(𝖼𝗈𝗆): given a commitment 𝖼𝗈𝗆, the verifier returns a uniformly
random challenge 𝖼𝗁 in a challenge space 𝖢𝗁.

• 𝗋𝗌𝗉 ← 𝖯2(𝑤, 𝑥, 𝖼𝗈𝗆, 𝖼𝗁): given a statement 𝑥 ∈ 𝑋, the corresponding witness
𝑤 ∈ 𝑅(𝑥), a commitment 𝖼𝗈𝗆 and a challenge 𝖼𝗁, the prover computes a
response 𝗋𝗌𝗉.

• {0,1} ← 𝖵2(𝑥, 𝖼𝗈𝗆, 𝖼𝗁, 𝗋𝗌𝗉): given a statement 𝑥 ∈ 𝑋, a commitment 𝖼𝗈𝗆,
a challenge 𝖼𝗁 and a response 𝗋𝗌𝗉, the verifier either accept (returns 1) or
reject (returns 0).

A transcript for an execution of Π is given by the tuple (𝖼𝗈𝗆, 𝖼𝗁, 𝗋𝗌𝗉).

A schematic representation of the protocol is provided in Algorithm 4.1.
A common strategy to prove the knowledge soundness of a 3-round protocol

is showing that it enjoys (general) special soundness. Informally, given enough
accepting transcripts with a fixed commitment, it is possible to extract a witness.

Definition 4.13 (𝑘-out-of-𝑁 Special-Soundness). Let 𝑘,𝑁 ∈ ℕ. A 3-round public-
coin protocol (𝒫,𝒱) for relation 𝑅, with challenge set of cardinality 𝑁 ≥ 𝑘, is
𝑘-out-of-𝑁 special-sound if there exists a polynomial time algorithm that, on input
a statement 𝑥 and 𝑘 accepting transcripts (𝖼𝗈𝗆, 𝖼𝗁1, 𝗋𝗌𝗉1),… , (𝖼𝗈𝗆, 𝖼𝗁𝑘, 𝗋𝗌𝗉𝑘) with
common first message 𝖼𝗈𝗆 and pairwise distinct challenges 𝖼𝗁1,… , 𝖼𝗁𝑘, outputs

96

4.1 – Interactive Proofs

a witness 𝑤 ∈ 𝑅(𝑥). When 𝑁 is clear from the context, we also say (𝒫,𝒱) is
𝑘-special-sound and, if 𝑘 = 2, it is simply said to be special-sound.

It is straightforward to prove that 𝑘-out-of-𝑁 special soundness implies knowl-
edge soundness.

Proposition 4.14. Let 𝑘,𝑁 ∈ ℕ and let Π be a 𝑘-out-of-𝑁 special-sound 3-round
public-coin protocol for a relation 𝑅 ⊆ 𝑋 × 𝑊. Then Π is knowledge-sound with
knowledge error (𝑘 − 1)/𝑁.

Proof sketch. Let 𝒫∗ be a prover attacking Π on input 𝑥 ∈ 𝑋. We can assume,
without loss of generality, that 𝒫∗ is deterministic. In fact, it is possible to show
that the extractor is well-defined even when restricted to deterministic provers
only [10]. Indeed, suppose that 𝒫∗ is a probabilistic prover, and denote by 𝒫∗[𝑟]
the deterministic prover obtained by setting the randomness of 𝒫∗ to 𝑟. Let
𝜀(𝑥,𝒫∗) be the success probability of 𝒫∗ on input 𝑥. Then, it is easy to show
that 𝜀(𝑥,𝒫∗) = 𝔼[𝜀(𝑥,𝒫∗[𝑟])] and Pr[(𝑥, 𝖤𝗑𝗍𝒫∗(𝑥)) ∈ 𝑅] = 𝔼[Pr[(𝑥, 𝖤𝗑𝗍𝒫∗[𝑟](𝑥)) ∈ 𝑅]],
where the expected value is taken over the random choice of 𝑟.

Since 𝒫∗ is deterministic, we can model it as a map 𝖢𝗁 → {0,1}∗ that takes as
input a challenge 𝖼𝗁 ∈ 𝖢𝗁 and outputs a fixed commitment 𝖼𝗈𝗆 and its response
𝗋𝗌𝗉, such that (𝖼𝗈𝗆, 𝖼𝗁, 𝗋𝗌𝗉) is a transcript for Π. We also define a verification
function 𝖵 ∶ 𝖢𝗁 × {0,1}∗ → {0,1} that returns 1 on an accepting transcript and
0 otherwise. Finally, let 𝜀 = 𝜀(𝑥,𝒫∗) = Pr𝖼𝗁←$𝖢𝗁[𝖵(𝖼𝗁,𝒫∗(𝖼𝗁)) = 1]. We build an
extractor 𝖤𝗑𝗍 having oracle access to 𝒫∗ as follows.

1. Sample 𝖼𝗁1 ←$ 𝖢𝗁 until 𝖵(𝖼𝗁1,𝒫∗(𝖼𝗁1)) = 1. For each 𝖼𝗁1, the success
probability of 𝒫∗ is 𝜀. Therefore, the expected running time of this step is
1/𝜀.

2. Sample 𝖼𝗁2 ←$ 𝖢𝗁∖ {𝖼𝗁1} until 𝖵(𝖼𝗁2,𝒫∗(𝖼𝗁2)) = 1. For each 𝖼𝗁2, the success
probability of 𝒫∗ is at least 𝜀 − 1/𝑁. Therefore, the expected running time
of this step is at most 1/(𝜀 − 1/𝑁).

⋮

𝑘. After finding 𝑘 − 1 accepting distinct challenges 𝖼𝗁1,… , 𝖼𝗁𝑘−1 ∈ 𝖢𝗁, sample
𝖼𝗁𝑘 ←$ 𝖢𝗁 until 𝖵(𝖼𝗁𝑘,𝒫∗(𝖼𝗁𝑘)) = 1. For each 𝖼𝗁𝑘, the success probability of
𝒫∗ is at least 𝜀 − (𝑘 − 1)/𝑁. Therefore, the expected running time of this step
is at most 1/(𝜀 − (𝑘 − 1)/𝑁).

After the last step, 𝖤𝗑𝗍 obtained 𝑘 accepting transcript with a fixed commitment
for 𝑘 pairwise distinct challenges, and can apply the special-soundness extractor
to obtain a witness. Combining all the steps of the extractor, the expected running
time is at most

𝑘
𝜀(𝑥,𝒫∗) − (𝑘 − 1)/𝑁

.

97

Signatures from Cryptographic Group Actions

It follows that Π is knowledge-sound with knowledge soundness (𝑘 − 1)/𝑁.

A standard approach to reduce the knowledge error of a 3-round protocol
Π is to consider the 𝑡-fold parallel repetition of Π. Formally, this transforms
Π into a new 3-round protocol Π𝑡, where 𝑡 independent repetitions of Π are
performed. In particular, the prover first executes 𝖯1 𝑡 times, obtaining 𝑡 com-
mitments which are sent simultaneously to the verifier. The verifier now sends a
challenge array (𝖼𝗁1,… , 𝖼𝗁𝑡) ←$ 𝖢𝗁𝑡 to the prover, which computes 𝑡 responses
for each commitment-challenge pair.

It is easy to notice that the 𝑡-fold parallel repetition of a special-sound protocol
is still special-sound. In fact, two distinct challenge arrays (𝖼𝗁1,… , 𝖼𝗁𝑡) and
(𝖼𝗁′1,… , 𝖼𝗁′𝑡) must differ in at least one component 𝑗 ∈ {1,… , 𝑡}, and the special-
sound extractor for Π can be applied to the transcripts associated with 𝖼𝗁𝑗, 𝖼𝗁′𝑗. In
particular,Π𝑡 is knowledge-sound and the knowledge error is reduced from 1/|𝖢𝗁|
to 1/|𝖢𝗁|𝑡. This is not trivial to extend for generic 𝑘-special-sound protocols, and
was only recently proved in [10], where Attema and Fehr showed that the 𝑡-fold
parallel repetition of a 𝑘-special-sound protocol reduces the knowledge error
from 𝜅 to 𝜅𝑡, which is optimal2.

Theorem 4.15 ([10]). Let 𝑘,𝑁, 𝑡 ∈ ℕ and letΠ be a 𝑘-out-of-𝑁 special-sound 3-round
public-coin protocol for a relation 𝑅 ⊆ 𝑋 ×𝑊 and letΠ𝑡 be the 𝑡-fold parallel repetition
of Π. Then Π𝑡 is knowledge-sound with knowledge error (𝑘 − 1)𝑡/𝑁𝑡.

Finally, we introduce Σ-protocols, which are the main objects discussed in the
upcoming sections.

Definition 4.16. A Σ-protocolΠ for a 𝖭𝖯 relation 𝑅 ⊆ 𝑋 ×𝑊 is a 3-round protocol
which is perfectly complete, statistically honest-verifier zero-knowledge and
knowledge-sound.

A necessary requirement on the Σ-protocol to build digital signatures is to
have a sufficiently large commitment space. This is formalized with the notion of
high min-entropy [2].
Definition 4.17 (𝛼 min-entropy). A Σ-protocol Π for binary relation 𝑅 has 𝛼
min-entropy if, for any (𝑥,𝑤) ∈ 𝑅 and for any probabilistic algorithm𝒜 outputting
a commitment, it holds

Pr[𝖼𝗈𝗆 = 𝖼𝗈𝗆′ | 𝖼𝗈𝗆 ←$ 𝖯1(𝑤, 𝑥), 𝖼𝗈𝗆′ ←$ 𝒜(𝑤, 𝑥)] ≤ 2−𝛼.

Π has high min-entropy with respect to 𝜆 if 2−𝛼 is negligible in 𝜆.
In the following sections, we will describe how to build identification protocols

and digital signatures starting from Σ-protocols on cryptographic group actions.

2The authors also showed that this result extends to a generalization of the notion of special
soundness for multi-round protocols.

98

4.1 – Interactive Proofs

Algorithm 4.2: Fiat-Shamir Transformation of a Σ-protocol
Π is a Σ-protocol on a binary relation 𝑅 ⊆ 𝑋 × 𝑊. 𝖧 ∶ {0,1}∗ → 𝖢𝗁 is a random
oracle

𝖪𝖦𝖾𝗇(𝗉𝗉):
1: Sample 𝑥 ∈ 𝑋,𝑤 ∈ 𝑊 such that

(𝑥,𝑤) ∈ 𝑅
2: return (𝗉𝗄 = 𝑥, 𝗌𝗄 = 𝑤)

𝖵𝗋𝖿𝗒(𝗉𝗄 = 𝑥, 𝑚, 𝜎):
1: (𝖼𝗈𝗆, 𝗋𝗌𝗉) ← 𝜎
2: 𝖼𝗁 ← 𝖧(𝖼𝗈𝗆,𝑚)
3: return 𝖵2(𝑥, 𝖼𝗈𝗆, 𝖼𝗁, 𝗋𝗌𝗉)

𝖲𝖾𝗍𝗎𝗉(1𝜆):
1: 𝗉𝗉 ← public parameters for Π
2: return 𝗉𝗉

𝖲𝗂𝗀𝗇(𝗌𝗄 = 𝑤, 𝗉𝗄 = 𝑥, 𝑚):
1: 𝖼𝗈𝗆 ←$ 𝖯1(𝑤, 𝑥)
2: 𝖼𝗁 ← 𝖧(𝖼𝗈𝗆,𝑚)
3: 𝗋𝗌𝗉 ← 𝖯2(𝑤, 𝑥, 𝖼𝗈𝗆, 𝖼𝗁)
4: 𝜎 ← (𝖼𝗈𝗆, 𝗋𝗌𝗉)
5: return 𝜎

4.1.3 Fiat-Shamir Transform
A relevant question is whether a zero-knowledge interactive proof (of knowl-
edge) can be turned into a non-interactive proof, preserving the zero-knowledge
property. Non-interactive proofs are useful in applications since they do not
require any interaction between the parties. Moreover, the zero-knowledge prop-
erty would allow for cryptographic applications such as digital signatures. In
particular, given a non-interactive zero-knowledge proof of knowledge for a 𝖭𝖯
relation 𝑅, a signer can take a statement-witness pair (𝑥,𝑤) ∈ 𝑅 as their private
key and publish 𝑥 as their public key. To sign a message𝑚, the signer can produce
a proof of knowledge of 𝑥 together with an approval of𝑚, that can be then directly
verified.

This was first solved for Σ-protocols by Fiat and Shamir in [96], that proposed
a generic transformation to obtain a non-interactive zero-knowledge proof of
knowledge that can be turned into a signature. The streamlined idea is that the
sampling of the random challenge by the verifier can be replaced by the output of
a random oracle 𝖧 taking as input the commitment 𝖼𝗈𝗆. In practice, the role of
the random oracle is taken by a collision-resistant hash function 𝖧 ∶ {0,1}∗ → 𝖢𝗁.
To obtain a digital signature, the challenge computation includes the message
to be signed, thus obtaining 𝖼𝗁 ← 𝖧(𝖼𝗈𝗆,𝑚). The resulting signature scheme is
detailed in Algorithm 4.2.

Remark. In Algorithm 4.2, the signature is given by a partial transcript of the
commitment and response 𝜎 = (𝖼𝗈𝗆, 𝗋𝗌𝗉). During verification, the challenge is
retrieved from the commitment and the message, and the full transcript can be
verified. If Π satisfies an additional property for which a valid commitment is
uniquely determined by a challenge and a response, Π is said to be commitment
recoverable and the signature can be optimized. In fact, the signature can be

99

Signatures from Cryptographic Group Actions

replaced with the pair (𝖼𝗁, 𝗋𝗌𝗉) and, during verification, the commitment 𝖼𝗈𝗆 is
first recovered and then the challenge is compared against the output of𝖧(𝖼𝗈𝗆,𝑚).

An important result is that, if Π has high min-entropy, the digital signature
obtained with the Fiat-Shamir transform is EUF-CMA secure.

Theorem 4.18 ([129]). Let Π be a Σ-protocol with high min-entropy with respect
to the security parameter 𝜆. Then, the digital signature scheme 𝖥𝖲[Π] obtained by
applying the Fiat-Shamir transform on Π is EUF-CMA secure in the ROM.

The security of the Fiat-Shamir transform in the QROM has been extensively
studied in recent years [67, 189, 140, 82]. The main result that extends the
previous theorem in the QROM is given in [82] with the additional requirement
that the Σ-protocol has quantum computationally unique responses. A precise
definition of this notion is provided in [188, 82], in the following we introduce a
simplified notion that implies the more general one and is sufficient to prove the
security of the signature scheme.

Definition 4.19 ([36]). A Σ-protocol for a 𝖭𝖯 relation 𝑅 ⊆ 𝑋 ×𝑊 has computation-
ally unique responses with respect to a security parameter 𝜆 if, for any adversary
𝒜, the probability of producing two valid transcripts with the same commitment
𝖼𝗈𝗆 and challenge 𝖼𝗁 but different responses 𝗋𝗌𝗉, 𝗋𝗌𝗉′ is negligible, i.e.,

Pr(𝑥,𝑤)←$𝑅
⎡⎢
⎣

𝖵2(𝑥, 𝖼𝗈𝗆, 𝖼𝗁, 𝗋𝗌𝗉) = 1
𝖵2(𝑥, 𝖼𝗈𝗆, 𝖼𝗁, 𝗋𝗌𝗉′) = 1

𝗋𝗌𝗉 ≠ 𝗋𝗌𝗉′
| (𝖼𝗈𝗆, 𝖼𝗁, 𝗋𝗌𝗉, 𝗋𝗌𝗉′) ←$ 𝒜(𝑥)⎤⎥

⎦
≤ 𝗇𝖾𝗀𝗅(𝜆).

If the above probability is zero, then the Σ-protocol is said to have perfect unique
responses.

Theorem 4.20 ([82]). Let Π be a Σ-protocol with high min-entropy and computa-
tionally unique responses with respect to the security parameter 𝜆. Then, the digital
signature scheme 𝖥𝖲[Π] obtained by applying the Fiat-Shamir transform onΠ is strong
EUF-CMA secure in the QROM.

4.2 Group Actions
In the following, we adopt the multiplicative notation for a group 𝐺.

Definition 4.21 (Group Action). Let 𝐺 be a group and 𝑋 be a set. The action of 𝐺
on 𝑋 is a map ⋆ ∶ 𝐺 × 𝑋 → 𝑋 that is compatible with the group operation:

• Let 𝑒 be the identity of 𝐺, then 𝑒 ⋆ 𝑥 = 𝑥 for any 𝑥 ∈ 𝑋.

• For any 𝑔, ℎ ∈ 𝐺 and any 𝑥 ∈ 𝑋, it holds that (𝑔ℎ) ⋆ 𝑥 = 𝑔 ⋆ (ℎ ⋆ 𝑥).

100

4.2 – Group Actions

The action of 𝐺 on 𝑋 is denoted with the triple (𝐺,𝑋, ⋆).

A group action is only required to be compatible with the group operation.
However, other properties are often considered for group actions.

Definition 4.22. Consider a group action (𝐺,𝑋, ⋆), define the following properties:

• Transitive: if, for every 𝑥, 𝑦 ∈ 𝑋, there exists 𝑔 ∈ 𝐺 such that 𝑦 = 𝑔 ⋆ 𝑥.

• Faithful: if 𝑔 ⋆ 𝑥 = 𝑥 for all 𝑥 ∈ 𝑋, then 𝑔 = 𝑒.

• Free: for any 𝑔 ∈ 𝐺, 𝑔 is the identity element 𝑒 if and only if there exist 𝑥 ∈ 𝑋
such that 𝑔 ⋆ 𝑥 = 𝑥.

• Regular: if it is free and transitive.

We also restate two classic definitions associated with group actions.

Definition 4.23 (Group Orbit). Let (𝐺,𝑋, ⋆) be a group action. The orbit 𝐺𝑋(𝑥) of
an element 𝑥 ∈ 𝑋 is the set of elements in 𝑋 given by the action of 𝐺 on 𝑥, i.e.,

𝐺𝑋(𝑥) = {𝑔 ⋆ 𝑥 ∣ 𝑔 ∈ 𝐺}.

Definition 4.24 (Group Stabilizer). Let (𝐺,𝑋, ⋆) be a group action. The stabilizer
of 𝐺 with respect to an element 𝑥 ∈ 𝑋 is the set of group elements that fix 𝑥, i.e.,

Stab𝐺(𝑥) = {𝑔 ∈ 𝐺 ∣ 𝑔 ⋆ 𝑥 = 𝑥}.

4.2.1 Effective Group Actions
To employ group actions in cryptographic applications, additional efficiency and
security properties are required. In [6], Alamati et al. introduce the notion of
effective group action, imposing the necessary requirements for the action to be
computationally manageable and efficient.

Definition 4.25 (Effective Group Action). A group action (𝐺,𝑋, ⋆) is effective if
the following properties are satisfied:

• 𝐺 is finite, and there exists efficient probabilistic polynomial-time algo-
rithms for the following operations:

1. Membership testing: decide if a given string encoding is a valid group
element in 𝐺.

2. Equality testing: decide whether two given string encodings represent
the same group element in 𝐺.

101

Signatures from Cryptographic Group Actions

3. Sampling: efficiently sample a group element 𝑔 from a distribution on
𝐺 which is statistically close to the uniform distribution.

4. Operation: given 𝑔, ℎ ∈ 𝐺, compute the product 𝑔ℎ.
5. Inversion: given 𝑔 ∈ 𝐺, compute the inverse 𝑔−1.

• 𝑋 is finite, and there exists efficient probabilistic polynomial-time algo-
rithms for the following operations:

1. Membership testing: decide if a given string encoding is a valid set
element in 𝑋.

2. Unique representation: given a set element 𝑥 ∈ 𝑋, compute a canonical
representation of 𝑥.

• There exists a base element 𝑥0 ∈ 𝑋 for which a canonical representation
exists and is known.

• Given a group element 𝑔 ∈ 𝐺 and a set element 𝑥 ∈ 𝑋, it is efficient to
compute the action 𝑔 ⋆ 𝑥.

Remark. To capture group actions for which it is not possible to efficiently compute
𝑔 ⋆ 𝑥 for all group elements, [6] also introduces the notion of restricted effective
group action. This requires the group action to be effective only on a small
subset of 𝐺. In particular, the above properties are restricted to a generating set
(𝑔1,… , 𝑔𝑛) of 𝐺 such that 𝑛 = 𝗉𝗈𝗅𝗒(log(|𝐺|)).

4.2.2 Computational Assumptions
The main computational assumption associated with group actions concerns the
non-invertibility of the action. Informally, given 𝑥 ∈ 𝑋, the map 𝑓𝑥 ∶ 𝐺 → 𝑋, 𝑔 ↦
𝑔 ⋆ 𝑥 should be one-way (Definition 1.1), i.e., it should be efficient to compute 𝑓𝑥(𝑔)
for any 𝑔 ∈ 𝐺 while, given 𝑥 ∈ 𝑋 and 𝑦 = 𝑓𝑥(𝑔) = 𝑔 ⋆ 𝑥 for some 𝑔 ∈ 𝐺, it should
be computationally infeasible to find 𝑔. The associated computational problem
is known as vectorization problem, or, as we will refer to it in the following, as
Group Action Inverse Problem (GAIP).

Definition 4.26 (GAIP). Let (𝐺,𝑋, ⋆) be a group action. Given 𝑥, 𝑦 ∈ 𝑋 find, if any,
an element 𝑔 ∈ 𝐺 such that 𝑦 = 𝑔 ⋆ 𝑥.

Remark. Notice that, when 𝑥, 𝑦 are sampled from the same orbit, GAIP coincides
with the one-wayness of the family of functions 𝑓𝑥 ∶ 𝐺 → 𝑋 defined above.

A generalization of GAIP is sometimes considered when it is only required
to find a linking group element between multiple set elements. This problem is
known as multiple Group Action Inverse Problem (mGAIP).

102

4.2 – Group Actions

𝑥 𝑦

̃𝑥

𝑔

̃𝑔

Figure 4.1: High-level description of Protocol 4.30.

Definition 4.27 (mGAIP). Let (𝐺,𝑋, ⋆) be a group action. Given 𝑥1,… , 𝑥𝑘 ∈ 𝑋
find, if any, an element 𝑔 ∈ 𝐺 and two different indices 𝑖, 𝑗 ∈ {1,… , 𝑘} such that
𝑥𝑗 = 𝑔 ⋆ 𝑥𝑖.

Remark. While it is straightforward to reduce mGAIP to GAIP, the opposite direc-
tion can also be proved [17, 43], showing that the two problems are equivalent.

A related problem, which can be seen as the analogue of the Diffie-Hellman
problem [76], asks to compute the action of the product of two unknown group
elements, given the individual actions on a fixed set element. This problem is
known as the parallelization problem, or the computational Group Action Diffie-
Hellman (cGADH) problem.

Definition 4.28 (cGADH). Let (𝐺,𝑋, ⋆) be a group action. Given 𝑥 ∈ 𝑋, 𝑔 ⋆ 𝑥 and
ℎ ⋆ 𝑥 for two unknown elements 𝑔, ℎ ∈ 𝐺, compute (𝑔ℎ) ⋆ 𝑥.

When the action is not free, an additional problem is to find non-trivial stabi-
lizer elements, i.e., group elements that fix elements of the set.

Definition 4.29 (Stabilizer Computation Problem). Let (𝐺,𝑋, ⋆) be a group action.
Given 𝑥 ∈ 𝑋, find, if any, 𝑔 ∈ 𝐺 ∖ {𝑒} such that 𝑔 ⋆ 𝑥 = 𝑥.

Additional problems, like weak unpredictability and weak pseudorandomness,
are often considered but are out of the scope of this thesis. We refer the reader to
[65] and [6] for an in-depth description.

4.2.3 Digital Signatures
In the following, we show how to build a digital signature based on cryptographic
group actions. Given a group action (𝐺,𝑋, ⋆), we start by defining a Σ-protocol
for the 𝖭𝖯 relation 𝑅 ⊆ 𝑋 × 𝐺 associated with GAIP. In particular, given a fixed
base element 𝑥 ∈ 𝑋, a statement for 𝑅 is a set element 𝑦 ∈ 𝑋 and the witness is a
group element 𝑔 ∈ 𝐺 such that 𝑦 = 𝑔 ⋆ 𝑥. The high-level idea for the Σ-protocol
is to commit to a random set element ̃𝑥 ← ̃𝑔 ⋆ 𝑥 by taking a uniformly random
̃𝑔 ←$ 𝐺, and then reveal either a link between (𝑥, ̃𝑥) or (𝑦, ̃𝑥) (see Figure 4.1).

Protocol 4.30 (Group Action Σ-Protocol). Given the public parameters 𝗉𝗉 =
(𝐺,𝑋, ⋆, 𝑥), the protocol proceeds as follows:

103

Signatures from Cryptographic Group Actions

• (𝑔, 𝑦) ←$ 𝖦𝖾𝗇(𝗉𝗉): the key-generation algorithm takes as input the public
parameters 𝗉𝗉. It uniformly samples 𝑔 ∈ 𝐺 and computes 𝑦 ← 𝑔 ⋆ 𝑥. It
returns the witness-statement pair (𝑔, 𝑦).

• 𝖼𝗈𝗆 ←$ 𝖯1(𝑔, 𝑦): given a statement 𝑦 ∈ 𝑋 and the corresponding witness
𝑔 ∈ 𝐺, the prover uniformly samples ̃𝑔 and computes ̃𝑥 ← ̃𝑔 ⋆ 𝑥. It returns
𝖼𝗈𝗆 ← ̃𝑥.

• 𝖼𝗁 ←$ 𝖵1(𝖼𝗈𝗆): given a commitment 𝖼𝗈𝗆, the Verifier returns a uniformly
random challenge 𝖼𝗁 ∈ {0,1}.

• 𝗋𝗌𝗉 ← 𝖯2(𝑔, 𝑦, 𝖼𝗈𝗆, 𝖼𝗁): given a statement 𝑥, the corresponding witness 𝑔,
a commitment 𝖼𝗈𝗆 = ̃𝑥 and a challenge 𝖼𝗁 ∈ {0,1}, the prover computes
a response 𝗋𝗌𝗉 as follows. If 𝖼𝗁 = 0, then 𝗋𝗌𝗉 ← ̃𝑔. Else, if 𝖼𝗁 = 1, then
𝗋𝗌𝗉 ← ̃𝑔𝑔−1. Finally, it outputs 𝗋𝗌𝗉.

• {0,1} ← 𝖵2(𝑦, 𝖼𝗈𝗆, 𝖼𝗁, 𝗋𝗌𝗉): given a statement 𝑦 ∈ 𝑋, a commitment 𝖼𝗈𝗆, a
challenge 𝖼𝗁 ∈ {0,1} and a response 𝗋𝗌𝗉, the verifier proceeds as follows. If
𝖼𝗁 = 0, computes 𝖼𝗈𝗆′ ← 𝗋𝗌𝗉 ⋆ 𝑥. Else, if 𝖼𝗁 = 1, computes 𝖼𝗈𝗆′ ← 𝗋𝗌𝗉 ⋆ 𝑦.
Finally, the verifier accepts (returns 1) if 𝖼𝗈𝗆′ = 𝖼𝗈𝗆, otherwise rejects
(returns 0).

The following result shows that the above is, in fact, a Σ-protocol.

Proposition 4.31. Protocol 4.30 is perfectly complete, special-sound and honest-
verifier zero-knowledge.

Proof. We prove each property separately.

Completeness In an honest execution, the verifier receives 𝗋𝗌𝗉0 = ̃𝑔 when 𝖼𝗁 = 0
and 𝗋𝗌𝗉1 = ̃𝑔𝑔−1 when 𝖼𝗁 = 1. Correctness easily follows since 𝗋𝗌𝗉0 ⋆ 𝑥 =
̃𝑔 ⋆ 𝑥 = 𝖼𝗈𝗆 and 𝗋𝗌𝗉1 ⋆ 𝑦 = ̃𝑔 ⋆ (𝑔−1 ⋆ 𝑦) = ̃𝑔 ⋆ 𝑥 = 𝖼𝗈𝗆.

Special Soundness Suppose the extractor has access to two accepting transcripts
(𝖼𝗈𝗆, 0, 𝗋𝗌𝗉0) and (𝖼𝗈𝗆, 1, 𝗋𝗌𝗉1). Then, 𝗋𝗌𝗉0 ⋆ 𝑥 = 𝗋𝗌𝗉1 ⋆ 𝑦 = 𝖼𝗈𝗆. It follows
that (𝗋𝗌𝗉−11 𝗋𝗌𝗉0) ⋆ 𝑥 = 𝑦 and 𝗋𝗌𝗉−11 𝗋𝗌𝗉0 is a witness for the GAIP instance (𝑥, 𝑦).

Honest-Verifier Zero-Knowledge A polynomial time simulator 𝖲𝗂𝗆 can be ob-
tained as follows. On input a public statement 𝑦 ∈ 𝑋, 𝖲𝗂𝗆 randomly samples
𝖼𝗁 ←$ {0,1} and 𝗋𝗌𝗉 ←$ 𝐺. Then, if 𝖼𝗁 = 0 it computes 𝖼𝗈𝗆 ← 𝗋𝗌𝗉 ⋆ 𝑥, other-
wise if 𝖼𝗁 = 1 it computes 𝖼𝗈𝗆 ← 𝗋𝗌𝗉 ⋆ 𝑦. Finally, it returns the transcript
(𝖼𝗈𝗆, 𝖼𝗁, 𝗋𝗌𝗉). Notice that in the real distribution 𝖼𝗈𝗆 = ̃𝑔 ⋆ 𝑥 is uniformly
distributed in the orbit of 𝑥, 𝖼𝗁 is uniformly distributed in {0,1} and 𝗋𝗌𝗉
is uniquely determined as either 𝗋𝗌𝗉 = ̃𝑔 or 𝗋𝗌𝗉 = ̃𝑔𝑔−1. When 𝖼𝗁 = 0, the
simulated distribution coincides with the real distribution. When 𝖼𝗁 = 1,

104

4.2 – Group Actions

Algorithm 4.3: Signature Scheme based on Group Actions
⋆ ∶ 𝐺 × 𝑋 → 𝑋 is a cryptographic group action. 𝖧 ∶ {0,1}∗ → {0,1}𝜆 is a random
oracle.

𝖲𝖾𝗍𝗎𝗉(1𝜆):
1: 𝑥0 ←$ 𝑋
2: 𝗉𝗉 ← 𝑥0
3: return 𝗉𝗉

𝖵𝗋𝖿𝗒(𝗉𝗄 = 𝑥1, 𝑚, 𝜎):
1: (𝖼𝗁, 𝗋𝗌𝗉) ← 𝜎
2: (𝖼𝗁1,… , 𝖼𝗁𝜆) ← 𝖼𝗁
3: (𝗋𝗌𝗉1,… , 𝗋𝗌𝗉𝜆) ← 𝗋𝗌𝗉
4: for 𝑗 ← 1,… ,𝜆 do
5: ̃𝑥′𝑗 ← 𝗋𝗌𝗉𝑗 ⋆ 𝑥𝖼𝗁𝑗
6: 𝖼𝗈𝗆′ ← (̃𝑥′1,… , ̃𝑥′𝜆)
7: return 𝖼𝗁 = 𝖧(𝖼𝗈𝗆′,𝑚)

𝖪𝖦𝖾𝗇(𝗉𝗉 = 𝑥0):
1: 𝑔 ←$ 𝐺
2: 𝑥1 ← 𝑔 ⋆ 𝑥0
3: return (𝗉𝗄 = 𝑥1, 𝗌𝗄 = 𝑔)

𝖲𝗂𝗀𝗇(𝗌𝗄 = 𝑔, 𝗉𝗄 = 𝑥1, 𝑚):
1: for 𝑗 ← 1,… ,𝜆 do
2: ̃𝑔𝑗 ←$ 𝐺
3: ̃𝑥𝑗 ← ̃𝑔𝑗 ⋆ 𝑥0
4: 𝖼𝗈𝗆 ← (̃𝑥1,… , ̃𝑥𝜆)
5: 𝖼𝗁 ← 𝖧(𝖼𝗈𝗆,𝑚)
6: (𝖼𝗁1,… , 𝖼𝗁𝜆) ← 𝖼𝗁
7: for 𝑗 ← 1,… ,𝜆 do
8: 𝗋𝗌𝗉𝑗 ← ̃𝑔𝑗𝑔−𝖼𝗁𝑗

9: 𝗋𝗌𝗉 ← (𝗋𝗌𝗉1,… , 𝗋𝗌𝗉𝜆)
10: return 𝜎 ← (𝖼𝗁, 𝗋𝗌𝗉)

the two distributions are equivalent. In fact, since 𝑓𝑔 ∶ 𝐺 → 𝐺, ℎ ↦ 𝑔ℎ is a
bijective map from 𝐺 to 𝐺, the real response ̃𝑔 𝑔−1 is uniformly distributed
in 𝐺 as the simulated response.

The Σ-protocol Π of Protocol 4.30 has a binary challenge space. The special
soundness property and Proposition 4.14 implies thatΠ is knowledge-sound with
knowledge error 1/2. As mentioned in Section 4.1.2, the knowledge soundness
can be amplified by parallel repetition. In particular, to achieve 𝜆 bit of security,
it is enough to repeat the protocol 𝑡 = 𝜆 times. Moreover, it is straightforward
to show that Π is commitment recoverable. It is now possible to apply the Fiat-
Shamir transform (Algorithm 4.2) on Π𝑡 to obtain an EUF-CMA secure digital
signature in the random oracle model (Theorem 4.18). The resulting signature
scheme is described in Algorithm 4.3.

To apply Theorem 4.20 and prove the security of the signature scheme in the
quantum random oracle model, it is still necessary to prove that Π has computa-
tionally unique responses. In [36], the authors proved that, given (𝑦, 𝑔) ∈ such that
𝑔 ⋆ 𝑥 = 𝑦, finding two valid responses 𝗋𝗌𝗉, 𝗋𝗌𝗉′ for the same commitment-challenge
pair (𝖼𝗈𝗆, 𝖼𝗁) is equivalent to find a non-trivial element in the stabilizer of 𝑥. In
particular, they proved the following result.

Lemma 4.32 ([36]). Let Π be as in Protocol 4.30 with base element 𝑥 ∈ 𝑋. Π has
computationally unique responses if and only if no polynomial-time quantum adversary

105

Signatures from Cryptographic Group Actions

can solve the Stabilizer Computation Problem (Definition 4.29) for 𝑥 except with a
negligible probability.

Corollary 4.33. LetΠ be as in Protocol 4.30 for a cryptographic group action (𝐺,𝑋, ⋆)
with base element 𝑥. If no polynomial-time quantum adversary can solve the GAIP
(Definition 4.26) and the Stabilizer Computation Problem (Definition 4.29) for 𝑥
except with a negligible probability, then 𝖥𝖲[Π𝜆] is strong EUF-CMA in the QROM.

Notice that when the action is free, each element in 𝑋 has trivial stabilizer
and the protocol has perfect unique responses, leading to an immediate proof of
strong EUF-CMA security of the signature scheme in the QROM.

4.3 Signature Optimizations
In this section, we describe some standard techniques for optimizing Protocol 4.30.
These techniques are commonly employed in the digital signature schemes that
will be presented in the next section. In what follows, we will focus primarily
on the techniques employed to reduce the size of the signature, as they are most
meaningful for comparison with aggregate signatures. In fact, the feasibility of
transposing these optimizations into the constructions that will be presented
in Chapter 5 is crucial for an honest comparison with the actual parameters of
signature schemes based on group actions.

Consider a group action (𝐺,𝑋, ⋆) and a security parameter 𝜆. The non-opti-
mized version of the Σ-protocol Π is described in Protocol 4.30. In the following,
we assume that a group element can be represented with strings of ℓ𝖦 bits, while
a challenge for a single instance of the protocol can be represented with a single
bit. Since Π is commitment-recoverable, we are only interested in the size of the
restricted transcript (𝖼𝗁, 𝗋𝗌𝗉), where the response 𝗋𝗌𝗉 is an element of the group.
We already discussed that to achieve negligible knowledge error, it is required to
parallel repeat Π for 𝑡 = 𝜆 times, obtaining Π1 = Π𝑡. We present each optimiza-
tion as a successive transformation applied on top of Π1, analysing the updated
parameters (e.g., the number of repetitions of the protocol) and the size of the
signature obtained by applying Fiat-Shamir.

The bit size of the signature for 𝖥𝖲[Π1] is given by:

|𝖼𝗁| + |𝗋𝗌𝗉| = 𝜆 + 𝜆ℓ𝖦.

4.3.1 Compression of Random Elements
A basic technique used to reduce the size of the signature is based on the following
simple observation: when 𝖼𝗁𝑖 = 0 the response for the 𝑖-th repetition is just the
uniformly random group element ̃𝑔𝑖 ∈ 𝐺 used to build the commitment. Therefore,

106

4.3 – Signature Optimizations

in practice, ̃𝑔𝑖 can be replaced by a short random seed 𝑠𝑖 of size 𝜆 which is used
as the input of a Pseudorandom Number Generator 𝖯𝖱𝖭𝖦 to generate the group
element. Then, every time 𝖼𝗁𝑖 = 0, the signer can set 𝗋𝗌𝗉𝑖 ← 𝑠𝑖 saving ℓ𝖦 − 𝜆 bits
for each 0 challenge. If the challenge array is uniformly sampled from {0,1}𝑡, then
the expected number of bits saved using this optimization is 𝑡(ℓ𝖦 − 𝜆)/2.
Remark. When random responses are compressed using seed of length 𝜆, it is
required to also employ a random salt of length at least 2𝜆 to prevent collision
search attacks [53]. Otherwise, an attacker is able to find a collision after observa-
tion of 𝒪(𝜆/2) signatures, halving the security of the scheme. Using a random
salt 𝑟, the 𝑖-th random element is computed by taking the output of the 𝖯𝖱𝖭𝖦 on
input (𝗌𝖾𝖾𝖽, 𝑟, 𝑖). This corresponds to a slight increase in the signature size, which
now includes the random salt.

Let Π2 be the protocol obtained by applying the aforementioned optimization
to Π1, then the expected bit size of the signature for 𝖥𝖲[Π2] is given by

|𝑟| + |𝖼𝗁| + |𝗋𝗌𝗉| = 2𝜆 + 𝜆 + 𝑡 (1
2
𝜆 + 1

2
ℓ𝖦) ,

where the terms of |𝗋𝗌𝗉| correspond to the size of the responses to non-zero and
zero challenges, respectively. Notice that this holds only on average and that in
the worst case the size of the response can grow up to 𝑡ℓ𝖦.

This technique was already adopted in the context of isogenies [183] and later
employed in group action-based signatures.

4.3.2 Seed Trees
A binary tree of seeds (seed tree) can be used to reduce the communication cost
of the seeds used to construct the random elements of the group [32]. The tree
is computed by taking a master seed of length 𝜆 as the root of the tree. Then,
from each node, two children are generated from the output of length 2𝜆 of a
PRNG taking as input the value of the node. To represent 𝑡 seeds, this process
is repeated for ⌈log(𝑡)⌉ times so that the tree has 2⌈log(𝑡)⌉ ≥ 𝑡 leaves having the
seeds as values. The seeds corresponding to a subset of the leaves can be revealed
by sharing a suitable subset of parent nodes and computing the corresponding
leaves. In particular, to communicate the value of all the 𝑡 seeds except for those
indexed by a subset of {1,… , 𝑡} of size 𝜔, it is enough to send the values of the
following number of nodes:

2⌈log2(𝜔)⌉ + 𝜔(⌈log2(𝑡)⌉ − ⌈log2(𝜔)⌉ − 1).

Remark. The Seed Tree optimization is a particular instance of a generic construc-
tion employing puncturable pseudorandom functions [42], which can be used to
compress a large number of pseudorandom information, like the list of seeds to
represent group elements.

107

Signatures from Cryptographic Group Actions

The communication cost of using a seed tree is advantageous when there are at
least 𝑡

2
zero challenges. This can be enforced by sampling the challenges according

to a fixed-weight distribution, as shown in the next optimization.

4.3.3 Fixed-Weight Challenges
When random responses corresponding to 𝖼𝗁𝑖 = 0 are compressed with a seed
as described above, the resulting size is much smaller than when the challenge
is non-zero. A standard technique to exploit this imbalance is to modify the
distribution of challenges to increase the number of zero challenges in 𝖼𝗁 [32,
173, 17]. More precisely, with this optimization, we choose parameters 𝑡,𝜔 such
that there are exactly 𝜔 non-zero challenges among 𝑡 execution of the protocol.
When the challenge space is binary, as in Protocol 4.30, the number of challenges
in {0,1}𝑡 having exactly 𝜔 components equal to 1 is (𝑡𝜔). Therefore, the choice of
𝑡,𝜔 must be made so that

(
𝑡
𝜔
)
−1

≤ 2−𝜆. (4.1)

Remark. The security of this solution is well understood in the case of special-
sound Σ-protocol since, as for parallel repetition, the resulting protocol is still
special-sound with challenge space of cardinality (𝑡𝜔). However, this is not trivial
to extend to generic 𝑘-special-sound Σ-protocol of multi-round protocols and was
only recently proved secure in [18].

By applying this optimization on Π2, for each response we send 𝜔 group
elements corresponding to 𝖼𝗁𝑖 = 1. The remaining 𝑡 − 𝜔 group elements corre-
sponding to 𝖼𝗁𝑖 = 0 are replaced by random seeds that can be further compressed
using the Seed Tree optimization. We obtain the protocol Π3, the size of the
signature associated with 𝖥𝖲[Π3] is given by:

|𝑟| + |𝖼𝗁| + |𝗋𝗌𝗉| = 2𝜆 + 𝜆 + (2⌈log2(𝜔)⌉ + 𝜔(⌈log2(𝑡)⌉ − ⌈log2(𝜔)⌉ − 1)) ⋅ 𝜆 + 𝜔ℓ𝖦.

Notice that when 𝜆 ll ℓ𝖦, using this optimization with an appropriate choice
of 𝜔 compresses the signature considerably. On the other hand, to maintain the
same security level, 𝑡 must be chosen according to Equation (4.1). This typically
results in an increase in the number of parallel repetitions, leading to a trade-off
between the size of the signature and the efficiency of the signing and verification
process.

4.3.4 Multiple Public Keys
Finally, it is possible to consider multiple public keys for each user in order to
reduce the size of the signature. This is a standard technique [70] employed in

108

4.3 – Signature Optimizations

group action-based signatures to achieve a trade-off between signature size and
public key size. Unlike previous optimizations, in this case the underlying security
assumption is modified. The signer generates 𝑠 − 1 public keys associated to
different private keys, and the challenge space is extended from {0,1} to {0,… , 𝑠−1}
so that a challenge can select one of the keys. The response is then generated
using the relevant private key, exhibiting a group element that maps the selected
public key to the commitment. Notice that the security assumption underlying
the signature is modified from GAIP to mGAIP with 𝑠 set elements. Since the
challenge space of the single instance is extended from a binary space to one of
𝑠 elements, the soundness error is reduced to 1/𝑠. Clearly, this also reduces the
number of repetitions required to 𝑡 = ⌈𝜆/ log(𝑠)⌉.

To obtain a soundness error negligible in𝜆with a single instance of the protocol
would require to generate an exponential number of keys (𝑠 = 2𝜆). For this reason,
this approach is usually combined with the previous optimizations to reduce the
size of the signature with a limited increase in the public-key size. Notice that
when 𝖼𝗁𝑖 = 0, the response is still a random group element that can be replaced
with a short seed; while for 𝖼𝗁𝑖 ≠ 0 a full group element is required. We can then
apply the Fixed-Weight optimization to send 𝜔 group elements corresponding to
𝖼𝗁𝑖 ≠ 0 and 𝑡 − 𝜔 short seeds corresponding to 𝖼𝗁𝑖 = 0. Therefore, the choice of
𝑡,𝜔 must be made so that

[(
𝑡
𝜔
)(𝑠 − 1)𝜔]

−1

≤ 2−𝜆. (4.2)

By combining all previous optimizations, we obtain the protocol Π4. The size
of the signature associated with 𝖥𝖲[Π4] is given by:

|𝑟| + |𝖼𝗁| + |𝗋𝗌𝗉| = 2𝜆 +𝜆 + (2⌈log2(𝜔)⌉ +𝜔(⌈log2(𝑡)⌉ − ⌈log2(𝜔)⌉ − 1)) ⋅ 𝜆 +𝜔ℓ𝖦. (4.3)

Notice that this is the same as the fixed-weight case, but here the number of
repetitions will be smaller due to the increased number of public keys, resulting
in a more compact signature.

4.3.5 Further Optimizations
Recently, new techniques have been proposed to optimize group action-based
signatures, as well as more peculiar combinations of existing ones. These include,
in particular, techniques derived from the recent MPC-in-the-head paradigm
[125, 127]. Since these optimizations are not as widely used as the previous ones,
we omit their discussion and refer to the extensive survey of [43].

109

Signatures from Cryptographic Group Actions

4.4 Post-Quantum Group Actions
In this section, we give a high-level description of some Σ-protocols based on post-
quantum non-commutative group actions and their related signature schemes.
In particular, we will focus on the protocols underlying the schemes submitted
to the NIST call for additional post quantum signatures [161]: LESS [13], MEDS
[60], and ALTEQ [37].

4.4.1 Code Equivalence
Recall that a [𝑛, 𝑘, 𝑞] linear codeℭ is a 𝑘-dimensional subspace of 𝔽𝑛

𝑞 endowed with
a metric d ∶ 𝔽𝑛

𝑞 × 𝔽𝑛
𝑞 → ℕ.

In Section 2.3.2, we introduced the computational problems underlying code-
based Hash-and-Sign schemes. In this section, we will focus on isomorphism
problems between codes, on which we can define cryptographic group actions
and obtain signature schemes through the approach described in this chapter.
Working in the setting of coding theory, the isomorphism problem considered is
the so-called code equivalence problem. We begin by treating this problem in its
highest generality, and then specialize it according to the metric chosen for the
linear code.

The concept of equivalence between linear codes is formulated from maps,
called isometries, that keep the metric of the code unchanged.

Definition 4.34 (Isometry). Let 𝕍 be a vector space and consider a metric d ∶
𝕍 × 𝕍 → ℕ. A (linear) isometry for d is a (linear) map 𝜓∶ 𝕍 → 𝕍 such that, for
any 𝒙, 𝒚 ∈ 𝕍,

d(𝜓(𝒙),𝜓(𝒚)) = d(𝒙, 𝒚).

Equivalently, if 𝜓 is linear and d is induced by a weight wt, it is sufficient that

wt(𝜓(𝒙)) = wt(𝒙).

In the following, we consider only linear isometries on 𝔽𝑛
𝑞 , omitting the adjec-

tive linear.
Two linear codes ℭ and ℭ′ are said to be equivalent if there exists an isometry

between them. Without further specification regarding the class of codes and the
family of isometries, it is possible to define the following generalized equivalence
problem.

Definition 4.35 (General Code Equivalence). Let d ∶ 𝔽𝑛
𝑞 × 𝔽𝑛

𝑞 → ℕ be a metric
over 𝔽𝑛

𝑞 . Given two equivalent linear codes ℭ and ℭ′ with respect to d, find a
linear isometry 𝜓 such that 𝜓(ℭ) = ℭ′.

110

4.4 – Post-Quantum Group Actions

Notice that the set of isometries with respect to d forms a group under the
composition of linear maps. In fact, the identity on 𝔽𝑛

𝑞 is clearly an isometry and
the composition of two isometries is still an isometry. Moreover, notice that any
isometry 𝜓 is injective since d is a metric and d(𝒙, 𝒚) = 0 ⟺ 𝒙 = 𝒚. Then, since
𝔽𝑛
𝑞 is finite dimensional, 𝜓 is bijective and admits an inverse. Let 𝐺d be the group

defined above, and let 𝑋 be the set of [𝑛, 𝑘, 𝑞] linear codes. Then, we can formulate
the General Code Equivalence problem as the GAIP of the following group action:

⋆ ∶ 𝐺d × 𝑋 → 𝑋, (𝜓,ℭ) ↦ 𝜓(ℭ).

Systematic Form Recall that a [𝑛, 𝑘, 𝑞] linear code ℭ can be represented using
a generator matrix 𝐆 ∈ 𝔽𝑘×𝑛

𝑞 which has the code as image. The choice of 𝐆 is not
unique, since any change of basis obtained as 𝐋𝐆 with 𝐋 ∈ GL𝑘(𝑞) generates the
same code.

An information set for ℭ is a subset of indices 𝐽 ⊂ {1,… ,𝑛} such that the
submatrix of𝐆 given by the columns indexed by 𝐽 is of full rank, i.e., rank(𝐆𝐽) = 𝑘.
When [𝑘] ∶= {1,… , 𝑘} is an information set, we can apply the change of basis
𝐆′ = 𝐆−1

[𝑘]𝐆 = [𝐈𝑘 ∣ 𝐆−1
[𝑘]𝐆{𝑘+1,…,𝑛}]. This is relevant because it allows for a special

representation of the code.

Definition 4.36 (Systematic Form). Let 𝐆 ∈ 𝔽𝑘×𝑛
𝑞 be a generator matrix for a

[𝑛, 𝑘, 𝑞] linear code ℭ. 𝐆 is said to be in systematic form if it has the following form

𝐆 = [𝐈𝑘 ∣ 𝐀], with 𝐀 ∈ 𝔽𝑘×𝑛−𝑘
𝑞 .

When [𝑘] is an information set for ℭ, a generator matrix 𝐆 can always be put
in systematic form, and we write SF(𝐆) = 𝐆−1

[𝑘]𝐆. Notice that the systematic form
is a canonical representation of the code, since it is invariant under change of
basis. In fact, for any 𝐋 ∈ GL𝑘(𝑞), we have SF(𝐋𝐆) = (𝐋𝐆[𝑘])−1𝐋𝐆 = SF(𝐆).

We can then extend the previous group action to canonical representatives of
the codes, by taking:

⋆ ∶ 𝐺d × 𝑋 → 𝑋, (𝜓,𝐆) ↦ SF(𝜓(𝐆)).

Or, equivalently, on any representative given by the set of full-rank matrices
in 𝔽𝑘×𝑛

𝑞 , by also considering the change of basis:

⋆ ∶ (GL𝑘(𝑞) × 𝐺d) × 𝔽𝑘×𝑛
𝑞 → 𝔽𝑘×𝑛

𝑞 , ((𝐋,𝜓),𝐆) ↦ 𝐋𝜓(𝐆).

The GAIP associated with the previous actions are all equivalent to the General
Code Equivalence problem.

111

Signatures from Cryptographic Group Actions

4.4.2 Linear Code Equivalence
In this section we introduce LESS [34, 17], a signature scheme based on the
hardness of code equivalence induced by isometries for the Hamming metric
(Definition 2.19).

Hardness Assumptions To study isometries in the Hamming metric, let 𝒮𝑛 be
the symmetric group on 𝑛 elements. The elements of 𝒮𝑛 are permutations of
the form 𝜋 = (𝑖1,… , 𝑖𝑛). Given 𝜋 ∈ 𝒮𝑛 we can take the linear map 𝜓𝜋 ∶ 𝔽𝑛

𝑞 → 𝔽𝑛
𝑞

associated with 𝜋 such that 𝜓𝜋(𝒙) = (𝑥𝜋−1(1),… , 𝑥𝜋−1(𝑛)). It is easy to observe that
changing the order of the coordinates does not change the Hamming weight of 𝒙,
so that 𝜓𝜋 is an isometry.

When 𝑞 > 2we can also combine the permutation with a scaling factor for each
coordinate. In more detail, let Mon(𝑛, 𝑞) the group of monomial transformations,
namely, of the form 𝜇 = (𝜋, 𝒗) with 𝜋 ∈ 𝒮𝑛 and 𝒗 ∈ (𝔽∗

𝑞)𝑛 such that 𝜇(𝒙) =
(𝑣1𝑥𝜋−1(1),… , 𝑣𝑛𝑥𝜋−1(𝑛)). The linear map associated with 𝜇 is still an isometry for
the Hamming metric. Moreover, we can state the following result.

Theorem 4.37 ([146]). Let 𝜓 be a linear isometry for the Hamming metric over 𝔽𝑛
𝑞 ,

then 𝜓 is associated with a monomial transformation 𝜇 ∈ Mon(𝑛, 𝑞).

We can then define the Code Equivalence problem for linear codes endowed
with the Hamming metric.

Definition 4.38 (Linear Code Equivalence Problem (LEP)). Given two equivalent
[𝑛, 𝑘, 𝑞] linear codesℭ andℭ′, find a monomial transformation 𝜇 ∈ Mon(𝑛, 𝑞) such
that 𝜇(ℭ) = ℭ′.

We can also consider a special case of LEP where we only consider the action
of permutations.

Definition 4.39 (Permutation Code Equivalence (PEP)). Given two equivalent
[𝑛, 𝑘, 𝑞] linear codes ℭ and ℭ′, find a permutation 𝜋 ∈ 𝒮𝑛 such that 𝜋(ℭ) = ℭ′.

Group Action It is well known that Mon(𝑛, 𝑞) is isomorphic to the semidirect
product 𝒮𝑛 ⋉ (𝔽∗

𝑞)𝑛, where (𝔽∗
𝑞)𝑛 is isomorphic to the group of non-singular 𝑛 × 𝑛

diagonal matrices. The elements of Mon(𝑛, 𝑞) can be represented by matrices
𝐐 ∈ GL𝑛(𝑞) of the form 𝐐 = 𝐏𝐃, where 𝐏 is a permutation matrix and 𝐃 is
a non-singular diagonal matrix. We can then consider the following action of
Mon(𝑛, 𝑞) on the set 𝑋 of [𝑛, 𝑘, 𝑞] linear codes represented by generator matrices
in systematic form:

⋆𝖫𝖤𝖯 ∶ Mon(𝑛, 𝑞) × 𝑋 → 𝑋, (𝐐,𝐆) ↦ SF(𝐆𝐐).

112

4.4 – Post-Quantum Group Actions

We can see that the GAIP for the above action is precisely the Linear Code
Equivalence problem. Similarly, if we restrict the previous action to 𝒮𝑛, the
associated GAIP is the Permutation Code Equivalence problem. The signature
scheme can be obtained by instantiating Protocol 4.30 with ⋆𝖫𝖤𝖯 and applying the
Fiat-Shamir transform as described in Algorithm 4.3.

SignatureOptimizations The proposed parameterizations for LESS [13] include
the Fixed-Weight (Section 4.3.3) and Seed Trees (Section 4.3.2) optimizations
and, for some sets only, the Multiple Public Keys (Section 4.3.4) optimization.
In particular, for each NIST security level I, III, and V, the LESS specification
proposes three sets of parameters with a progressive trade-off between signature
size and public key size, starting with the balanced set that does not use multiple
keys, with a gradual increase in the intermediate and short sets.

LESS also includes a specific optimization presented in [169] with the intro-
duction of the Information Set variant of LEP (IS-LEP), which requires two codes
to be equivalent only on an information set. More in detail, two codes ℭ and ℭ′

are information set linearly equivalent if there exists monomial transformations
𝜇̃ ∈ Mon(𝑛, 𝑞), 𝜁 ∈ Mon(𝑛 −𝑘, 𝑞) and an information set 𝐽 for both ℭ′ and ℭ̃ = 𝜇̃(ℭ)
such that, given generator matrices 𝐆̃,𝐆′ ∈ 𝔽𝑘×𝑛

𝑞 for ℭ̃ and ℭ′, it holds that

𝐆̃−1
𝐽 𝐆̃{1,…,𝑛}∖𝐽 = 𝜁(𝐆′−1

𝐽 𝐆′
{1,…,𝑛}∖𝐽).

We can then define the Information Set Linear Equivalence Problem that, givenℭ and
ℭ′, requires finding the monomial transformations 𝜇̃ and 𝜁. In [169], Persichetti
and Santini proved that two linear codes are linearly equivalent if and only if they
are information set linearly equivalent, obtaining an equivalence between LEP
and IS-LEP. With this result, it is possible to modify the Σ-protocol associated
with LEP so that in the response, the prover only needs to transmit the part of the
monomial transformation that corresponds to the action on the information set.

Recently, Chou, Persichetti, and Santini [62] introduced another notion of
equivalence for linear codes and proved that it reduces to linear equivalence. This
notion uses canonical forms to achieve further compression of group elements
transmitted in the response. This optimization is not currently part of the LESS
specification, and we refer to [62] for more details.

Concrete Parameters The elements of the monomial group Mon(𝑛, 𝑞) can be
represented with 𝑛(⌈log2(𝑛)⌉ + ⌈log2(𝑞 − 1)⌉) bits. Thanks to the information set
optimization, it is only required to transmit ℓ𝖦 = 𝑘(⌈log2(𝑛)⌉ + ⌈log2(𝑞 − 1)⌉). By
using the Fixed-Weight optimization with 𝑡 repetitions and𝜔 non-zero challenges,
and the Multiple Public Keys optimization with 𝑠 keys, the size of the signature is
given by Equation (4.3). The proposed parameters for LESS are shown in Table 4.1.

113

Signatures from Cryptographic Group Actions

4.4.3 Matrix Code Equivalence
In this section we introduce MEDS [61], a signature scheme based on the hardness
of code equivalence induced by isometries for the rank metric.

Hardness Assumptions A [𝑚×𝑛, 𝑘, 𝑞]matrix codeℭ is a 𝑘-dimensional subspace
of the space of𝑚×𝑛matrices over 𝔽𝑞. We refer to this vector space as 𝔽𝑚×𝑛

𝑞 which
is isomorphic to 𝔽𝑚𝑛

𝑞 . The rank metric is induced by the following weight.

Definition 4.40 (Rank Weight). Let 𝐀 ∈ 𝔽𝑚×𝑛
𝑞 . The rank weight of 𝐀 is given by

the rank of 𝐀, i.e., wt(𝐀) = rank(𝐀).

Notice that the rank of a matrix in 𝔽𝑚×𝑛
𝑞 is preserved by left and right multi-

plication by an invertible matrix and, for square matrices, by transposition. Let
𝐋 ∈ 𝔽𝑛×𝑛

𝑞 and 𝐒 ∈ 𝔽𝑚×𝑚
𝑞 , we define the linear maps 𝜓𝐋,𝐒,𝜓⊺ ∶ 𝔽𝑚×𝑛

𝑞 → 𝔽𝑚×𝑛
𝑞 as

𝜓𝐋,𝐒(𝐀) = 𝐋𝐀𝐒 and 𝜓⊺(𝐀) = 𝐀⊺. Indeed, in [155] it is shown that these linear
transformations are all and only isometries in the rank metric.

Theorem 4.41 ([155]). Let 𝜓 be a linear isometry for the rank metric over 𝔽𝑚×𝑛
𝑞 , then

there exist invertible matrices 𝐋 ∈ 𝔽𝑛×𝑛
𝑞 and 𝐒 ∈ 𝔽𝑚×𝑚

𝑞 such that either 𝜓 = 𝜓𝐋,𝐒 or
𝜓 = 𝜓𝐋,𝐒 ∘ 𝜓⊺, where the latter case can occur only if 𝑚 = 𝑛.

In the following, even when 𝑛 ≠ 𝑚, we only consider isometries of the form
𝜓𝐋,𝐒. We can then define the Code Equivalence problem for linear codes endowed
with the rank metric.

Definition 4.42 (Matrix Code Equivalence (MCE) Problem). Given two equivalent
[𝑚 × 𝑛, 𝑘, 𝑞] linear codes ℭ and ℭ′, find invertible matrices 𝐋 ∈ 𝔽𝑛×𝑛

𝑞 and 𝐒 ∈ 𝔽𝑚×𝑚
𝑞

such that 𝜓𝐋,𝐒(ℭ) = ℭ′.

Group Action We can consider the following action of GL𝑛(𝑞) ×GL𝑚(𝑞) on the
set 𝑋 of [𝑚 × 𝑛, 𝑘, 𝑞] matrix codes:

⋆𝖬𝖢𝖤 ∶ (GL𝑛(𝑞) ×GL𝑚(𝑞)) × 𝑋 → 𝑋, ((𝐋,𝐒),ℭ) ↦ 𝜓𝐋,𝐒(ℭ).

To represent the action as a linear map, we can consider the isomorphism
vec ∶ 𝔽𝑚×𝑛

𝑞 → 𝔽𝑚𝑛
𝑞 that maps a matrix 𝐀 to a vector vec(𝐀) obtained by flattening

the matrix, i.e.:

vec ∶ 𝐀 = ⎛
⎝

𝑎1,1 … 𝑎1,𝑛
⋮ ⋱ ⋮
𝑎𝑚,1 … 𝑎𝑚,𝑛

⎞
⎠
↦ vec(𝐀) = (𝑎1,1,… , 𝑎1,𝑛,… , 𝑎𝑚,1,… , 𝑎𝑚,𝑛).

The inverse map is denoted by mat. Using the isomorphism vec, a [𝑚 × 𝑛, 𝑘, 𝑞]
matrix code is mapped into a [𝑚𝑛, 𝑘, 𝑞] linear code, which can be represented

114

4.4 – Post-Quantum Group Actions

using a generator matrix𝐆 ∈ 𝔽𝑘×𝑚𝑛
𝑞 . Moreover, we can express the action using the

Kronecker product of 𝐋⊺ and 𝐒: it holds that vec(𝜓𝐋,𝐒(𝐀)) = vec(𝐋𝐀𝐒) = vec(𝐀) ⋅
(𝐋⊺ ⊗𝐒). Therefore, we can represent ⋆𝖬𝖢𝖤 as the action of GL𝑛(𝑞) ×GL𝑚(𝑞) on the
set 𝑋 of [𝑚 × 𝑛, 𝑘, 𝑞] matrix codes represented by generator matrices 𝐆 ∈ 𝔽𝑘×𝑚𝑛

𝑞 in
systematic form:

⋆𝖬𝖢𝖤 ∶ (GL𝑛(𝑞) ×GL𝑚(𝑞)) × 𝑋 → 𝑋, ((𝐋,𝐒),𝐆) ↦ SF(𝐆(𝐋⊺ ⊗ 𝐒)).

We can see that the GAIP for the above action is the Matrix Code Equivalence
problem. The signature scheme can be obtained by instantiating Protocol 4.30
with ⋆𝖬𝖢𝖤 and applying the Fiat-Shamir transform as described in Algorithm 4.3.

Signature Optimizations The proposed parameterizations for MEDS [60] in-
clude the Fixed-Weight (Section 4.3.3) with Seed Trees (Section 4.3.2) optimiza-
tions and the Multiple Public Keys (Section 4.3.4) optimization. In particular, for
each NIST security level I, III, and V, the MEDS specification proposes two sets of
parameters with a strong trade-off between signature size and scheme efficiency
due to heavy use of the Fixed-Weight optimization.

MEDS also proposes a technique to reduce the size of the signature by rep-
resenting group elements by linear combination of a known base (𝐀1,… ,𝐀𝑘).
In particular, a matrix 𝐀 ∈ 𝔽𝑚×𝑛

𝑞 can be written as 𝐀 = ∑𝑖 𝜆𝑖𝐀𝑖, requiring only
the 𝜆𝑖 ∈ 𝔽𝑞 to be transmitted, obtaining a compression to 𝑘⌈log2 𝑞⌉ bits. This
optimization is not currently part of the MEDS proposed parameters, and we
refer to [60] for more details.

Concrete Parameters The elements of the group GL𝑛(𝑞) ×GL𝑚(𝑞) can be repre-
sented with ℓ𝖦 = (𝑛2 + 𝑚2)⌈log2 𝑞⌉ bits. By using the Fixed-Weight optimization
with 𝑡 repetitions and 𝜔 non-zero challenges, and the Multiple Public Keys op-
timization with 𝑠 keys, the size of the signature is given by Equation (4.3). The
proposed parameters for MEDS are shown in Table 4.2.

4.4.4 Alternating Trilinear Form Equivalence
In this section we introduce ALTEQ [185], a signature scheme based on the
hardness of the Alternating Trilinear Form Equivalence problem.

Hardness Assumptions A trilinear form is a function 𝜙∶ 𝔽𝑛
𝑞 × 𝔽𝑛

𝑞 × 𝔽𝑛
𝑞 → 𝔽𝑞

that is linear in each of its three arguments. A trilinear form 𝜙 is alternating if 𝜙
evaluates to 0 whenever two arguments are the same, i.e., 𝜙(𝒙, 𝒙, 𝒚) = 𝜙(𝒙, 𝒚, 𝒙) =
𝜙(𝒚, 𝒙, 𝒙) = 0 for all 𝒙, 𝒚 ∈ 𝔽𝑛

𝑞 .

115

Signatures from Cryptographic Group Actions

Definition 4.43 (Alternating Trilinear Form Equivalence Problem). Given two
alternating trilinear forms 𝜙,𝜓∶ 𝔽𝑛

𝑞 × 𝔽𝑛
𝑞 × 𝔽𝑛

𝑞 → 𝔽𝑞, find, if any, an invertible
matrix 𝐀 ∈ GL𝑛(𝑞) such that, for any 𝒙, 𝒚, 𝒛 ∈ 𝔽𝑛

𝑞 ,

𝜓(𝒙, 𝒚, 𝒛) = 𝜙(𝐀𝒙,𝐀𝒚,𝐀𝒛).

In the following, we denote the alternating trilinear form defined by 𝜙(𝐀𝒙,𝐀𝒚,𝐀𝒛)
as 𝜙 ∘ 𝐀.

Group Action We can consider the following action of GL𝑛(𝑞) on the set of
alternating trilinear forms ATF(𝑛, 𝑞) = {𝜙∶ 𝔽𝑛

𝑞 × 𝔽𝑛
𝑞 × 𝔽𝑛

𝑞 → 𝔽𝑞}:

⋆𝖠𝖳𝖥𝖤 ∶ GL𝑛(𝑞) × ATF(𝑛, 𝑞) → ATF(𝑛, 𝑞), (𝐀,𝜙) ↦ 𝜙 ∘ 𝐀.

We can see that the GAIP for the above action is the Alternating Trilinear Form
Equivalence problem. The signature scheme can be obtained by instantiating
Protocol 4.30 with ⋆𝖠𝖳𝖥𝖤 and applying the Fiat-Shamir transform as described in
Algorithm 4.3.

Signature Optimizations The proposed parameterizations for ALTEQ [37] in-
clude the Fixed-Weight (Section 4.3.3) and theMultiple Public Keys (Section 4.3.4)
optimizations. The Seed Tree (Section 4.3.2) optimization is considered in the
ALTEQ specification, but is not currently employed, pending further analysis
on the trade-offs by the authors. More in detail, for each NIST security level
I, III, and V, the ALTEQ specification proposes two sets of parameters with a
strong trade-off between signature size and public key size due to heavy use of
the Multiple Public Keys optimization.

Concrete Parameters The elements of the groupGL𝑛(𝑞) can be represented with
ℓ𝖦 = 𝑛2⌈log2 𝑞⌉ bits. By using the Fixed-Weight optimization with 𝑡 repetitions
and 𝜔 non-zero challenges without Seed Tree, and the Multiple Public Keys
optimization with 𝑠 keys, the size of the signature is given by Equation (4.3).

2𝜆 + 𝜆 + (𝑡 − 𝜔)𝜆 + 𝜔ℓ𝖦.

The proposed parameters for ALTEQ are shown in Table 4.3.

116

4.4 – Post-Quantum Group Actions

Table 4.1: Proposed parameters for LESS [13] with corresponding key/signature
sizes.

Set NIST
Cat.

Action Params Signature Params |pk| |sig|
𝑛 𝑘 𝑞 𝑡 𝜔 𝑠 (KiB) (KiB)

LESS-1b
I 252 126 127

247 30 2 13.6 8.4
LESS-1i 244 20 4 40.8 5.8
LESS-1s 198 17 8 95.2 5.0
LESS-3b

III 400 200 127
759 33 2 34.2 16.8

LESS-3s 895 26 3 68.5 13.4
LESS-5b

V 548 274 127
1352 40 2 64.2 29.8

LESS-5b 907 37 3 128.5 26.6

Table 4.2: Proposed parameters for MEDS [60] with corresponding key/signature
sizes.

Set NIST
Cat.

Action Params Signature Params |pk| |sig|
𝑞 (𝑛,𝑚, 𝑘) 𝑡 𝜔 𝑠 (KiB) (KiB)

MEDS-9923
I 4093 14

1152 14 4 9.7 9.7
MEDS-13320 192 20 5 12.9 12.7
MEDS-41711

III 4093 22
608 26 4 40.7 40.1

MEDS-69497 160 36 5 54.3 53.5
MEDS-134180

V 2039 30
192 52 5 131.0 129.4

MEDS-167717 112 66 6 163.8 161.6

Table 4.3: Proposed parameters for ALTEQ [37] with corresponding key/signature
sizes.

Set NIST
Cat.

Action Params Centr. Sig. Params |pk| |sig|
𝑛 𝑞 𝑡 𝜔 𝑠 (KiB) (KiB)

Balanced-I
I 13 232 − 5

84 22 7 7.9 15.6
Short-I 16 14 458 511.7 9.3
Balanced-III

III 20 232 − 5
201 28 7 31.2 47.9

Short-III 39 20 229 1019.8 31.8

117

118

Chapter 5

Aggregate and Multi-Signatures from
Group Actions

In this chapter, we investigate the design of aggregate signatures based on crypto-
graphic group actions. We begin by proposing a generic sequential aggregation
framework, based on the half-aggregation approach introduced in [54, 58] for
Schnorr signature and later adapted in [48] for lattice-based Fiat-Shamir signature
aggregation. Recall that a signature in the Fiat-Shamir paradigm typically con-
sists of a challenge-response pair, from which one can retrieve the commitment
and verify the validity of the transcript. Equivalently, it is possible to construct
the signature from the commitment-response pair, but this solution is typically
disadvantageous in terms of signature size. Half-aggregation schemes consider
the second approach and aggregate the commitment component of the individual
signatures. In the case of Schnorr signatures, this still allows a good compression
rate. On the other hand, when the length of challenges is much smaller than
the length of commitments and responses, the resulting compression is lower
and even negative for a small number of users, as in the case of the lattice-based
scheme of [48]. Instead, our scheme proposes aggregation of the challenge com-
ponent, achieving positive aggregation for any number of users. Unfortunately,
the interest in this scheme is only theoretical, as the achievable compression rates
are extremely limited for concrete signature schemes based on group actions.

To overcome the limitations of sequential aggregation, in Section 5.2 we in-
vestigate the design of an interactive multi-signature. The intuition behind the
scheme is to construct a distributed Σ-protocol that applies the Multiple Pub-
lic Key optimization (Section 4.3.4) by distributing public keys among protocol
participants. Despite the interactive component, the size of the multi-signature
still grows linearly with the number of participants. Nevertheless, we show that
by adopting some further optimizations studied in Section 4.3, it is possible to
achieve relevant compression rates. Finally, in Section 5.3, we apply the multi-
signature scheme to the group action-based signatures introduced in Section 4.4,

119

Aggregate and Multi-Signatures from Group Actions

Algorithm 5.1: Group-Action History-Free SAS (𝖦𝖠-𝖧𝖥-𝖲𝖠𝖲)
Let 𝑐0 = 𝜀, 𝑧0 = 𝜀. The random oracle is 𝖧 ∶ {0,1}∗ → {0,1}𝑡. 𝜚𝑖 and 𝜍𝑖 are the partial
description and the complementary information of the aggregate signature Σ𝑖,
respectively.

𝖲𝖾𝗍𝗎𝗉(1𝜆):
1: 𝑥0 ←$ 𝑋
2: 𝗉𝗉 ← 𝑥0
3: return 𝗉𝗉

𝖠𝗀𝗀𝖲𝗂𝗀𝗇((𝑥𝑖, 𝑔𝑖),𝑚𝑖, 𝜚𝑖−1):
1: (𝑐𝑖−1, 𝑧𝑖−1) ← 𝜚𝑖−1
2: for 𝑗 ← 1,… , 𝑡 do
3: ̃𝑔 (𝑗)𝑖 ←$ 𝐺
4: ̃𝑥𝑖 ← [̃𝑔 (𝑗)𝑖 ⋆ 𝑥0]𝑗∈[𝑡]
5: ̃𝑐𝑖 ← 𝖧(̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1)
6: 𝑐𝑖 ← 𝑐𝑖−1 ⊕ ̃𝑐𝑖
7: 𝑧𝑖 ← [̃𝑔 (𝑗)𝑖 𝑔−𝑐

(𝑗)
𝑖

𝑖]𝑗∈[𝑡]
8: 𝜚𝑖 ← (𝑐𝑖, 𝑧𝑖)
9: 𝜍𝑖 ← 𝑧𝑖

10: return 𝜚𝑖, 𝜍𝑖

𝖪𝖦𝖾𝗇(𝗉𝗉 = 𝑥0):
1: 𝑔 ←$ 𝐺
2: 𝑥 ← 𝑔 ⋆ 𝑥0
3: return 𝗉𝗄 ← 𝑥, 𝗌𝗄 ← 𝑔

𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑛, Σ̄𝑛):
1: (𝑥1,𝑚1),… , (𝑥𝑛,𝑚𝑛) ← 𝐿𝑛
2: (𝑐𝑛, 𝑧1,… , 𝑧𝑛) ← Σ̄𝑛
3: for 𝑖 ← 𝑛,… , 1 do
4: ̃𝑥𝑖 ← [𝑧(𝑗)𝑖 ⋆ 𝑥𝑖⋅𝑐(𝑗)𝑖

]𝑗∈[𝑡]
5: ̃𝑐𝑖 ← 𝖧(̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1)
6: 𝑐𝑖−1 ← 𝑐𝑖 ⊕ ̃𝑐𝑖
7: return 𝑐0 = 𝜀

𝖢𝗈𝗆𝖻𝗂𝗇𝖾(𝜍1, …, 𝜍𝑛−1, 𝜚𝑛):
1: (𝑧1,… , 𝑧𝑛−1) ← (𝜍1,… , 𝜍𝑛−1)
2: (𝑐𝑛, 𝑧𝑛) ← 𝜚𝑛
3: return Σ̄𝑛 ← (𝑐𝑛, 𝑧1,… , 𝑧𝑛)

specifically LESS [13], MEDS [60] and ALTEQ [37]. For each scheme, we anal-
yse the compression capabilities and the reduction in the number of protocol
iterations compared to the concatenation of individual signatures.

5.1 Sequential Half-Aggregation of Group Action-
Based Signatures

We present a 𝖯𝖲-𝖧𝖥-𝖲𝖠𝖲 scheme based on cryptographic group action signature
schemes. The properties of the underlying cryptographic group action (𝐺,𝑋, ⋆)
are described in Section 4.2, and the signature scheme is obtained by applying
the Fiat-Shamir transform as described in Section 4.2.3. To obtain a reduction
from EUF-CMA, we also require the action to be regular. Note that we can always
consider a transitive action by restricting the action to the orbit of a single element.
Also, in application to signatures, the action is typically required to be free to
ensure the security of the scheme (Corollary 4.33).

120

5.1 – Sequential Half-Aggregation of Group Action-Based Signatures

Aggregation of signatures is accomplished by sequentially combining chal-
lenges and preserving the entire list of responses. In more detail, the first user’s
signature for message 𝑚1 with public key 𝑥1 ∈ 𝑋 is obtained as in Algorithm 4.3
and is given by the challenge-response pair (𝑐1, 𝑧1). Then, if a second user with
public key 𝑥2 ∈ 𝑋 wants to add their own signature of a message 𝑚2, the aggrega-
tion proceeds as follows:

1. The commitment is obtained as in the plain signature of Algorithm 4.3, by
sampling ̃𝑔 (1)

2 ,… , ̃𝑔 (𝑡)
2 ∈ 𝐺 and computing ̃𝑥2 ← [̃𝑔 (𝑗)

2 ⋆ 𝑥2]𝑗∈[𝑡]. Here, we are
using the notation ̃𝑔 (𝑗)

𝑖 to denote the 𝑗-th parallel repetition of the 𝑖-th user.

2. The challenge is computed in two steps. First, by taking the output ̃𝑐2 of a
random oracle 𝖧 on the commitment ̃𝑥2, the public key 𝑥2 and the message
𝑚2 of the second user and on the response 𝑧1 of the previous user. Then,
the challenge is given by the aggregation of ̃𝑐2 and the previous aggregated
challenge 𝑐1, i.e., 𝑐2 ← 𝑐1 ⊕ ̃𝑐2.

3. Finally, the response 𝑧2 is computed as in Algorithm 4.3 on commitment ̃𝑥2
with challenge 𝑐2, i.e., 𝑧2 ← [̃𝑔 (𝑗)

2 𝑔−𝑐(𝑗)2
2]𝑗∈[𝑡], where 𝑔2 is the secret key for 𝑥2.

Sincewe are considering a partial-signature SAS, only partial information of the so-
far aggregate signature is required for subsequent aggregation. Using the notation
of Definition 3.6, the partial description of the signature 𝜚𝑖 produced by the 𝑖-th
user is given by (𝑐𝑖, 𝑧𝑖), while the complementary information 𝜍𝑖 required for the
full description of the aggregate signature is given by 𝑧𝑖. The full description of
the aggregate signature of 𝑛 signers is then given by the final aggregated challenge
𝑐𝑛 and the full list of responses 𝑧1,… , 𝑧𝑛 from all signers. A detailed description
of the scheme is given in Algorithm 5.1.

Notice that the trivial concatenation of 𝑛 signatures is given by (𝑐1,… , 𝑐𝑛, 𝑧1,
… , 𝑧𝑛). Compared with the construction of [48], where aggregation is done on the
commitments ̃𝑥 and compression is positive once the size of (𝑐1,… , 𝑐𝑛) is greater
than ̃𝑥, in our scheme we always achieve positive compression. Unfortunately,
in group action-based signatures, the size of responses is typically much larger
than the size of challenges, so although the proposed construction provides a
half-aggregation, the compression rate achieved is only about 1%.

5.1.1 Security Proof
In the following, we prove the PS-HF-UF-CMA security of Algorithm 5.1. We
assume that (𝐺,𝑋, ⋆) is a regular cryptographic group action,Π is theΣ-protocol of
Protocol 4.30 for the relation associated with GAIP.We assume thatΠ is repeated 𝑡
times before applying the Fiat-Shamir transform, and 𝖲𝗂𝗀 = 𝖥𝖲[Π𝑡] is the signature

121

Aggregate and Multi-Signatures from Group Actions

scheme described in Algorithm 4.3. In the proof, 𝖬 is the message space of 𝖲𝗂𝗀
and 𝖢𝗁 is the challenge space of Π𝑡.

Theorem 5.1 (PS-HF-UF-CMA Security). Let 𝒜 be a PS-HF-UF-CMA adversary
against the 𝖦𝖠-𝖧𝖥-𝖲𝖠𝖲 scheme on 𝖲𝗂𝗀 in the random oracle model, which makes 𝗊𝖲
signing queries to 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇, 𝗊𝖧 queries to the random oracle 𝖧. Then, there exists an
EUF-CMA adversary ℬ against 𝖲𝗂𝗀 issuing 𝗊𝖲 signing queries to 𝖮𝖲𝗂𝗀𝗇 and 𝗊𝖧′ to the
random oracle 𝖧′, such that

𝖠𝖽𝗏PS-HF-UF-CMA
𝖦𝖠-𝖧𝖥-𝖲𝖠𝖲 (𝒜) ≤𝖠𝖽𝗏EUF-CMA

𝖲𝗂𝗀 (ℬ) +
𝗊𝖲
|𝑋|𝑡

+
𝗊2𝖧
2𝑡

+
𝗊𝖧𝗊𝖲
|𝖬|

,

and the running time of ℬ is about that of 𝒜

In the following, we sketch the high-level idea of the proof; full details can be
found after Lemmas 5.2 and 5.3 at the end of this section. We prove the reduction
by showing that the PS-HF-UF-CMA game can be simulated by the EUF-CMA
adversary ℬ. The structure of the proof is similar to that of Theorem 3.8, but is
partially simplified because of the direct reduction to the signature rather than
the underlying security assumption. In particular, we will again make use of a
labelled tree 𝖧𝖳𝗋𝖾𝖾 whose nodes will be populated by some of the queries to the
random oracle 𝖧. The 𝖧𝖳𝗋𝖾𝖾 is initialized with a root node with a single value
ℎ0 = 𝜀. Each subsequent node 𝑁𝑖 is added following a query to the random oracle
𝖧 with input 𝑄𝑖 = (̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1) and will store the following values:

• a reference to its parent node 𝑁𝑖−1;

• the query 𝑄𝑖 to the random oracle 𝖧;

• the aggregated challenge 𝑐𝑖 ← 𝑐𝑖−1⊕ ̃𝑐𝑖 obtained by combining the aggregated
challenge 𝑐𝑖−1 of the previous node𝑁𝑖−1 and the challenge sampled as output
of the random oracle ̃𝑐𝑖. This value will be used to establish if future nodes
can be added as children of 𝑁𝑖.

A node 𝑁𝑖+1 can be added as a child of a node 𝑁𝑖 if it satisfies the relation
[𝑧(𝑗)𝑖 ⋆ 𝑥𝑖⋅𝑐(𝑗)𝑖

]𝑗∈[𝑡] = ̃𝑥𝑖, where 𝑥𝑖, ̃𝑥𝑖, 𝑐𝑖 are stored in 𝑁𝑖, while 𝑧𝑖 is stored in 𝑁𝑖+1. This
relationship establishes that the query 𝑄𝑖+1 can be properly used by the signer
with key 𝑥𝑖+1 to aggregate their signature on message𝑚𝑖+1 with previous response
𝑧𝑖, produced by key 𝑥𝑖 on commitment ̃𝑥𝑖 and challenge 𝑐𝑖, which in turn are stored
in 𝑁𝑖. Whenever a query 𝑄𝑖 = (̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1), with 𝑧𝑖−1 ≠ 𝜀, satisfies this relation
with a node 𝑁𝑖−1 we say that 𝑄𝑖 can be tethered to 𝑁𝑖−1. If 𝑧𝑖−1 = 𝜀, then 𝑄𝑖 can
always be tethered to the root of the 𝖧𝖳𝗋𝖾𝖾.

Eventually, when 𝒜 outputs a valid aggregate signature Σ̄𝑛 = (𝑐𝑛, 𝑧1,… , 𝑧𝑛)
for the history 𝐿𝑛 = (𝑥1,𝑚1),… , (𝑥𝑛,𝑚𝑛), if 𝒜 is winning, there exists an index

122

5.1 – Sequential Half-Aggregation of Group Action-Based Signatures

𝑖⋆ ∈ [𝑛] such that 𝑥𝑖⋆ = 𝑥⋆ and 𝑚𝑖⋆ ∉ 𝒬. Then, ℬ recovers ̃𝑥𝑖⋆ and 𝑐𝑖⋆ by iterating
the procedure of Lines 3 to 6 in 𝖠𝗀𝗀𝖵𝗋𝖿𝗒 for 𝑛 − 𝑖⋆ steps. Since Σ̄𝑛 is valid, 𝑄𝑖⋆ =
(̃𝑥𝑖⋆, 𝑥⋆,𝑚𝑖⋆, 𝑧𝑖⋆−1) must have been queried to 𝖧. Then ℬ checks if 𝑄𝑖⋆ is stored in a
node 𝑁⋆ ∈ 𝖧𝖳𝗋𝖾𝖾 as a child of a node 𝑁𝑖⋆−1 storing 𝑄𝑖⋆−1 = (̃𝑥𝑖⋆−1, 𝑥𝑖⋆−1,𝑚𝑖⋆−1, 𝑧𝑖⋆−2),
which in turn is a child of a node originating from 𝑁1. If no such node exists,
it aborts by raising 𝖻𝖺𝖽𝗍𝖾𝗍𝗁. Otherwise, the message 𝑚⋆, produced on Line 9 of
𝖧, is extracted from 𝑁⋆ and ℬ wins the EUF-CMA game returning the signature
(𝑐𝑖⋆, 𝑧𝑖⋆) on message 𝑚⋆.

For the complete proof of Theorem 5.1we need the following technical lemmas,
which are the analogues of Lemmas 3.9 and 3.11, respectively.

Lemma 5.2. When a new node is added to the 𝖧𝖳𝗋𝖾𝖾 as a result of a call to 𝖧, the
aggregated challenge 𝑐𝑖 is uniformly distributed in 𝖢𝗁.
Proof. When a new node is added to 𝖧𝖳𝗋𝖾𝖾, it is populated either on Line 12 or on
Line 16 of 𝖧. Let 𝑄 = (̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1) be the input to 𝖧. If 𝑥𝑖 = 𝑥⋆, then 𝑐𝑖 is taken
as the output of the outer random oracle 𝖧′ taking as input a fresh random value
𝑚 ←$ 𝖬. Otherwise, 𝑐𝑖 is computed as 𝑐𝑖−1 ⊕ ̃𝑐𝑖, where ̃𝑐𝑖 is sampled uniformly
at random from 𝖢𝗁. Therefore, 𝑐𝑖 is chosen randomly and is independent of the
view of 𝒜.

Lemma 5.3. If an input 𝑄 has not been entered in the 𝖧𝖳𝗋𝖾𝖾 after being queried to
𝖧, the probability that it will ever become tethered to a node in 𝖧𝖳𝗋𝖾𝖾 is at most 𝗊′/2𝑡,
where 𝗊′ is the number of queries made to 𝖧 after 𝑄.
Proof. Suppose that 𝑄 = (̃𝑥, 𝑥𝑙,𝑚, 𝑧) was queried to 𝖧 and was not added to
the 𝖧𝖳𝗋𝖾𝖾, i.e. 𝖫𝗈𝗈𝗄𝗎𝗉(𝑧) = ⊥. Now suppose that a query 𝑄′ = (̃𝑥′, 𝑥𝑘,𝑚′, 𝑧′)
was subsequently sent to 𝖧 and was added to 𝖧𝖳𝗋𝖾𝖾 as part of a node 𝑁 ′ with
aggregated challenge 𝑐′. For 𝑄 to be tethered to 𝑁 ′, it must hold that [𝑧(𝑗) ⋆
𝑥𝑘⋅𝑐′(𝑗)]𝑗∈[𝑡] = ̃𝑥′. Following Lemma 5.2, when a new node is added to the 𝖧𝖳𝗋𝖾𝖾 as a
result of a call to 𝖧, the aggregated challenge 𝑐′ is uniformly distributed in 𝖢𝗁. In
particular, 𝑐′ is random and independent of 𝑥𝑘 and 𝑧. Therefore, the probability
of having [𝑧(𝑗) ⋆ 𝑥𝑘⋅𝑐′(𝑗)]𝑗∈[𝑡] = ̃𝑥′ is at most 2−𝑡. Since there are at most 𝗊′ queries
to 𝖧 after 𝑄 and each query can add at most one node to the 𝖧𝖳𝗋𝖾𝖾, the desired
probability follows by the union bound.

Proof for PS-HF-UF-CMA security (Theorem 5.1)

Proof. We now prove the reduction by presenting a sequence of hybrid games,
modifying the PS-HF-UF-CMA game (Experiment 3.2) until it can be simulated by
the EUF-CMA adversary ℬ. The complete reduction is described in Algorithm 5.2.
In the following, we use the notation Pr[𝖦𝖺𝗆𝖾𝗇(𝒜) = 1] to denote the probability
that 𝖦𝖺𝗆𝖾𝗇 returns 1 when played by 𝒜. The game sequence 𝖦𝖺𝗆𝖾𝟢-𝖦𝖺𝗆𝖾𝟥 for
𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇 is detailed in Argument 5.1. The game sequence 𝖦𝖺𝗆𝖾𝟢-𝖦𝖺𝗆𝖾𝟥 for 𝖧 is
detailed in Argument 5.2.

123

Aggregate and Multi-Signatures from Group Actions

Algorithm 5.2: Full Reduction EUF-CMA ⟹ PS-HF-UF-CMA

ℬ(𝑥⋆):
1: 𝒬 ← ∅
2: (𝐿𝑛, Σ̄𝑛) ←$ 𝒜𝖧,𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝑥⋆)
3: (𝑥1,𝑚1),… , (𝑥𝑛,𝑚𝑛) ← 𝐿𝑛
4: (𝑐𝑛, 𝑧1,… , 𝑧𝑛) ← Σ̄𝑛
5: if 𝖠𝗀𝗀𝖵𝗋𝖿𝗒(𝐿𝑛, Σ̄𝑛) ∧ ∃𝑖⋆ ∶ (𝑥𝑖⋆ = 𝑥⋆ ∧

𝑚𝑖⋆ ∉ 𝒬) then
6: Recover 𝑐𝑖⋆ as in 𝖠𝗀𝗀𝖵𝗋𝖿𝗒
7: 𝑁⋆ ← 𝖫𝗈𝗈𝗄𝗎𝗉(𝑧𝑖⋆)
8: if 𝑁⋆ = ⊥ then
9: raise 𝖻𝖺𝖽𝗍𝖾𝗍𝗁

10: Retrieve 𝑚⋆ from 𝑁⋆

11: if 𝑚⋆ ∈ 𝒬 then
12: raise 𝖻𝖺𝖽𝗆𝖼𝗈𝗅

13: Return (𝑚⋆, (𝑐𝑖⋆, 𝑧𝑖⋆))

𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝑚𝑖, 𝜚𝑖−1):
1: (𝑐𝑖−1, 𝑧𝑖−1) ← 𝜚𝑖−1
2: 𝑥𝑖 ← 𝑥⋆
3: 𝒬 ← 𝒬 ∪ {𝑚𝑖}
4: (𝑐𝑖, 𝑧𝑖) ←$ 𝖮𝖲𝗂𝗀𝗇(𝑚𝑖)
5: ̃𝑥𝑖 ← [𝑧(𝑗)𝑖 ⋆ 𝑥𝑖⋅𝑐(𝑗)]𝑗∈[𝑡]
6: ̃𝑐𝑖 ← 𝑐𝑖−1 ⊕ 𝑐𝑖
7: 𝑄 ← (̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1)
8: if 𝖧𝖳[𝑄] ≠ ⊥ then
9: raise 𝖻𝖺𝖽𝖼𝗍𝖼𝗈𝗅

10: 𝖧𝖳[𝑄] ← ̃𝑐𝑖
11: return (𝑐𝑖, 𝑧𝑖), 𝑧𝑖

𝖧(̃𝑥𝑖, 𝑥𝑖, 𝑚𝑖, 𝑧𝑖−1):
1: 𝑄 ← (̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1)
2: if 𝖧𝖳[𝑄] ≠ ⊥ then
3: return 𝖧𝖳[𝑄]
4: 𝑁𝑖−1 ← 𝖫𝗈𝗈𝗄𝗎𝗉(𝑧𝑖−1)
5: if 𝑁𝑖−1 ≠ ⊥ then
6: 𝑁𝑖 ← new node with parent 𝑁𝑖−1
7: Retrieve 𝑐𝑖−1 from 𝑁𝑖−1
8: if 𝑥𝑖 = 𝑥⋆ then
9: 𝑚 ←$ 𝖬

10: 𝑐𝑖 ← 𝖧′(̃𝑥𝑖, 𝑥𝑖,𝑚)
11: ̃𝑐𝑖 ← 𝑐𝑖−1 ⊕ 𝑐𝑖
12: Populate node 𝑁𝑖 with 𝑄, 𝑐𝑖,𝑚
13: else
14: ̃𝑐𝑖 ←$ 𝖢𝗁
15: 𝑐𝑖 ← 𝑐𝑖−1 ⊕ ̃𝑐𝑖
16: Populate node 𝑁𝑖 with 𝑄, 𝑐𝑖
17: else
18: ̃𝑐𝑖 ←$ 𝖢𝗁
19: 𝖧𝖳[𝑄] ← ̃𝑐𝑖
20: return ̃𝑐𝑖

𝖫𝗈𝗈𝗄𝗎𝗉(𝑧):
1: if 𝑧 = 𝜀 then
2: return Root of 𝖧𝖳𝗋𝖾𝖾
3: 𝖭𝖫𝗂𝗌𝗍 ← {𝑁 ∈ 𝖧𝖳𝗋𝖾𝖾 ∶ (𝑥𝑖, ̃𝑥𝑖, 𝑐𝑖) ∈

𝑁 ∧ [𝑧(𝑗) ⋆ 𝑥𝑖⋅𝑐(𝑗)𝑖
]𝑗∈[𝑡] = ̃𝑥𝑖}

4: if |𝖭𝖫𝗂𝗌𝗍| > 1 then
5: raise 𝖻𝖺𝖽𝗍𝖼𝗈𝗅
6: else if |𝖭𝖫𝗂𝗌𝗍| = 0 then
7: return ⊥
8: else
9: return node in 𝖭𝖫𝗂𝗌𝗍

124

5.1 – Sequential Half-Aggregation of Group Action-Based Signatures

Hybrid Argument 5.1: Games for 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇(𝑚𝑖, 𝜚𝑖−1 = (𝑐𝑖−1, 𝑥𝑖−1))
Let 𝑥𝑖 = 𝑥⋆. The oracle returns 𝜚𝑖, 𝜍𝑖.

𝖦𝖺𝗆𝖾𝟢:
1: 𝒬 ← 𝒬 ∪ {𝑚𝑖}
2: ̃𝑔𝑖 ←$ 𝐺𝑡

3: ̃𝑥𝑖 ← [̃𝑔 (𝑗)𝑖 ⋆ 𝑥0]𝑗∈[𝑡]
4: ̃𝑐𝑖 ← 𝖧(̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1)
5: 𝑐𝑖 ← 𝑐𝑖−1 ⊕ ̃𝑐𝑖
6: 𝑧𝑖 ← [̃𝑔 (𝑗)𝑖 𝑔−𝑐

(𝑗)
𝑖

𝑖]𝑗∈[𝑡]
7: return (𝑐𝑖, 𝑧𝑖), 𝑧𝑖

𝖦𝖺𝗆𝖾𝟣-𝖦𝖺𝗆𝖾𝟥:
1: 𝒬 ← 𝒬 ∪ {𝑚𝑖}
2: ̃𝑔𝑖 ←$ 𝐺𝑡

3: ̃𝑥𝑖 ← [̃𝑔 (𝑗)𝑖 ⋆ 𝑥0]𝑗∈[𝑡]
4: 𝑄 ← (̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1)
5: if 𝖧𝖳[𝑄] ≠ ⊥ then
6: raise 𝖻𝖺𝖽𝖼𝗍𝖼𝗈𝗅
7: ̃𝑐𝑖 ←$ 𝖢𝗁
8: 𝖧𝖳[𝑄] ← ̃𝑐𝑖
9: 𝑐𝑖 ← 𝑐𝑖−1 ⊕ ̃𝑐𝑖

10: 𝑧𝑖 ← [̃𝑔 (𝑗)𝑖 𝑔−𝑐
(𝑗)
𝑖

𝑖]𝑗∈[𝑡]
11: return (𝑐𝑖, 𝑧𝑖), 𝑧𝑖

𝖦𝖺𝗆𝖾𝟢 This is the original PS-HF-UF-CMA game against the 𝖦𝖠-𝖧𝖥-𝖲𝖠𝖲 scheme,
except that it uses programmable random oracles. At the start of the game,
the challenger initializes a table 𝖧𝖳 for 𝖧. When a query 𝑄 for 𝖧 is received,
if 𝖧𝖳[𝑄] = ⊥ it uniformly samples ̃𝑐 ←$ 𝖢𝗁 and stores 𝖧𝖳[𝑄] ← ̃𝑐, finally it
returns 𝖧𝖳[𝑄]. It follows that Pr[𝖦𝖺𝗆𝖾𝟢(𝒜) = 1] = 𝖠𝖽𝗏PS-HF-UF-CMA

𝖦𝖠-𝖧𝖥-𝖲𝖠𝖲 (𝒜).

𝖦𝖺𝗆𝖾𝟣 This game is identical to 𝖦𝖺𝗆𝖾𝟢 except that 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇 aborts by raising
𝖻𝖺𝖽𝖼𝗍𝖼𝗈𝗅 if on query (𝑚𝑖, 𝜚𝑖−1 = (𝑐𝑖−1, 𝑧𝑖−1)), after sampling ̃𝑔𝑖 ←$ 𝐺𝑡 it computes
̃𝑥𝑖 ← [̃𝑔 (𝑗)

𝑖 ⋆𝑥0]𝑗∈[𝑡] such that the random oracle𝖧was already queried at input
𝑄 = (̃𝑥𝑖, 𝑥⋆,𝑚𝑖, 𝑧𝑖−1), i.e. 𝖧𝖳[𝑄] ≠ ⊥. Otherwise, it samples ̃𝑐𝑖 ←$ 𝖢𝗁 and pro-
grams 𝖧𝖳[𝑄] ← ̃𝑐𝑖. It follows that |Pr[𝖦𝖺𝗆𝖾𝟢(𝒜) = 1]−Pr[𝖦𝖺𝗆𝖾𝟣(𝒜) = 1]| ≤
Pr[𝖻𝖺𝖽𝖼𝗍𝖼𝗈𝗅].

𝖦𝖺𝗆𝖾𝟤 This game is identical to 𝖦𝖺𝗆𝖾𝟣 except that the random oracle 𝖧 is sim-
ulated as follows. At the start of the game, the challenger initializes a la-
belled tree 𝖧𝖳𝗋𝖾𝖾, as described at the beginning of the proof. When a query
𝑄 = (̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1) for 𝖧 is received and 𝖧𝖳[𝑄] = ⊥, it samples a uniformly
random challenge ̃𝑐𝑖 ←$ 𝖢𝗁. Then, it checks if𝑄 can be added as a child node
of existing nodes in 𝖧𝖳𝗋𝖾𝖾. To determine whether this is the case, it uses the
𝖫𝗈𝗈𝗄𝗎𝗉 function (see Algorithm 5.2) on input 𝑧𝑖−1. The 𝖫𝗈𝗈𝗄𝗎𝗉 function de-
termines whether there exists a node 𝑁𝑖−1 ∈ 𝖧𝖳𝗋𝖾𝖾 storing a public key 𝑥𝑖−1,
a commitment ̃𝑥𝑖−1 and an aggregated challenge 𝑐𝑖−1 such that 𝑧𝑖−1 is a valid
response, i.e. [𝑧(𝑗)𝑖−1 ⋆ 𝑥(𝑖−1)⋅𝑐(𝑗)𝑖−1

]𝑗∈[𝑡] = ̃𝑥𝑖−1. If 𝑄 can be tethered to more than
one node, the game aborts by raising 𝖻𝖺𝖽𝗍𝖼𝗈𝗅. Otherwise, 𝖧 add a new node
𝑁𝑖 with parent𝑁𝑖−1 returned by 𝖫𝗈𝗈𝗄𝗎𝗉(𝑧𝑖−1). 𝑁𝑖 contains the original query

125

Aggregate and Multi-Signatures from Group Actions

Hybrid Argument 5.2: Games for 𝖧(̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1)
𝖦𝖺𝗆𝖾𝟢-𝖦𝖺𝗆𝖾𝟣:
1: 𝑄 ← (̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1)
2: if 𝖧𝖳[𝑄] ≠ ⊥ then
3: return 𝖧𝖳[𝑄]
4: ̃𝑐𝑖 ←$ 𝖢𝗁
5: 𝖧𝖳[𝑄] ← ̃𝑐𝑖
6: return ̃𝑐𝑖

𝖦𝖺𝗆𝖾𝟤:
1: 𝑄 ← (̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1)
2: if 𝖧𝖳[𝑄] ≠ ⊥ then
3: return 𝖧𝖳[𝑄]
4: ̃𝑐𝑖 ←$ 𝖢𝗁
5: 𝑁𝑖−1 ← 𝖫𝗈𝗈𝗄𝗎𝗉(𝑧𝑖−1)
6: if 𝑁𝑖−1 ≠ ⊥ then
7: 𝑁𝑖 ← new node with parent 𝑁𝑖−1
8: Retrieve 𝑐𝑖−1 from 𝑁𝑖−1
9: 𝑐𝑖 ← 𝑐𝑖−1 ⊕ ̃𝑐𝑖

10: Populate node 𝑁𝑖 with 𝑄, 𝑐𝑖
11: 𝖧𝖳[𝑄] ← ̃𝑐𝑖
12: return ̃𝑐𝑖

𝖦𝖺𝗆𝖾𝟥:
1: 𝑄 ← (̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1)
2: if 𝖧𝖳[𝑄] ≠ ⊥ then
3: return 𝖧𝖳[𝑄]
4: 𝑁𝑖−1 ← 𝖫𝗈𝗈𝗄𝗎𝗉(𝑧𝑖−1)
5: if 𝑁𝑖−1 ≠ ⊥ then
6: 𝑁𝑖 ← new node with parent 𝑁𝑖−1
7: Retrieve 𝑐𝑖−1 from 𝑁𝑖−1
8: if 𝑥𝑖 = 𝑥⋆ then
9: 𝑚 ←$ 𝖬

10: if 𝑚 ∈ 𝒬 then
11: raise 𝖻𝖺𝖽𝗆𝖼𝗈𝗅

12: 𝑐𝑖 ←$ 𝖢𝗁
13: ̃𝑐𝑖 ← 𝑐𝑖−1 ⊕ 𝑐𝑖
14: Populate node 𝑁𝑖 with 𝑄, 𝑐𝑖,𝑚
15: else
16: ̃𝑐𝑖 ←$ 𝖢𝗁
17: 𝑐𝑖 ← 𝑐𝑖−1 ⊕ ̃𝑐𝑖
18: Populate node 𝑁𝑖 with 𝑄, 𝑐𝑖
19: else
20: ̃𝑐𝑖 ←$ 𝖢𝗁
21: 𝖧𝖳[𝑄] ← ̃𝑐𝑖
22: return ̃𝑐𝑖

𝑄 and the aggregated challenge 𝑐𝑖 ← 𝑐𝑖−1 ⊕ ̃𝑐𝑖, where 𝑐𝑖−1 is the previous
aggregated challenge stored in 𝑁𝑖−1. Finally, 𝖧 programs 𝖧𝖳[𝑄] ← ̃𝑐𝑖 and
returns ̃𝑐𝑖. It holds that |Pr[𝖦𝖺𝗆𝖾𝟣(𝒜) = 1]−Pr[𝖦𝖺𝗆𝖾𝟤(𝒜) = 1]| ≤ Pr[𝖻𝖺𝖽𝗍𝖼𝗈𝗅].

𝖦𝖺𝗆𝖾𝟥 This game is identical to 𝖦𝖺𝗆𝖾𝟤 except that the random oracle 𝖧 is simu-
lated as follows. When 𝖧 receives a query 𝑄 = (̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1) with 𝑥𝑖 = 𝑥⋆,
if 𝑄 can be tethered to a node 𝑁𝑖 it samples a uniformly random message
𝑚 ←$ 𝖬 and aborts by raising 𝖻𝖺𝖽𝗆𝖼𝗈𝗅 if the message has been queried to
𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇, i.e., 𝑚 ∈ 𝒬. Otherwise, it samples the aggregated challenged
at random 𝑐𝑖 ←$ 𝖢𝗁 and sets the random oracle response as ̃𝑐𝑖 ← 𝑐𝑖−1 ⊕ 𝑐𝑖,
where 𝑐𝑖−1 is the previous aggregated challenge stored in 𝑁𝑖−1. Finally, it
stores the random message 𝑚 to the new node 𝑁𝑖. Notice that if the game
does not abort, it always produces a uniformly random value in 𝖢𝗁. It holds
that |Pr[𝖦𝖺𝗆𝖾𝟤(𝒜) = 1] − Pr[𝖦𝖺𝗆𝖾𝟥(𝒜) = 1]| ≤ Pr[𝖻𝖺𝖽𝗆𝖼𝗈𝗅].

In the following, we show that the EUF-CMA adversary ℬ can simulate 𝖦𝖺𝗆𝖾𝟥
using the outer signing oracle 𝖮𝖲𝗂𝗀𝗇 and the outer random oracle 𝖧′.

126

5.1 – Sequential Half-Aggregation of Group Action-Based Signatures

• When 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇 receives a query (𝑚𝑖, (𝑐𝑖−1, 𝑧𝑖−1)), ℬ queries the outer signing
oracle 𝖮𝖲𝗂𝗀𝗇 on 𝑚𝑖 and receives a challenge 𝑐𝑖 and a response 𝑧𝑖. From (𝑐𝑖, 𝑧𝑖)
it recovers the commitment ̃𝑥𝑖 computed by𝖮𝖲𝗂𝗀𝗇 and programs the random
oracle 𝖧 on query (̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1)with the aggregated challenge ̃𝑐𝑖 ← 𝑐𝑖−1⊕𝑐𝑖.
Finally, ℬ returns 𝜚𝑖 ← (𝑐𝑖, 𝑧𝑖) and 𝜍𝑖 ← 𝑧𝑖.

• When 𝖧 receives a query 𝑄 = (̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1) with 𝑥𝑖 = 𝑥⋆, if 𝑄 can be
tethered to a node 𝑁𝑖 ∈ 𝖧𝖳𝗋𝖾𝖾, ℬ samples a uniformly random message
𝑚 ←$ 𝖬, queries the outer random oracle 𝖧′ on (̃𝑥𝑖, 𝑥𝑖,𝑚) and uses the
response 𝑐𝑖 as the aggregated challenge described in 𝖦𝖺𝗆𝖾𝟥.

If none of the 𝖻𝖺𝖽 events happen, ℬ wins the EUF-CMA game if and only if 𝒜
wins 𝖦𝖺𝗆𝖾𝟥. Therefore, it holds that

𝖠𝖽𝗏EUF-CMA
𝖢𝖦𝖠-𝖲 (ℬ) = Pr[𝖦𝖺𝗆𝖾𝟥(𝒜) = 1]

≥ 𝖠𝖽𝗏PS-HF-UF-CMA
𝖦𝖠-𝖧𝖥-𝖲𝖠𝖲 (𝒜) − Pr[𝖻𝖺𝖽𝖼𝗍𝖼𝗈𝗅] − Pr[𝖻𝖺𝖽𝗍𝖼𝗈𝗅]

− Pr[𝖻𝖺𝖽𝗆𝖼𝗈𝗅] − Pr[𝖻𝖺𝖽𝗍𝖾𝗍𝗁].

ℬ can simulate 𝖦𝖺𝗆𝖾𝟥 with at most the same running time of 𝒜 plus the time
required for running 𝖠𝗀𝗀𝖵𝗋𝖿𝗒 and simulating the queries to the random oracle
𝖧, and to the signing oracle 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇. These operations are polynomial in the
security parameter and are repeated at most 𝗊𝖧 + 𝗊𝖲 + 1 times.

In the following, we bound the probability of each 𝖻𝖺𝖽 event happening.

Probability of 𝖻𝖺𝖽𝖼𝗍𝖼𝗈𝗅 The event 𝖻𝖺𝖽𝖼𝗍𝖼𝗈𝗅 occurs on Line 9 of 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇 in input
(𝑚𝑖, 𝜚𝑖 = (𝑐𝑖−1, 𝑧𝑖−1)) when, after querying the outer signing oracle 𝖮𝖲𝗂𝗀𝗇 on
𝑚𝑖 and receiving (𝑐𝑖, 𝑧𝑖), it recovers a commitment ̃𝑥𝑖 such that a value for
𝑄 = (̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1) was already assigned in 𝖧𝖳. Since ̃𝑥𝑖 is generated by
𝖮𝖲𝗂𝗀𝗇, for each query to 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇, this happens with probability at most

max
̃𝑥=(̃𝑥(1),…, ̃𝑥(𝑡))

Pr[̃𝑥(𝑗) = ̃𝑔 (𝑗) ⋆ 𝑥0,∀𝑗 ∈ [𝑡] | ̃𝑔 (𝑗) ←$ 𝐺].

If the action is regular, the map 𝑔 ↦ 𝑔 ⋆ 𝑥0 is a bijection and for any fixed
̃𝑥 ∈ 𝑋 it holds that

Pr[̃𝑥 = ̃𝑔 ⋆ 𝑥0 | ̃𝑔 ←$ 𝐺] = Pr[̃𝑥 = 𝑥 | 𝑥 ←$ 𝑋] = 1
|𝑋|

.

Since at most 𝗊𝖲 are made to 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇, then Pr[𝖻𝖺𝖽𝖼𝗍𝖼𝗈𝗅] ≤ 𝗊𝖲|𝑋|−𝑡.

Probability of 𝖻𝖺𝖽𝗍𝖼𝗈𝗅 The event 𝖻𝖺𝖽𝗍𝖼𝗈𝗅 occurs on Line 5 of 𝖫𝗈𝗈𝗄𝗎𝗉 on input 𝑧when
the 𝖧𝖳𝗋𝖾𝖾 contains more than one tethered node. This happens if there are

127

Aggregate and Multi-Signatures from Group Actions

two nodes 𝑁𝑖,𝑁𝑗 ∈ 𝖧𝖳𝗋𝖾𝖾, storing (𝑥𝑖, ̃𝑥𝑖, 𝑐𝑖) and (𝑥𝑗, ̃𝑥𝑗, 𝑐𝑗), such that 𝑧 is a
common response, i.e.

[𝑧(𝑘) ⋆ 𝑥𝑖⋅𝑐(𝑘)𝑖
]𝑘∈[𝑡] = ̃𝑥𝑖 and [𝑧(𝑘) ⋆ 𝑥𝑗⋅𝑐(𝑘)𝑗

]𝑘∈[𝑡] = ̃𝑥𝑗.

Each query to 𝖧 add at most one node to 𝖧𝖳𝗋𝖾𝖾, so the tree has a maximum
of 𝗊𝖧 nodes. Therefore, we need to bound the probability that any pair of
nodes in 𝖧𝖳𝗋𝖾𝖾 has a common response 𝑧.
When a new node is added to 𝖧𝖳𝗋𝖾𝖾, the public key 𝑥𝑖 and the commitment
̃𝑥𝑖 are part of the input to 𝖧 and may be adversarially chosen, while, from

Lemma 5.2, the aggregated challenge 𝑐𝑖 is a uniformly random value in
𝖢𝗁. If the action is regular, then the response 𝑧 is uniquely determined by
𝑥𝑖, ̃𝑥𝑖 and 𝑐𝑖, and the map 𝑥 ↦ 𝑧(𝑗) ⋆ 𝑥 is a bijection for all 𝑗 ∈ [𝑡]. Therefore,
assuming |𝐺| ≥ 2𝜆, the best strategy for an adversary is to choose 𝑥𝑗 = 𝑥𝑖 and
̃𝑥𝑗 = ̃𝑥𝑖. Since 𝑐𝑗 is uniformly distributed and independent of 𝑐𝑖, it follows

that [𝑧(𝑘) ⋆ 𝑥𝑗⋅𝑐(𝑘)𝑗
] = ̃𝑥𝑗 happens with probability 1/2 for all 𝑗 ∈ [𝑡].

Since the number of node pairs in the 𝖧𝖳𝗋𝖾𝖾 is at most 𝗊2𝖧/2, by the union
bound we obtain Pr[𝖻𝖺𝖽𝗍𝖼𝗈𝗅] ≤ 𝗊2𝖧/2𝑡+1.

Probability of 𝖻𝖺𝖽𝗆𝖼𝗈𝗅 The event 𝖻𝖺𝖽𝗆𝖼𝗈𝗅 occurs on Line 12 of the simulation of ℬ
if the message 𝑚⋆ sampled on Line 9 of 𝖧 was queried to 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇. There
are at most 𝗊𝖲 queries to 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇, thus the probability that a uniformly
random message produces a collision with one of the queries is at most
𝗊𝖲/|𝖬|. Since at most 𝗊𝖧 queries are made to 𝖧, then Pr[𝖻𝖺𝖽𝗆𝖼𝗈𝗅] ≤ 𝗊𝖧𝗊𝖲/|𝖬|.

Probability of 𝖻𝖺𝖽𝗍𝖾𝗍𝗁 The event 𝖻𝖺𝖽𝗍𝖾𝗍𝗁 occurs on Line 9 of the simulation of ℬ
when, after the adversary 𝒜 outputs a valid aggregate signature Σ̄𝑛 for the
history 𝐿𝑛 = (𝗉𝗄1,𝑚1),… , (𝗉𝗄𝑛,𝑚𝑛), the simulator recovers 𝑥𝑖⋆, with 𝑖⋆ ∈ [𝑛]
such that 𝗉𝗄𝑖⋆ = 𝗉𝗄⋆ and 𝑚𝑖⋆ ∉ 𝒬, but 𝑥𝑖⋆ cannot be tethered to any node in
the 𝖧𝖳𝗋𝖾𝖾.

When 𝖻𝖺𝖽𝗍𝖾𝗍𝗁 happens, the aggregate signature Σ̄𝑛 must be valid on 𝐿𝑛.
In particular, the inputs 𝑄1 = (𝖥1,𝑚1, 𝑟1, 𝜀),𝑄2 = (𝖥2,𝑚2, 𝑟2, 𝑥1),… ,𝑄𝑖⋆ =
(𝖥𝑖⋆,𝑚𝑖⋆, 𝑟𝑖⋆, 𝑥𝑖⋆−1) have been queried to 𝖧 in 𝖮𝖠𝗀𝗀𝖵𝗋𝖿𝗒. Let ̃𝑐1,… , ̃𝑐𝑖⋆ be the
outputs of these queries, so that 𝖧𝖳[𝑄𝑗] = ̃𝑐𝑗. Each of these entries has been
populated by 𝖧. In fact, the only exception could occur if (𝑚𝑖⋆, 𝑧𝑖⋆−1) was
queried to 𝖮𝖠𝗀𝗀𝖲𝗂𝗀𝗇. But this cannot happen since otherwise 𝑚𝑖⋆ ∈ 𝒬 and
the aggregate signature would not be a valid forgery.

Each step of 𝖮𝖠𝗀𝗀𝖵𝗋𝖿𝗒 also recovers a value 𝑐𝑖 ← 𝑐𝑖+1 ⊕ ̃𝑐𝑖+1 which is the
aggregated challenge at the 𝑖-th step. Since the aggregate signature is correct,
we obtain that 𝑐𝑖 = ̃𝑐1. Observe that since 𝑄1 was queried to 𝖧, it must be
tethered to the root of 𝖧𝖳𝗋𝖾𝖾 and was therefore inserted as a node of 𝖧𝖳𝗋𝖾𝖾

128

5.1 – Sequential Half-Aggregation of Group Action-Based Signatures

with aggregated challenge 𝑐𝑖 = 𝑐𝑖−1 ⊕ ̃𝑐𝑖. Then, since [𝑧
(𝑗)
𝑖 ⋆ 𝑥𝑖⋅𝑐(𝑗)𝑖

]𝑗∈[𝑡] = ̃𝑥𝑖, the
query 𝑄2 is tethered to𝑁1. Now we prove that either all 𝑄1,… ,𝑄𝑖⋆ are part
of a path of nodes in 𝖧𝖳𝗋𝖾𝖾, or there exists an input 𝑄𝑘 that was queried to
𝖧, is tethered to a node in 𝖧𝖳𝗋𝖾𝖾 and is not itself in a node of 𝖧𝖳𝗋𝖾𝖾. We
proceed by induction on 𝑘 ≤ 𝑖⋆: we have already shown that 𝑄1 is in 𝖧𝖳𝗋𝖾𝖾;
suppose that 𝑄𝑘 is in the 𝖧𝖳𝗋𝖾𝖾, then, since [𝑧(𝑗)𝑘 ⋆ 𝑥𝑘⋅𝑐(𝑗)𝑘

]𝑗∈[𝑡] = ̃𝑥𝑘, the query
𝑄𝑘+1 is tethered to 𝑄𝑘 and it may or may not be part of 𝖧𝖳𝗋𝖾𝖾. To conclude,
we prove that if an input 𝑄 has not been entered in the 𝖧𝖳𝗋𝖾𝖾 after being
queried to 𝖧, the probability that it will ever become tethered to a node in
𝖧𝖳𝗋𝖾𝖾 is at most 𝗊′/2𝑡, where 𝗊′ is the number of queries made to 𝖧 after
𝑄 (Lemma 5.3). Since there are at most 𝗊𝖧 queries that add new nodes to
𝖧𝖳𝗋𝖾𝖾, we obtain, by the union bound, that Pr[𝖻𝖺𝖽𝗍𝖾𝗍𝗁] ≤ 𝗊2𝖧/2𝑡+1.

Combining the previous bound on 𝖻𝖺𝖽 events, we obtain the claimed estimate
of 𝖠𝖽𝗏PS-HF-UF-CMA

𝖦𝖠-𝖧𝖥-𝖲𝖠𝖲 (𝒜).

5.1.2 Support for Standard Optimizations
In Section 4.3 we described the main techniques used to optimize group action-
based signature schemes. All the techniques mentioned are easily extended
to the sequential aggregation scheme described in this section. Note that the
aggregation procedure in Algorithm 5.1, only modifies the way challenges are
computed by aggregating them with the previous signer’s challenge. In particular,
the computation of the responses is not changed during aggregation; thus, any
signature optimization that only affects the responses is immediately applicable
to the aggregated signature. This is the case with the Compression of Random
Elements (Section 4.3.1) and the Seed Trees (Section 4.3.2) optimizations.

On the other hand, Fixed-Weight (Section 4.3.3) and Multiple Public Keys
(Equation (4.3)) optimizations modify the challenge structure, in the former case
by unbalancing the distribution of the challenge space, while in the latter by
expanding the binary space of the single instance to a multi-bit one. In both cases,
the simple technique of aggregating challenges via bit-by-bit XOR described
in Algorithm 5.1 is no longer applicable. To recover correctness, however, it is
sufficient to modify the protocol so that the output of the random oracle is a
seed of length 2𝜆, which can be expanded into the challenge space by using an
appropriate Pseudorandom Number Generator 𝖯𝖱𝖭𝖦. Aggregation then takes
place on the seeds in the same manner as described in the original scheme. More
in detail, if we consider an arbitrary challenge space 𝖢𝗁, we use a random oracle
𝖧 ∶ {0,1}∗ → {0,1}2𝜆 and 𝖯𝖱𝖭𝖦 ∶ {0,1}2𝜆 → 𝖢𝗁, and the challenge is computed
as follows. Suppose the 𝑖-th signer with public key 𝑥𝑖 wants to aggregate their
signature on message 𝑚𝑖 on a previous partial aggregation given by (𝑐𝑖−1, 𝑧𝑖−1).

129

Aggregate and Multi-Signatures from Group Actions

After computing the commitment ̃𝑥𝑖, as in the original protocol, the signer takes
̃𝑐𝑖 ← 𝖧(̃𝑥𝑖, 𝑥𝑖,𝑚𝑖, 𝑧𝑖−1) and computes 𝑐𝑖 ← 𝑐𝑖−1 ⊕ ̃𝑐𝑖. Now, instead of using 𝑐𝑖 as a
challenge, the signers take 𝑐′𝑖 ← 𝖯𝖱𝖭𝖦(𝑐𝑖) to compute the response. Notice that
the partial description of the aggregate signature is now given by (𝑐𝑖, 𝑧𝑖), so that
the expanded challenge 𝑐′𝑖 is only used in computation of the responses. The
same expansion procedure is used at the verification stage to derive intermediate
commitments.

5.2 Multi-Signature from Cryptographic Group Ac-
tion

In this section we propose a new multi-signature based on cryptographic group
actions. The intuition behind the scheme is to adapt the Multi Public Keys tech-
nique, described in Section 4.3.4 in the context of group action-based Σ-protocols,
to an interactive protocol in which the individual signer’s public keys are dis-
tributed among multiple parties. To prove the security of the multi-signature,
we consider a variant of the original Σ-protocol. Intuitively, this variant allows
the prover to artificially enlarge the challenge space using ephemeral keys in the
commitment phase. The resulting signature is inefficient for a direct application,
but it more accurately captures the perspective of the individual signer in the
multi-signature scheme. We show that from this variant it is possible to obtain a
secure signature by applying the Fiat-Shamir transform. This allows us to describe
a multi-signature scheme whose security can be formally reduced to the hardness
of the Group Action Inverse Problem.

In the following, we assume that in an interactive protocol between 𝑛 par-
ties 𝑃1,… ,𝑃𝑛 each party has access to point-to-point communication channels.
Moreover, when the interactive protocol is run by a party 𝑃𝑖, we write 𝑥 𝑃𝑗 to
denote the transmission of 𝑥 from 𝑃𝑖 to 𝑃𝑗. Similarly, we write 𝑥 𝑃𝑗 to denote a
transmission from 𝑃𝑗 to 𝑃𝑖 and the subsequent assignment to 𝑥.

5.2.1 Multi-Signatures
A multi-signature scheme 𝖬𝖲 is a tuple of four algorithms (𝖲𝖾𝗍𝗎𝗉,𝖪𝖦𝖾𝗇,𝖬𝗎𝖲𝗂𝗀𝗇,
𝖬𝗎𝖵𝗋𝖿𝗒).

• 𝖲𝖾𝗍𝗎𝗉(1𝜆): takes as input a security parameter 1𝜆 and outputs a public
parameter 𝗉𝗉.

• 𝖪𝖦𝖾𝗇(𝗉𝗉): takes as input a public parameter 𝗉𝗉 and generates a key pair
(𝗉𝗄, 𝗌𝗄).

130

5.2 – Multi-Signature from Cryptographic Group Action

Experiment 5.1: MS-UF-CMA𝖬𝖲
ℳ𝗌𝗂𝖽 is a machine running the instruction of the party 𝑃𝑖 in the multi-signature
protocol 𝖬𝗎𝖲𝗂𝗀𝗇(𝗌𝗂𝖽, 𝗌𝗄⋆, 𝗉𝗄⋆,𝑚,𝐿), where 𝐿 = (𝗉𝗄1,… , 𝗉𝗄𝑛) such that 𝗉𝗄𝑖 = 𝗉𝗄⋆.

1: 𝒬 ← ∅; 𝒮 ← ∅
2: 𝗉𝗉 ←$ 𝖲𝖾𝗍𝗎𝗉(𝜆)
3: (𝗉𝗄⋆, 𝗌𝗄⋆) ←$ 𝖪𝖦𝖾𝗇(𝗉𝗉)
4: (𝐿,𝑚,𝜎) ←$ 𝒜𝖮,𝖮𝖬𝗎𝖲𝗂𝗀𝗇(𝗉𝗄⋆)
5: if 𝗉𝗄⋆ ∉ 𝐿 ∨ (𝑚,𝐿) ∈ 𝒬 then
6: return ⊥
7: return 𝖬𝗎𝖵𝗋𝖿𝗒(𝐿,𝑚,𝜎)

𝖮𝖬𝗎𝖲𝗂𝗀𝗇(𝗌𝗂𝖽, 𝑚𝑠𝑔):
1: if 𝗌𝗂𝖽 ∉ 𝑆 then
2: (𝑚,𝐿) ← 𝑚𝑠𝑔
3: if 𝗉𝗄⋆ ∉ 𝐿 then
4: return ⊥
5: ℳ𝗌𝗂𝖽 ←$ 𝖬𝗎𝖲𝗂𝗀𝗇(𝗌𝗂𝖽, 𝗌𝗄⋆, 𝗉𝗄⋆,𝑚,𝐿)
6: 𝒬 ← 𝒬 ∪ {(𝑚,𝐿)}
7: 𝒮 ← 𝒮 ∪ {𝗌𝗂𝖽}
8: return ℳ𝗌𝗂𝖽()
9: return ℳ𝗌𝗂𝖽(𝑚𝑠𝑔)

• 𝖬𝗎𝖲𝗂𝗀𝗇(𝗌𝗂𝖽, 𝗌𝗄, 𝗉𝗄,𝑚,𝐿): is an interactive protocol that is run by a party 𝑃𝑖
taking as input a session ID 𝗌𝗂𝖽, a key pair (𝗉𝗄, 𝗌𝗄), a message to be signed
𝑚 and an ordered set of co-signers’ public keys 𝐿 = (𝗉𝗄1,… , 𝗉𝗄𝑛) such that
𝗉𝗄𝑖 = 𝗉𝗄. The protocol terminates with each party obtaining a signature 𝜎
as output.

• 𝖬𝗎𝖵𝗋𝖿𝗒(𝐿,𝑚,𝜎): takes as input an ordered set of public keys 𝐿, a message 𝑚
and a signature 𝜎 and returns 1 for acceptance or 0 for rejection.

Below, we show the definition of Multi-Signature existential Unforgeability
against Chosen-Message Attacks (MS-UF-CMA). In this model, the forger controls
all signers’ private keys except for at least one honest signer. The forger can
choose the keys of the rogue signers and adaptively query an aggregate signature
oracle. Finally, to win the experiment, the forger must produce a valid, non-trivial
multi-signature involving the public key of the honest signer. The security notion
is adapted from [69].

Definition 5.4 (MS-UF-CMA Security). Let 𝖮 be a random oracle, let 𝖬𝖲 =
(𝖲𝖾𝗍𝗎𝗉,𝖪𝖦𝖾𝗇,𝖬𝗎𝖲𝗂𝗀𝗇,𝖬𝗎𝖵𝗋𝖿𝗒) be a multi-signature scheme, and let 𝒜 be an ad-
versary. We define the advantage of 𝒜 playing the MS-UF-CMA game (Experi-
ment 5.1) against 𝖬𝖲 in the random oracle model as:

𝖠𝖽𝗏MS-UF-CMA
𝖬𝖲 (𝒜) = Pr[MS-UF-CMA𝖬𝖲(𝒜) = 1].

We say that 𝖬𝖲 is existential unforgeable against chosen-message attacks if the
advantage 𝖠𝖽𝗏MS-UF-CMA

𝖬𝖲 (𝒜) is negligible for any adversary 𝒜.

131

Aggregate and Multi-Signatures from Group Actions

5.2.2 Sigma Protocol Variant
In the following we present a variant of the base Σ-protocol for cryptographic
group action (Protocol 4.30), andweprove theEUF-CMA security of the associated
signature. The variant allows the signer to use ephemeral keys during signature
creation. Although this has no impact on security, the modified signature allows
the behaviour of an adversary to be abstracted more accurately in the multi-
signature protocol, and is therefore a useful tool in the security proof of the
upcoming scheme.

To prove the security of the modified signature we show that the underlying
Σ-protocol is a (quantum) proof of knowledge. We start by taking a simplified
variantΠ[𝑛], with a fixed number of 𝑛−1 ephemeral keys, showing that it is a proof
of knowledge roughly equivalent to the basic protocolΠ, with a higher knowledge
error. Next, we consider the full variant Π′ where the number of ephemeral keys
is chosen by the prover, and we show that we can use the knowledge extractor for
Π[𝑛] to extract a witness from a dishonest prover against the full variant, moreover
we show that this does not change the knowledge error of the protocol. Finally, we
show that if the base protocol Π is complete, has high min-entropy, and is HVZK,
thenΠ′ also has the same properties. We observe that these properties are required
in concrete applications to construct digital signatures from group actions, so we
make the same assumptions in the construction of the variant. Finally, we obtain
a secure signature scheme by applying the Fiat-Shamir transform.

Variant with fixed ephemeral keys

We start with a slight modification of the base Σ-protocol for a cryptographic
group action (𝐺,𝑋, ⋆), as detailed in Protocol 4.30. In the base protocol, to prove
the knowledge of a secret 𝑔1 ∈ 𝐺 such that 𝑥1 = 𝑔1 ⋆ 𝑥0, the prover proceeds
as follows: first, it samples a random ̃𝑔 ∈ 𝐺 and computes the commitment
as ̃𝑥 ← ̃𝑔 ⋆ 𝑥0. Then, they exhibit a path from either 𝑥0 or 𝑥1 to ̃𝑥 based on
the challenge of the verifier. Recall from Proposition 4.31, that this protocol is
complete, special-sound and honest-verifier zero-knowledge.

Given 𝑛 > 1, we denote with Π[𝑛] the variant Σ-protocol where the prover
additionally samples 𝑛 − 1 ephemeral keys ̂𝑥2,… , ̂𝑥𝑛 ∈ 𝑋 during the commitment
phase. The verifier can then request a path to ̃𝑥 from 𝑥0, 𝑥1 or one of the ephemeral
keys. The protocol is detailed in Algorithm 5.3. This procedure artificially in-
creases the challenge space to the set { 0,… ,𝑛 } and increases the knowledge error
to (𝑛 − 1)/𝑛. Clearly, this is a step back from the basic protocol, but it effectively
represents a protocol where all but one key is potentially under the control of an
adversary.

Following the proof of Proposition 4.31, it is straightforward to prove that
Π[𝑛] is a Σ-protocol.

132

5.2 – Multi-Signature from Cryptographic Group Action

Algorithm 5.3: Group Action Σ-Protocol with 𝑛 ephemeral keys
Setup: Group 𝐺 acting on 𝑋 via ⋆. Choose 𝑥0 ∈ 𝑋,𝑛 ∈ ℕ. Set ̂𝑥0 = 𝑥0, ̂𝑔0 = 𝑒.
Private key: 𝑔1 ∈ 𝐺.
Public key: 𝑥1 ← 𝑔1 ⋆ 𝑥0. Set ̂𝑥1 = 𝑥1.

Prover(𝑔1, 𝑥1) Verifier(𝑥1)
𝐟𝐨𝐫 𝑗 ← 2,… ,𝑛 𝐝𝐨

̂𝑔𝑗 ←$ 𝐺
̂𝑥𝑗 ← ̂𝑔𝑗 ⋆ 𝑥0

̃𝑔 ←$ 𝐺

̃𝑥 ← ̃𝑔 ⋆ 𝑥0 ̂𝑥2,… , ̂𝑥𝑛, ̃𝑥

𝖼𝗁 𝖼𝗁 ←$ [𝑛]

𝑧 ← ̃𝑔 ̂𝑔−1𝖼𝗁
𝑧

Accept if 𝑧 ⋆ ̂𝑥𝖼𝗁 = ̃𝑥

Proposition 5.5. Π[𝑛] is perfectly complete, (𝑛 + 1)-special-sound and honest-verifier
zero-knowledge.

Proof. We prove each property separately.

Completeness In an honest execution, the verifier receives 𝑧 = ̃𝑔 ̂𝑔−1
𝖼𝗁 . Complete-

ness easily follows since 𝑧 ⋆ ̂𝑥𝖼𝗁 = ̃𝑔 ̂𝑔−1
𝖼𝗁 ̂𝑔𝖼𝗁 ⋆ 𝑥0 = ̃𝑥.

(𝒏 + 𝟏)-Special Soundness Suppose the extractor has access to 𝑛 + 1 accepting
transcript (𝖼𝗈𝗆, 𝖼𝗁1, 𝑧1),… , (𝖼𝗈𝗆, 𝖼𝗁𝑛+1, 𝑧𝑛+1) with 𝖼𝗈𝗆 = (̂𝑥2,… , ̂𝑥𝑛, ̃𝑥) and
pairwise distinct challenges 𝖼𝗁1,… , 𝖼𝗁𝑛+1. It follows that there exists 𝑖, 𝑗 ∈
[𝑛 + 1] such that 𝖼𝗁𝑖 = 1 and 𝖼𝗁𝑗 = 0. Then it can run the special-soundness
extractor from Proposition 4.31 on (𝖼𝗈𝗆, 𝖼𝗁𝑖, 𝑧𝑖), (𝖼𝗈𝗆, 𝖼𝗁𝑗, 𝑧𝑗) to extract the
witness 𝑔1.

Honest-Verifier Zero-Knowledge A polynomial time simulator can be obtained
as follows. On input a public key 𝑥1 ∈ 𝑋, the simulator randomly samples
𝖼𝗁 ←$ { 0,… ,𝑛 } , 𝑧 ←$ 𝐺, and ̂𝑔2,… , ̂𝑔𝑛 ←$ 𝐺. Then it computes ̂𝑥𝑗 ← ̂𝑔𝑗 ⋆ 𝑥0
and ̃𝑥 ← 𝑧 ⋆ ̂𝑥𝖼𝗁. Finally, it returns the transcript (𝖼𝗈𝗆 = (̂𝑥2,… , ̂𝑥𝑛, ̃𝑥), 𝖼𝗁, 𝑧).
Notice that in the real distribution, ̂𝑥2,… , ̂𝑥𝑛 and ̃𝑥 are uniformly distributed
in the orbit of 𝑥0, 𝖼𝗁 is uniformly distributed in { 0,… ,𝑛 }, and 𝑧 ∈ 𝐺 is
uniquely determined by 𝑧 ⋆ ̂𝑥𝖼𝗁 = ̃𝑥. This is the same in the simulated
distribution.

133

Aggregate and Multi-Signatures from Group Actions

Since Π[𝑛] is (𝑛 + 1)-out-of-(𝑛 + 1) special-sound Σ-protocol, we can take
its parallel repetition and still obtain a proof of knowledge. In particular, by
applying Theorem 4.15, we obtain that the 𝑡-fold parallel repetition of Π[𝑛] is
knowledge-sound with knowledge error 𝑛𝑡/(𝑛 +1)𝑡. Moreover, the same approach
can be applied to show that the 𝑡-fold parallel repetition of Π[𝑛], with a single
sample of the ephemeral keys ̂𝑥2,… , ̂𝑥𝑛, is still knowledge-sound with knowledge
error 𝑛𝑡/(𝑛 + 1)𝑡.

Variant with variable ephemeral keys

Next, we further modify the protocol by allowing the prover to choose the number
of ephemeral keys to be generated. In the following, given a security parameter
𝜆, 𝑥0 is a fixed element in 𝑋, 𝑔0 = 𝑒𝐺 is the identity of 𝐺, and 𝑁 is a fixed positive
integer. Given 𝑛 ∈ ℕ, let 𝑡(𝑛) be the minimum positive integer such that (𝑛/(𝑛 +
1))𝑡(𝑛) ≤ 2−𝜆. Let 𝖢𝗁 ⊆ [0,𝑁]𝑡(𝑁) and 𝑓𝑛 ∶ 𝖢𝗁 → [0,𝑛]𝑡(𝑛) be a family of maps such
that 𝑓−1

𝑛 (𝒰([0,𝑛]𝑡(𝑛))) ∼ 𝒰(𝖢𝗁) for any 𝑛 ∈ [1,𝑁].

Protocol 5.6 (Group Action Σ-protocol with Ephemeral Keys). Given the public
parameters 𝗉𝗉 = (𝐺,𝑋, ⋆, 𝑥0, 𝑔0,𝑁,𝖢𝗁, {𝑓𝑛}), the protocol proceeds as follows:

• (𝑔1, 𝑥1) ←$ 𝖦𝖾𝗇(𝗉𝗉): the key-generation algorithm takes as input the public
parameters 𝗉𝗉. It uniformly samples 𝑔1 ∈ 𝐺 and computes 𝑥1 ← 𝑔1 ⋆ 𝑥0. It
returns the witness-statement pair (𝑥1, 𝑔1).

• 𝖼𝗈𝗆 ←$ 𝖯1(𝑔1, 𝑥1): given a statement 𝑥1 ∈ 𝑋 and the corresponding wit-
ness 𝑔1 ∈ 𝐺, the prover chooses 𝑛 ∈ [1,𝑁]. Then, it uniformly samples
̂𝑔𝑘 and computes ̂𝑥𝑘 ← ̂𝑔𝑘 ⋆ 𝑥0 for 𝑘 ∈ [2,𝑛]. Then, it uniformly sam-
ples ̃𝑔 (𝑗) and computes ̃𝑥(𝑗) ← ̃𝑔 (𝑗) ⋆ 𝑥0 for 𝑗 ∈ [1, 𝑡(𝑛)]. Finally, it returns
𝖼𝗈𝗆 ← (̂𝑥2,… , ̂𝑥𝑛, ̃𝑥(1),… , ̃𝑥(𝑡(𝑛))).

• 𝖼𝗁 ←$ 𝖵1(𝖼𝗈𝗆): given a commitment 𝖼𝗈𝗆, the verifier returns a uniformly
random challenge 𝖼𝗁 ∈ 𝖢𝗁.

• 𝗋𝗌𝗉 ← 𝖯2(𝑔1, 𝑥1, 𝖼𝗈𝗆, 𝖼𝗁): given a statement 𝑥1, the corresponding witness
𝑔1, a commitment 𝖼𝗈𝗆 = (̂𝑥, ̃𝑥) and a challenge 𝖼𝗁 ∈ 𝖢𝗁, the prover sets
̂𝑔1 = 𝑔1, ̂𝑥1 = 𝑥1 and computes 𝖼𝗁′ ← 𝑓𝑛(𝖼𝗁). Then, for each component

𝖼𝗁′𝑗 ∈ [0,𝑛] of 𝖼𝗁′, they compute a response 𝑧𝑗 ← ̃𝑔 (𝑗) ̂𝑔−1
𝖼𝗁′𝑗

for 𝑗 ∈ [1, 𝑡(𝑛)].
Finally, they output 𝗋𝗌𝗉 ← (𝑧1,… , 𝑧𝑡(𝑛)).

• {0,1} ← 𝖵2(𝑥1, 𝖼𝗈𝗆, 𝖼𝗁, 𝗋𝗌𝗉): given a statement 𝑥1 ∈ 𝑋, a commitment 𝖼𝗈𝗆 =
(̂𝑥, ̃𝑥), a challenge 𝖼𝗁 and a response 𝗋𝗌𝗉 = (𝑧1,… , 𝑧𝑡(𝑛)), the verifier proceeds
as follows. They compute 𝖼𝗁′ ← 𝑓𝑛(𝖼𝗁) and set ̂𝑥1 = 𝑥1. Then, for each
𝑗 ∈ [1, 𝑡(𝑛)], compute ̃𝑦(𝑗) ← 𝑧𝑗 ⋆ ̂𝑥𝖼𝗁′𝑗. The verifier accepts (returns 1) if ̃𝑦 = ̃𝑥,
otherwise rejects (returns 0).

134

5.2 – Multi-Signature from Cryptographic Group Action

We denote Protocol 5.6 with Π′. Following the proof of Proposition 5.5, it is
straightforward to prove that Π′ is complete and HVZK, where the latter follows
by modifying the simulator of Π[𝑛] so that it randomly samples 𝑛 ←$ { 1,… ,𝑁}.
Additionally, we show that Π′ is a proof of knowledge. On a high level, we
show that any dishonest prover 𝒫∗ attacking Π′ can be used to build a prover 𝒫∗

𝑛
against Π[𝑛]𝑡(𝑛) with the same success probability of 𝒫∗. Since Π[𝑛]𝑡(𝑛) is a proof
of knowledge, it is possible to extract the witness from 𝒫∗

𝑛.
InΠ′, the challenge space 𝖢𝗁 is taken together with a family of surjective maps

𝑓𝑛 ∶ 𝖢𝗁 → [0,𝑛]𝑡(𝑛) such that 𝑓−1
𝑛 (𝒰([0,𝑛]𝑡(𝑛))) ∼ 𝒰(𝖢𝗁). Let 𝒫∗ be a deterministic

prover1 attacking Π′ on input 𝑥1. More precisely, on input 𝑐 ∈ 𝖢𝗁, 𝒫∗ outputs
a fixed first message 𝑎 and its response 𝑧. We define 𝑉∶ 𝖢𝗁 × {0,1}∗ → {0,1}
the function that runs the verification check that the verifier performs on the
transcript (𝑎, 𝑐, 𝑧). 𝒫∗ is successful on input 𝑐 if 𝑉(𝑐,𝒫∗(𝑐)) = 1. Since 𝒫∗ is
deterministic, the number of ephemeral keys 𝑛 is fixed and known from the first
message 𝑎. Then, such a prover naturally induces a (probabilistic) prover 𝒫∗

𝑛
attacking Π[𝑛]𝑡(𝑛). More precisely, on input 𝑐′ ∈ [0,𝑛]𝑡(𝑛), 𝒫∗

𝑛 randomly samples
𝑐 ←$ 𝑓−1

𝑛 (𝑐′), runs 𝑧 ← 𝒫∗(𝑐), and outputs 𝑧. Since Π[𝑛]𝑡(𝑛) is knowledge-sound,
we can use the protocol extractor on 𝒫∗

𝑛 and estimate its success probability with
respect to the success probability of 𝒫∗.

We know that the knowledge error for Π[𝑛]𝑡(𝑛) is 𝜅𝑡(𝑛)
𝑛 with 𝜅𝑛 = 𝑛/(𝑛 + 1).

Then, given access to 𝒫∗
𝑛, the extractor for Π[𝑛]𝑡(𝑛) succeeds with probability at

least (𝜀(𝑥1,𝒫∗
𝑛)−𝜅𝑡(𝑛))/𝗉𝗈𝗅𝗒(|𝑥1|). To conclude, it is enough to show that the success

probability of 𝒫∗
𝑛 is the same as for 𝒫∗:

𝜀(𝑥1,𝒫∗
𝑛) = Pr𝑐′←$[0,𝑛]𝑡(𝑛)[𝑉(𝑐,𝒫∗

𝑛(𝑐′)) = 1]
= Pr𝑐′←$[0,𝑛]𝑡(𝑛)[𝑉(𝑐,𝒫∗(𝑐)) = 1 ∣ 𝑐 ←$ 𝑓−1

𝑛 (𝑐′)]
= Pr𝑐←$𝖢𝗁[𝑉(𝑐,𝒫∗(𝑐)) = 1] = 𝜀(𝑥1,𝒫∗).

Therefore, the probability that the extractor on 𝒫∗ is successful is at least

𝜀(𝑥1,𝒫∗) − 𝜅𝑡(𝑛)
𝑛

𝗉𝗈𝗅𝗒(|𝑥1|)
.

The previous holds for any prover 𝒫∗ with 𝑛 ephemeral keys. Moreover, by
taking 𝑛 = 𝑁, it holds for any dishonest prover against Π′. Therefore, Π′ is a
knowledge-sound Σ-protocol.

1In the proof of Proposition 4.14, we have observed how it is always possible to reduce to a
deterministic prover.

135

Aggregate and Multi-Signatures from Group Actions

Algorithm 5.4: Variant Signature Scheme based on Group Actions
⋆ ∶ 𝐺 × 𝑋 → 𝑋 is a cryptographic group action. 𝖧(𝑛) ∶ {0,1}∗ → [0,𝑛]𝑡(𝑛) is a random
oracle.

𝖲𝖾𝗍𝗎𝗉(1𝜆):
1: 𝑥0 ←$ 𝑋
2: 𝗉𝗉 ← 𝑥0
3: return 𝗉𝗉

𝖪𝖦𝖾𝗇(𝗉𝗉 = 𝑥0):
1: 𝑔1 ←$ 𝐺
2: 𝑥1 ← 𝑔1 ⋆ 𝑥0
3: return (𝗉𝗄 = 𝑥1, 𝗌𝗄 = 𝑔1)

𝖵𝗋𝖿𝗒(𝗉𝗄 = ̂𝑥1, 𝑚, 𝜎):
1: (𝐿, ̃𝑥, 𝑧1,… , 𝑧𝑡(𝑛)) ← 𝜎
2: (̂𝑥2,… , ̂𝑥𝑛) ← 𝐿
3: 𝖼𝗁 ← 𝖧(𝑛)(𝐿, ̃𝑥,𝑚)
4: for 𝑗 ← 1,… , 𝑡(𝑛) do
5: ̃𝑥′𝑗 ← 𝑧𝑗 ⋆ ̂𝑥𝖼𝗁𝑗
6: ̃𝑥′ ← (̃𝑥′1,… , ̃𝑥′𝑡(𝑛))
7: return ̃𝑥′ = ̃𝑥

𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗉𝗄, 𝑚, 𝑛):
1: ̂𝑥0 ← 𝑥0; ̂𝑔0 ← 𝑒
2: ̂𝑥1 ← 𝗉𝗄; ̂𝑔1 ← 𝗌𝗄
3: for 𝑘 ← 2,… ,𝑛 do
4: ̂𝑔𝑘 ←$ 𝐺
5: ̂𝑥𝑘 ← ̂𝑔𝑘 ⋆ 𝑥0
6: 𝐿 ← (̂𝑥2,… , ̂𝑥𝑛)
7: for 𝑗 ← 1,… , 𝑡(𝑛) do
8: ̃𝑔 (𝑗) ←$ 𝐺
9: ̃𝑥(𝑗) ← ̃𝑔 (𝑗) ⋆ 𝑥0

10: ̃𝑥 ← (̃𝑥(1),… , ̃𝑥𝑡(𝑛))
11: 𝖼𝗁 ← 𝖧(𝑛)(𝐿, ̃𝑥,𝑚)
12: for 𝑗 ← 1,… , 𝑡(𝑛) do
13: 𝑧𝑗 ← ̃𝑔 (𝑗) ̂𝑔−1𝖼𝗁𝑗

14: return 𝜎 ← (𝐿, ̃𝑥, 𝑧1,… , 𝑧𝑡(𝑛))

Application of the Fiat-Shamir transform

By applying the Fiat-Shamir transform to the protocol Π′, we obtain a digital
signature scheme 𝖥𝖲[Π′]. Notice that Π′ is not commitment-recoverable, so that
the signature is obtained by taking the transcript ofΠ′ without the challenge. The
challenge can be recovered as the digests of a hash function 𝖧 on the commitment
𝖼𝗈𝗆 and the message 𝑚. In the signature scheme, instead of computing 𝑓𝑛 on
the output of 𝖧, we can consider an additional argument for the hash function
and write 𝖧(𝑛) = 𝖧(𝑛, ⋅) ∶ {0,1}∗ → [0,𝑛]𝑡(𝑛). Notice that this description still falls
within the random oracle model and can be instantiated, for instance, by using an
extendable-output function (XOF). The full description of the signature scheme
can be found in Algorithm 5.4.

Theorem 5.7. Let Π′ be as in Protocol 5.6 for a cryptographic group action (𝐺,𝑋, ⋆)
with base element 𝑥0. If no polynomial-time (quantum) adversary can solve the GAIP
(Definition 4.26) and the Stabilizer Computation Problem (Definition 4.29) for 𝑥0
except with a negligible probability, then 𝖥𝖲[Π′] (Algorithm 5.4) is strong EUF-CMA
in the (quantum) random oracle model.

Proof. To prove the (strong) EUF-CMA security of the signature scheme, we apply

136

5.2 – Multi-Signature from Cryptographic Group Action

𝑥0

𝑥1𝑥𝑛 …

̃𝑥(1)

̃𝑥(𝑛−1)

̃𝑥

𝑔1𝑔𝑛

̃𝑔 (1)

̃𝑔 (𝑛)

Figure 5.1: High-level description of 𝖬𝖲-𝖦𝖠 scheme of Algorithm 5.5, answering
on 𝖼𝗁 = 1. 𝑃1 reveals the map from 𝑥1 to ̃𝑥(1), while all other parties reveal the
ephemeral group element ̃𝑔 (𝑗).

Theorem 4.20 on 𝖥𝖲[Π′]. We already proved that the Σ-protocol Π′ is complete,
HVZK, and knowledge-sound. It remains to prove that it has computational
unique responses. From Lemma 4.32, we know that the base protocol Π (Pro-
tocol 4.30) has computational unique responses if and only if the Stabilized
Computation Problem for 𝑥0 is computationally hard. It is easy to see that since
the sigma protocol Protocol 4.30 has computational unique responses, also the
sigma protocol variantsΠ′ has computational unique responses. The proof follows
as in Corollary 4.33.

5.2.3 The Multi-Signature Scheme
In this section, we present a multi-signature scheme based on cryptographic
group actions, for which the key pair used by the signing parties are compatible
with the key pairs of standard digital signatures based on group actions presented
in Section 4.2.3.

The multi-signature scheme is designed in a way that it closely resembles the
centralized digital signature scheme described in the previous section. In fact, in
the multi-signature that we present in this section, the ephemeral signing keys
used in the centralized signature in Algorithm 4.3 are replaced by the signing
keys of the other parties taking part in the signing process. We recall that the
centralized signature in Algorithm 4.3 is not efficient in any way, but it is un-
forgeable under chosen message attacks. In the security analysis, we will reduce
the security of the multi-signature scheme, according to Definition 5.4, to the
unforgeability of the centralized digital signature.

At a high level, the multi-signature signing algorithm that we present instructs
each party in the signing set to perform the following operations. Suppose 𝐿 is an
ordered signing set of 𝑛 users 𝑃1,… ,𝑃𝑛. Each party 𝑃𝑖 in 𝐿 randomly generates

137

Aggregate and Multi-Signatures from Group Actions

a salt 𝑟𝑖, which will be used to generate a shared randomness associated to the
signing session, and contributes to the creation of the sigma protocol commitment
̃𝑥. In particular, the parties in 𝐿 perform the following operations in a round-robin

fashion:

1. 𝑃𝑖 commits to a random salt 𝑟𝑖, by computing 𝖼𝗈𝗆𝑖, a commitment which
binds 𝑟𝑖 also to the commitments of the parties acting before 𝑃𝑖 in the ordered
set 𝐿2;

2. 𝑃𝑖 contributes in the generation of the sigma protocol commitment ̃𝑥 by
generating 𝑡(𝑛) group elements ̃𝑔 (𝑖) = (̃𝑔 (𝑖)

1 ,… , ̃𝑔 (𝑖)
𝑡(𝑛)) and using them to com-

pute the partial commitment in ̃𝑥(𝑖) starting from the partial commitment it
received from the party acting before it, namely ̃𝑥(𝑖−1).

Then 𝑃𝑖 sends to 𝑃𝑖+1 the cryptographic commitment 𝖼𝗈𝗆𝑖 and the sigma protocol
partial commitments ̃𝑥(𝑖). The same operations are repeated by each party, until
the last signing party 𝑃𝑛, who broadcasts its commitment 𝖼𝗈𝗆𝑛 and ̃𝑥 = ̃𝑥(𝑛). Then,
all the parties reveal their randomness 𝑟𝑖 and check that the cryptographic com-
mitments have been honestly computed. If this is the case, each party computes
the shared randomness 𝑟 ← 𝖧1(𝑟1,… , 𝑟𝑛) which acts as a session identifier. Using
the shared randomness 𝑟 and the commitment ̃𝑥, the parties generate the challenge
𝖼𝗁 ← 𝖧(𝑛)

2 (̃𝑥, 𝑟,𝐿,𝑚), a string of 𝑡(𝑛) elements in {0,1,… ,𝑛}. In the response phase,
a challenge 𝖼𝗁𝑗 = 𝑖 ≠ 0 requires revealing a map from 𝑥𝑖, the public key of 𝑃𝑖 to
̃𝑥𝑗 = ̃𝑥(𝑛)𝑗 . Each party 𝑃𝑘, for 𝑘 ≠ 𝑖, reveals the ephemeral group element ̃𝑔 (𝑘)

𝑗 . 𝑃𝑖
then computes the response as

𝑧𝑗 = (
𝑛−1

∏
𝑘=0

̃𝑔 (𝑛−𝑘)
𝑗)𝑔−1

𝑖 .

Otherwise, if 𝖼𝗁𝑗 = 0 then the response is the group element mapping the base
point 𝑥0 to ̃𝑥𝑖. Each party reveals the ephemeral group element ̃𝑔 (𝑘)

𝑗 and the
response is computed as

𝑧𝑗 = (
𝑛−1

∏
𝑘=0

̃𝑔 (𝑛−𝑘)
𝑗). (5.1)

In the latter case, it is agreed that the calculation of 𝑧𝑗 is entrusted to the last user
𝑃𝑛. A high-level description of the multi-signature scheme is shown in Figure 5.1
for 𝖼𝗁 = 1. The full description of the protocol is given in Algorithm 5.5.

2Binding the commitment to 𝑟𝑖 to the commitments of the previous salts is useful to avoid
broadcasting each commitment to each party. The only commitment that must be broadcast and
seen by every party is 𝖼𝗈𝗆𝑛, which is a commitment to all the salts 𝑟1,… , 𝑟𝑛.

138

5.2 – Multi-Signature from Cryptographic Group Action

Algorithm 5.5: Multi-Signature from Group Action (𝖬𝖲-𝖦𝖠[⋆])
⋆ ∶ 𝐺×𝑋 → 𝑋 is a cryptographic group action. The random oracles are𝖧0 ∶ {0,1}∗ →
{0,1}2𝜆,𝖧1 ∶ {0,1}∗ → {0,1}ℓ𝗌𝖺𝗅𝗍 and 𝖧(𝑛)

2 ∶ {0,1}∗ → [0,𝑛]𝑡(𝑛). During the execution of
𝖬𝗎𝖲𝗂𝗀𝗇, each party maintains a list of active session identifiers in a list 𝒮.

𝖲𝖾𝗍𝗎𝗉(1𝜆):
1: 𝑥0 ←$ 𝑋
2: 𝗉𝗉 ← 𝑥0
3: return 𝗉𝗉

𝖪𝖦𝖾𝗇(𝗉𝗉 = 𝑥0):
1: 𝑔 ←$ 𝐺
2: 𝑥 ← 𝑔 ⋆ 𝑥0
3: return (𝗉𝗄 = 𝑥, 𝗌𝗄 = 𝑔)

𝖬𝗎𝖵𝗋𝖿𝗒(𝐿, 𝑚, 𝜎):
1: (𝑥1,… , 𝑥𝑛) ← 𝐿
2: (𝖼𝗁, 𝑟, 𝑧1,… , 𝑧𝑡(𝑛)) ← 𝜎
3: for 𝑗 ← 1,… , 𝑡(𝑛) do
4: ̃𝑥𝑗 ← 𝑧𝑗 ⋆ 𝑥𝖼𝗁𝑗
5: ̃𝑥 ← (̃𝑥1,… , ̃𝑥𝑡(𝑛))
6: if 𝖧(𝑛)

2 (̃𝑥, 𝑟,𝐿,𝑚) = 𝖼𝗁 then
7: return 1
8: else
9: return 0

𝖬𝗎𝖲𝗂𝗀𝗇(𝗌𝗂𝖽, 𝗌𝗄, 𝗉𝗄, 𝑚, 𝐿):
1: (𝗉𝗄1,… , 𝗉𝗄𝑛) ← 𝐿
2: if 𝗌𝗂𝖽 ∈ 𝒮 ∨ ∄𝑖 ∶ 𝗉𝗄𝑖 = 𝗉𝗄 then
3: return ⊥
4: Set 𝑖 such that 𝗉𝗄𝑖 = 𝗉𝗄

5: 𝒮 ← 𝒮 ∪ {𝗌𝗂𝖽}
6: 𝑥𝑖 ← 𝗉𝗄; 𝑔𝑖 ← 𝗌𝗄
7: 𝑟𝑖 ←$ {0,1}ℓ𝗌𝖺𝗅𝗍
8: 𝖼𝗈𝗆𝑖−1, ̃𝑥(𝑖−1) 𝑃𝑖−1 ▹

𝖼𝗈𝗆0 = 𝜀, ̃𝑥(0)𝑗 = 𝑥0
9: 𝖼𝗈𝗆𝑖 ← 𝖧0(𝖼𝗈𝗆𝑖−1, 𝑟𝑖)

10: ̃𝑔 (𝑖) ←$ 𝐺𝑡(𝑛)

11: ̃𝑥(𝑖) ← [̃𝑔 (𝑖)𝑗 ⋆ ̃𝑥(𝑖−1)𝑗]𝑗∈[𝑡(𝑛)]
12: ̃𝑥(𝑖), 𝖼𝗈𝗆𝑖 𝑃𝑖+1
13: ̃𝑥 ← (̃𝑥(𝑛)1 ,… , ̃𝑥(𝑛)𝑡(𝑛)) ▹ If 𝑖 = 𝑛 send to

each party
14: 𝑟𝑖 𝑃𝑘, 𝑟𝑘 𝑃𝑘,∀𝑘 ≠ 𝑖
15: if ∃𝑗 ∶ 𝖼𝗈𝗆𝑗 ≠ 𝖧0(𝖼𝗈𝗆𝑗−1, 𝑟𝑗) then
16: return ⊥
17: 𝑟 ← 𝖧1(𝑟1,… , 𝑟𝑛)
18: 𝖼𝗁 ← 𝖧(𝑛)

2 (̃𝑥, 𝑟,𝐿,𝑚)
19: for 𝑗 ← 1,… , 𝑡(𝑛) do
20: if 𝖼𝗁𝑗 = 𝑖 ∨ (𝖼𝗁𝑗 = 0 ∧ 𝑖 = 𝑛) then
21: ̃𝑔 (𝑘)𝑗 𝑃𝑘,∀𝑘 ≠ 𝑖
22: 𝑧𝑗 ← (∏𝑛−1

𝑘=0 ̃𝑔 (𝑛−𝑘)𝑗)𝑔−1𝖼𝗁𝑗 ▹ 𝑔0 = 𝑒𝐺
23: 𝑧𝑗 𝑃𝑘,∀𝑘 ≠ 𝑖
24: else
25: ̃𝑔 (𝑖)𝑗 𝑃𝖼𝗁𝑗
26: 𝑧𝑗 𝑃𝖼𝗁𝑗
27: 𝜎 ← (𝖼𝗁, 𝑟, 𝑧1,… , 𝑧𝑡(𝑛))

5.2.4 Security Proof
In the following, we prove the MS-UF-CMA security of the protocol in Algo-
rithm 5.5. In particular, we reduce security to the EUF-CMA of the centralized
signature variant described in Section 5.2.2.

Theorem 5.8. Let ⋆ ∶ 𝐺 × 𝑋 → 𝑋 be a cryptographic group action and let Π′ be
as in Protocol 5.6. Let 𝒜 be a MS-UF-CMA adversary against 𝖬𝖲-𝖦𝖠[⋆] in the
random oracle model which makes 𝗊𝖲 signing queries, 𝗊𝖧 queries to the random oracles
𝖧0,𝖧1,𝖧2. Then, there exists a EUF-CMA adversary ℬ against 𝖥𝖲[Π′] issuing 𝗊𝖲

139

Aggregate and Multi-Signatures from Group Actions

signing queries and 𝗊𝖧 queries to the random oracle 𝖧′, such that

𝖠𝖽𝗏MS-UF-CMA
𝖬𝖲-𝖦𝖠[⋆] (𝒜) ≤ 𝖠𝖽𝗏EUF-CMA

𝖥𝖲[Π′] (ℬ) +
𝗊𝖲(𝗊𝖧 + 𝗊𝖲)

2ℓ𝗌𝖺𝗅𝗍
+
2𝗊𝖲𝗊𝖧
2ℓ𝖬

,

and the running time of ℬ is about that of 𝒜.

Proof. In the following, we denote the random oracles and the signing oracle in
the MS-UF-CMA game as 𝖧0,𝖧1,𝖧2 and 𝖮𝖬𝗎𝖲𝗂𝗀𝗇. The EUF-CMA adversary ℬ
has access to a signing oracle 𝖮𝖲𝗂𝗀𝗇 of the 𝖥𝖲[Π′] and an outer random oracle 𝖧′.
After receiving the target public key 𝗉𝗄⋆ in the EUF-CMA game, ℬ forwards 𝗉𝗄⋆
to 𝒜.

At a high level, we show that controlling 𝑛−1 users in the multi-signature is no
better than choosing 𝑛 − 1 ephemeral keys in the centralized signature. We show
that ℬ can simulate 𝖮𝖬𝗎𝖲𝗂𝗀𝗇 by querying 𝖮𝖲𝗂𝗀𝗇 and programming the random
oracle 𝖧2 with the challenges provided by the outer random oracle 𝖧′. During a
query to 𝖮𝖬𝗎𝖲𝗂𝗀𝗇, the adversary may choose the value of the commitment ̃𝑥 of
the sigma protocol by controlling the last user. However, the adversary can not
control the value of the shared salt 𝑟, and ℬ is able to program the random oracle
𝖧2 before the adversary learns the value of 𝑟. In this way, the manipulation of
the final commitment cannot influence the challenge and be exploited in parallel
sessions.

The main focus of the reduction concerns the simulation of the random oracle
𝖧2. After receiving a query containing the target public key among the partic-
ipants’ keys, ℬ queries the outer random oracle 𝖧′ and reprograms 𝖧2 with a
permutation of the received challenge. When 𝒜 produces a valid signature, ℬ
will be able to map it into a signature for the centralized scheme using the keys
of the users controlled by 𝒜 as ephemeral keys.

In the following, we make the simplified assumption that before 𝒜 outputs
a forged signature, it makes a query on 𝖧2, as would be done during signature
verification. Moreover, we assume that 𝒜 always outputs a valid signature, and
halts by returning ⊥ otherwise. Notice that we can always modify 𝒜 to behave
this way by running the verification algorithm on the provided signature, and
checking that the message provided was not queried to the signing oracle with
the same set of signers.

More in detail, we prove the reduction by presenting a sequence of hybrid
games, modifying the MS-UF-CMA game (Experiment 5.1) until it can be simu-
lated by the EUF-CMA adversary ℬ against the centralized signature 𝖥𝖲[Π′]. In
the following, we use the notation Pr[𝖦𝖺𝗆𝖾𝗇(𝒜) = 1] to denote the probability
that 𝖦𝖺𝗆𝖾𝗇 returns 1 when played by 𝒜. The complete reduction is described in
Algorithm 5.6.

140

5.2 – Multi-Signature from Cryptographic Group Action

Algorithm 5.6: Full Reduction EUF-CMA ⟹ MS-UF-CMA

ℬ(𝗉𝗄⋆):
1: 𝒬 ← ∅; 𝒮 ← ∅; ℳ ← ∅
2: (𝐿,𝑚,𝜎) ←$ 𝒜𝖮,𝖮𝖬𝗎𝖲𝗂𝗀𝗇(𝗉𝗄⋆)
3: (𝑥1,… , 𝑥𝑛) ← 𝐿
4: (𝖼𝗁, 𝑟, 𝑧1,… , 𝑧𝑡(𝑛)) ← 𝜎
5: if 𝖬𝗎𝖵𝗋𝖿𝗒(𝐿,𝑚,𝜎) ∧ ∃𝑖 ∶ (𝑥𝑖 = 𝑥⋆ ∧

(𝑚,𝐿) ∉ 𝒬) then
6: Recover ̃𝑥 as in 𝖬𝗎𝖵𝗋𝖿𝗒
7: 𝑚′ ← 𝖬𝖳[̃𝑥, 𝑟,𝐿,𝑚]
8: if 𝑚′ ∈ ℳ then
9: raise 𝖻𝖺𝖽𝗆𝖼𝗈𝗅

10: 𝐿′ ← 𝜋1,𝑖(𝐿)[2 ∶]
11: 𝜎′ ← (𝐿′, ̃𝑥, 𝑧1,… , 𝑧𝑡(𝑛))
12: return (𝑚′,𝜎′)

𝖧0(𝑟):
1: if 𝖧𝖳0[𝑟] = ⊥ then
2: 𝖼𝗈𝗆 ←$ {0,1}2𝜆
3: 𝖧𝖳0[𝑟] ← 𝖼𝗈𝗆
4: return 𝖧𝖳0[𝑟]

𝖧1(𝑄):
1: if 𝖧𝖳1[𝑄] = ⊥ then
2: 𝑟 ←$ {0,1}2𝜆
3: 𝖧𝖳1[𝑄] ← 𝑟
4: return 𝖧𝖳1[𝑄]

𝖧2(𝑄 = (̃𝑥, 𝑟,𝐿,𝑚)):
1: if 𝖧𝖳2[𝑄] ≠ ⊥ then
2: return 𝖧𝖳2[𝑄]
3: 𝐿 ← (𝑥1,… , 𝑥𝑛)
4: if ∄𝑖 such that 𝑥𝑖 = 𝗉𝗄⋆ then
5: 𝖼𝗁 ←$ 𝖢𝗁
6: else
7: 𝐿′ ← 𝜋1,𝑖(𝐿)[2 ∶]
8: 𝑚′ ←$ 𝖬
9: 𝖼𝗁ℬ ← 𝖧′(𝐿′, ̃𝑥,𝑚′)

10: 𝖼𝗁 ← 𝜋1,𝑖(𝖼𝗁ℬ)
11: 𝖬𝖳[𝑄] ← 𝑚′

12: 𝖧𝖳2[𝑄] ← 𝖼𝗁
13: return 𝖼𝗁

𝖮𝖬𝗎𝖲𝗂𝗀𝗇(𝗌𝗂𝖽,(𝑚,𝐿)):
1: 𝒬 ← 𝒬 ∪ {(𝑚,𝐿)}

2: (𝑥1,… , 𝑥𝑛) ← 𝐿
3: if 𝗌𝗂𝖽 ∈ 𝑆 ∨ ∄𝑖 ∶ 𝑥𝑖 = 𝑥⋆ then
4: return ⊥
5: 𝒮 ← 𝒮 ∪ {𝗌𝗂𝖽}
6: 𝑚′ ←$ 𝖬
7: ℳ ← ℳ ∪ {𝑚′}
8: (𝖼𝗈𝗆ℬ, 𝑧ℬ1 ,… , 𝑧ℬ𝑡(𝑛)) ←$ 𝖮𝖲𝗂𝗀𝗇(𝑚′)
9: (̂𝑥ℬ2 ,… , ̂𝑥ℬ𝑛 , ̃𝑥ℬ1 ,… , ̃𝑥ℬ𝑡(𝑛)) ← 𝖼𝗈𝗆ℬ

10: 𝖼𝗁ℬ ← 𝜋1,𝑖(𝖧′(𝖼𝗈𝗆ℬ,𝑚′))
11: 𝑟𝑖 ←$ {0,1}𝜆
12: 𝖼𝗈𝗆𝑖−1, ̃𝑥(𝑖−1) 𝑃𝑖−1 ▹

𝖼𝗈𝗆0 = 𝜀, ̃𝑥(0)𝑗 = 𝑥0
13: 𝖼𝗈𝗆𝑖 ← 𝖧0(𝖼𝗈𝗆𝑖−1, 𝑟𝑖)
14: for 𝑗 ← 1,… , 𝑡(𝑛) do
15: if 𝖼𝗁ℬ𝑗 ≠ 𝑖 then
16: ̃𝑔 (𝑖)𝑗 ←$ 𝐺
17: ̃𝑥(𝑖)𝑗 ← ̃𝑔 (𝑖)𝑗 ⋆ ̃𝑥(𝑖−1)𝑗
18: else
19: ̃𝑥(𝑖)𝑗 ← ̃𝑥ℬ𝑗
20: ̃𝑥(𝑖), 𝖼𝗈𝗆𝑖 𝑃𝑖+1
21: ̃𝑥 ← (̃𝑥(𝑛)1 ,… , ̃𝑥(𝑛)𝑡(𝑛))
22: Retrieve 𝑟𝑘 such that𝖧𝖳0[𝖼𝗈𝗆𝑘−1, 𝑟𝑘] =

𝖼𝗈𝗆𝑘,∀𝑘 ≠ 𝑖
23: 𝑟 ← 𝖧1(𝑟1,… , 𝑟𝑛)
24: if 𝖧𝖳2[̃𝑥, 𝑟,𝐿,𝑚] ≠ ⊥ then
25: raise 𝖻𝖺𝖽𝗁𝖼𝗈𝗅
26: 𝖧𝖳2[̃𝑥, 𝑟,𝐿,𝑚] ← 𝖼𝗁ℬ
27: 𝑟𝑖 𝑃𝑘, ̄𝑟𝑘 𝑃𝑘,∀𝑘 ≠ 𝑖
28: if ∃𝑗 ∶ ̄𝑟𝑗 ≠ 𝑟𝑗 then
29: return ⊥
30: for 𝑗 ← 1,…𝑡(𝑛) do
31: if 𝖼𝗁𝑗 = 𝑖 then
32: ̃𝑔 (𝑘)𝑗 𝑃𝑘,∀𝑘 ≠ 𝑖
33: 𝑧𝑗 ← (∏𝑛−(𝑖+1)

𝑘=0 ̃𝑔 (𝑛−𝑘)𝑗)𝑧ℬ𝑗
34: 𝑧𝑗 𝑃𝑘,∀𝑘 ≠ 𝑖
35: else if 𝖼𝗁𝑗 = 0 ∧ 𝑖 = 𝑛 then

36: ̃𝑔 (𝑘)𝑗 𝑃𝑘,∀𝑘 ≠ 𝑖
37: 𝑧𝑗 ← (∏𝑛−1

𝑘=0 ̃𝑔 (𝑛−𝑘)𝑗)
38: 𝑧𝑗 𝑃𝑘,∀𝑘 ≠ 𝑖
39: else
40: ̃𝑔 (𝑖)𝑗 𝑃𝖼𝗁𝑗

141

Aggregate and Multi-Signatures from Group Actions

𝖦𝖺𝗆𝖾𝟢 This is the initial strongMS-UF-CMA game against the𝖬𝖲-𝖦𝖠[⋆] scheme,
except that it uses programmable random oracles. At the start of the game,
the challenger initializes three tables, 𝖧𝖳0,𝖧𝖳1,𝖧𝖳2 for 𝖧0,𝖧1,𝖧2, respec-
tively. When a query𝑄 for𝖧0 is received, if𝖧𝖳0[𝑄] = ⊥ it uniformly samples
𝖼𝗈𝗆 ←$ {0,1}2𝜆 and stores𝖧𝖳0[𝑄] ← 𝖼𝗈𝗆, finally it returns𝖧𝖳0[𝑄] (similarly
for 𝖧1 and 𝖧2). It follows that Pr[𝖦𝖺𝗆𝖾𝟢(𝒜) = 1] = 𝖠𝖽𝗏MS-UF-CMA

𝖬𝖲-𝖦𝖠[⋆] (𝒜).

𝖦𝖺𝗆𝖾𝟣 This game is identical to 𝖦𝖺𝗆𝖾𝟢, except that 𝖮𝖬𝗎𝖲𝗂𝗀𝗇 aborts by raising
𝖻𝖺𝖽𝗁𝖼𝗈𝗅 when the following happens: being ̃𝑥 the commitment and 𝑟 ←
𝖧1(𝑟1,… , 𝑟𝑛) the salt generated by 𝒜 and 𝖮𝖬𝗎𝖲𝗂𝗀𝗇 during the sign query
(𝗌𝗂𝖽, (𝑚,𝐿)), the challenger aborts the game if the random oracle 𝖧2 was
already queried at input 𝑄 = (̃𝑥, 𝑟,𝐿,𝑚), i.e. 𝖧𝖳2[𝑄] ≠ ⊥. Otherwise,
𝖮𝖬𝗎𝖲𝗂𝗀𝗇 samples 𝖼𝗁 ←$ [0,𝑛]𝑡(𝑛) and programs 𝖧𝖳2[𝑄] ← 𝖼𝗁. It follows
that |Pr[𝖦𝖺𝗆𝖾𝟢(𝒜) = 1] − Pr[𝖦𝖺𝗆𝖾𝟣(𝒜) = 1]| ≤ Pr[𝖻𝖺𝖽𝗁𝖼𝗈𝗅].

𝖦𝖺𝗆𝖾𝟤 This game is identical to𝖦𝖺𝗆𝖾𝟣, except that𝖮𝖬𝗎𝖲𝗂𝗀𝗇 and𝖧2 are simulated
as follows. At the start of the game, the challenger initializes an empty set
ℳ, that will be used to track the messages queried by the simulator to
𝖮𝖲𝗂𝗀𝗇, and a look-up table𝖬𝖳 used to map the queries to𝖧2 to the messages
included in the queries to 𝖧′. In particular, when 𝖮𝖬𝗎𝖲𝗂𝗀𝗇 receives a query,
it samples a randommessage𝑚′ ∈ 𝖬 and adds it toℳ before sending a sign
query to 𝖮𝖲𝗂𝗀𝗇 for 𝑚′. When 𝖧2 receives a query 𝑄 = (̃𝑥, 𝑟,𝐿,𝑚) such that
𝗉𝗄⋆ ∈ 𝐿, it samples a random message 𝑚′ ∈ 𝖬 and sets 𝖬𝖳[𝑄] ← 𝑚′ before
querying 𝖧′ on (𝐿′, ̃𝑥,𝑚′). After the adversary outputs a valid signature
𝜎 = (𝖼𝗁, 𝑟, 𝑧1,… , 𝑧𝑡(𝑛)) on message 𝑚 with users public keys 𝐿 = (𝑥1,… , 𝑥𝑛),
the challenger derives ̃𝑥 as in the execution of 𝖬𝗎𝖵𝗋𝖿𝗒, and retrieves 𝑚′ ←
𝖬𝖳[̃𝑥, 𝑟,𝐿,𝑚]. If 𝑚′ ∈ ℳ, the game aborts by raising 𝖻𝖺𝖽𝗆𝖼𝗈𝗅. It follows that
|Pr[𝖦𝖺𝗆𝖾𝟣(𝒜) = 1] − Pr[𝖦𝖺𝗆𝖾𝟤(𝒜) = 1]| ≤ Pr[𝖻𝖺𝖽𝗆𝖼𝗈𝗅].

The reason why in 𝖦𝖺𝗆𝖾𝟤, for the sign query to 𝖮𝖬𝗎𝖲𝗂𝗀𝗇 and hash query
to 𝖧2, the simulator ℬ is instructed to sample a random message 𝑚′ resides in
the definition of forgery in the multi-signature scheme and in the centralized
signature scheme. In particular, in the multi-signature game 𝒜 can produce a
forgery on a message𝑚 signed on behalf of the public keys in 𝐿 even if during the
training with the oracle 𝖮𝖬𝗎𝖲𝗂𝗀𝗇 it previously queried a signature for the same
𝑚 but with a different set of signers 𝐿′. This does not hold for the centralized
signature, where the forgery must be associated to a message that has never been
queried to 𝖧′.

We now show that the EUF-CMA adversaryℬ can simulate𝖦𝖺𝗆𝖾𝟤 as described
in Algorithm 5.6. At the start of the game, ℬ initializes an empty set ℳ ← ∅ that
will store the queries to 𝖮𝖲𝗂𝗀𝗇. In the following, given a vector 𝑥, we will denote
with 𝜋𝑖,𝑗(𝑥) the permutation of elements with index 𝑖 and 𝑗 in 𝑥.

142

5.2 – Multi-Signature from Cryptographic Group Action

Random oracles queries. When a query 𝑄0 for 𝖧0 is received, if 𝖧𝖳0[𝑄0] = ⊥,
ℬ uniformly samples 𝖼𝗈𝗆 ←$ {0,1}2𝜆, stores 𝖧𝖳0[𝑄0] ← 𝖼𝗈𝗆, and returns
𝖧𝖳0[𝑄0]. Similarly, when a query 𝑄1 for 𝖧1 is received if 𝖧𝖳1[𝑄1] = ⊥,
ℬ uniformly samples 𝖼𝗈𝗆 ←$ {0,1}2𝜆, stores 𝖧𝖳1[𝑄1] ← 𝖼𝗈𝗆, and returns
𝖧𝖳1[𝑄1]. Instead 𝖧2, the random oracle employed to generate the challenge
𝖼𝗁, is simulated as follows. Suppose a query 𝑄2 = (̃𝑥, 𝑟,𝐿,𝑚) for 𝖧2 is
received and 𝖧𝖳2[𝑄2] = ⊥. Let 𝑛 = |𝐿|, if 𝗉𝗄⋆ ∉ 𝐿, i.e. the random oracle
query do not refer to the public key that the forger must impersonate,
ℬ uniformly samples 𝖼𝗁 ←$ [0,𝑛]𝑡(𝑛) and returns it. Otherwise, suppose
𝐿 = (𝑥1,… , 𝑥𝑛) such that 𝑥𝑖 = 𝗉𝗄⋆ and let 𝐿′ be the set of public keys in 𝐿
after permuting the order of 𝑥1 and 𝑥𝑖 and subsequently removing 𝑥𝑖, i.e.
𝐿′ ← 𝜋1,𝑖(𝐿)[2∶]. This way, 𝐿′ can be used as a set of ephemeral keys for
the centralized signature scheme. Then, ℬ samples a uniformly random
message 𝑚′ and queries (𝐿′, ̃𝑥,𝑚′) to 𝖧′(𝑛), obtaining 𝖼𝗁ℬ, which acts as the
challenge of the centralized signature scheme. Next, it computes 𝖼𝗁 as the
permutation 𝜋1,𝑖(𝖼𝗁ℬ), making it compatible with the public keys in 𝐿), and
stores 𝖬𝖳[𝑄2] ← 𝑚′ and 𝖧𝖳2[𝑄2] ← 𝖼𝗁. Finally, it returns 𝖧𝖳2[𝑄2].

Signing queries. On a new query 𝑄 = (𝗌𝗂𝖽, (𝑚,𝐿)), ℬ runs 𝖬𝗎𝖲𝗂𝗀𝗇 up to Line 9.
Suppose 𝐿 = (𝑥1,… , 𝑥𝑛) such that 𝑥𝑖 = 𝗉𝗄⋆. Then, it samples a uniformly ran-
dom message𝑚′ ←$ 𝖬, adds𝑚′ toℳ, and queries 𝖮𝖲𝗂𝗀𝗇 on𝑚′. The signing
oracle response is (𝖼𝗈𝗆ℬ, 𝑧ℬ1 ,… , 𝑧ℬ𝑡(𝑛)), with 𝖼𝗈𝗆ℬ = (̂𝑥ℬ2 ,… , ̂𝑥ℬ𝑛 , ̃𝑥ℬ1 ,… , ̃𝑥ℬ𝑡(𝑛)).
ℬ will only use responses 𝑧ℬ𝑗 from 𝖮𝖲𝗂𝗀𝗇 that link 𝑥𝑖 to ̃𝑥ℬ𝑗 , which corre-
spond to the values 1 of the challenges sampled by the oracle. Hence, ℬ
computes the permutation of the challenge of the centralized signature,
obtaining 𝖼𝗁ℬ ← 𝜋1,𝑖(𝖧′(𝑛)(𝖼𝗈𝗆ℬ,𝑚′)), that will be used to program the an-
swer of 𝖧2. Then, 𝖬𝗎𝖲𝗂𝗀𝗇 is simulated up to Line 13 as follows: for each
𝑗 ← 1,… , 𝑡(𝑛) it receives ̃𝑥(𝑖−1)𝑗 . Then, if 𝖼𝗁ℬ𝑗 ≠ 𝑖, it samples ̃𝑔 (𝑖)

𝑗 ←$ 𝐺 and
sets ̃𝑥(𝑖)𝑗 ← ̃𝑔 (𝑖)

𝑗 ⋆ ̃𝑥(𝑖−1)𝑗 . Otherwise, if 𝖼𝗁ℬ𝑗 = 𝑖, it sets ̃𝑥(𝑖)𝑗 ← ̃𝑥ℬ𝑗 , since it knows
the group element mapping the public key 𝑥𝑖 to ̃𝑥ℬ𝑗 from the centralized
signature previously queried. Subsequently, before revealing 𝑟𝑖, ℬ retrieves
𝑟1,… , 𝑟𝑛 from 𝖧𝖳0. If some 𝖼𝗈𝗆𝑗’s were not obtained after a query to 𝖧0
for (𝖼𝗈𝗆𝑗−1, 𝑟𝑗), it follows the execution of 𝖬𝗎𝖲𝗂𝗀𝗇 and returns ⊥ on Line 16.
Next, it computes 𝑟 ← 𝖧1(𝑟1,… , 𝑟𝑛) and programs 𝖧𝖳2[̃𝑥, 𝑟,𝐿,𝑚] ← 𝖼𝗁ℬ.
Finally, the remainder of 𝖬𝗎𝖲𝗂𝗀𝗇’s execution is simulated as follows: for
each 𝑗 ← 1,… , 𝑡(𝑛), if 𝖼𝗁𝑗 ≠ 𝑖, ℬ reveals ̃𝑔 (𝑖)

𝑗 . Otherwise, it receives ̃𝑔 (𝑘)
𝑗 for

𝑘 ≠ 𝑖 and computes 𝑧𝑗 ← ̃𝑔 (𝑛)
𝑗 ⋅ … ⋅ ̃𝑔 (𝑖+1)

𝑗 𝑧ℬ𝑗 .

Eventually,𝒜will output a valid signature 𝜎 = (𝖼𝗁, 𝑟, 𝑧1,… , 𝑧𝑡(𝑛)) for a message
𝑚 under public keys 𝐿 = (𝑥1,… , 𝑥𝑛). If𝒜 is winning theMS-UF-CMA game, then
there exists an index 𝑖 ∈ [𝑛] such that 𝗉𝗄⋆ = 𝑥𝑖 and (𝑚,𝐿) ∉ 𝒬. ℬ can run 𝖬𝗎𝖵𝗋𝖿𝗒

143

Aggregate and Multi-Signatures from Group Actions

up to Line 5 to recover ̃𝑥 = (̃𝑥1,… , ̃𝑥𝑡(𝑛)). From our simplifying assumption on 𝒜,
𝜎 is valid and 𝑄 = (̃𝑥, 𝑟,𝐿,𝑚) must have been queried to 𝖧2. Then, ℬ assigns to 𝐿′

the set of public keys in 𝐿 after permuting the order of 𝑥1 and 𝑥𝑖 and subsequently
removing 𝑥𝑖, i.e. 𝐿′ = 𝜋1,𝑖(𝐿)[2∶]. Next, it retrieves 𝑚′ ← 𝖬𝖳[̃𝑥, 𝑟,𝐿,𝑚] and aborts
by raising 𝖻𝖺𝖽𝗆𝖼𝗈𝗅 if 𝑚′ ∈ ℳ. Otherwise, ℬ wins the EUF-CMA game, returning
the signature (𝐿′, ̃𝑥, 𝑧1,… , 𝑧𝑡(𝑛)) on message 𝑚′. In fact, 𝖼𝗁 was obtained in the
simulation of 𝖧2 as 𝖼𝗁 = 𝜋1,𝑖(𝖼𝗁′), where 𝖼𝗁′ = 𝖧′(𝑛)(𝐿′, ̃𝑥,𝑚′). Let ̂𝑥𝑘 ← 𝑥𝑘 for all
𝑘 ∈ [𝑛], 𝑘 ≠ 1, 𝑖 and let ̂𝑥𝑖 ← 𝑥1, ̂𝑥1 ← 𝑥𝑖. For any 𝑗 ← 1,… , 𝑡(𝑛), it follows that:

𝑧𝑗 ⋆ ̂𝑥𝖼𝗁′𝑗 = 𝑧𝑗 ⋆ 𝑥𝖼𝗁𝑗 = ̃𝑥𝑗.

If none of the 𝖻𝖺𝖽 events happen, ℬ perfectly simulate 𝖦𝖺𝗆𝖾𝟤, and we obtain

𝖠𝖽𝗏EUF-CMA
𝖥𝖲[Π′] (ℬ) = Pr[𝖦𝖺𝗆𝖾𝟤(𝒜) = 1]

≥ 𝖠𝖽𝗏MS-UF-CMA
𝖬𝖲-𝖦𝖠[⋆] (𝒜) − Pr[𝖻𝖺𝖽𝗁𝖼𝗈𝗅] − Pr[𝖻𝖺𝖽𝗆𝖼𝗈𝗅].

ℬ can simulate 𝖦𝖺𝗆𝖾𝟤 with at most the same running time of 𝒜 plus the time
required for running 𝖬𝗎𝖵𝗋𝖿𝗒.

In the following, we bound the probability of each 𝖻𝖺𝖽 event happening.

Probability of 𝖻𝖺𝖽𝗁𝖼𝗈𝗅 The event 𝖻𝖺𝖽𝗁𝖼𝗈𝗅 occurs on Line 25 of 𝖮𝖬𝗎𝖲𝗂𝗀𝗇 on in-
put (𝗌𝗂𝖽, (𝑚,𝐿)) when, after obtaining the commitment ̃𝑥 and the salt 𝑟 ←
𝖧1(𝑟1,… , 𝑟𝑛), a value for 𝑄 = (̃𝑥, 𝑟,𝐿,𝑚) was already assigned in 𝖧𝖳2. The
table𝖧𝖳2 is populated by either𝖮𝖬𝗎𝖲𝗂𝗀𝗇 or𝖧2, so that its entries are at most
𝗊𝖲 + 𝗊𝖧. The salt 𝑟 is obtained from 𝖧1 on inputs 𝑟1,… , 𝑟𝑛, where 𝑟𝑘, 𝑘 ≠ 𝑖
is provided by 𝒜 and 𝑟𝑖 is sampled uniformly random from {0,1}ℓ𝗌𝖺𝗅𝗍. The
probability that a uniformly random 𝑟𝑖 produces a collision with one of the
entries is then at most (𝗊𝖲 + 𝗊𝖧)2−ℓ𝗌𝖺𝗅𝗍. Since at most 𝗊𝖲 are made to 𝖮𝖬𝗎𝖲𝗂𝗀𝗇,
then Pr[𝖻𝖺𝖽𝗁𝖼𝗈𝗅] ≤ 𝗊𝖲(𝗊𝖲 + 𝗊𝖧)2−ℓ𝗌𝖺𝗅𝗍.

Probability of 𝖻𝖺𝖽𝗆𝖼𝗈𝗅 The event 𝖻𝖺𝖽𝗆𝖼𝗈𝗅 occurs on Line 9 of the simulation of ℬ
when, after the adversary 𝒜 outputs a valid signature 𝜎 = (𝖼𝗁, 𝑟, 𝑧1,… , 𝑧𝑡(𝑛))
on message 𝑚 with users public keys 𝐿 = (𝑥1,… , 𝑥𝑛), ℬ derives ̃𝑥 as in
the execution of 𝖬𝗎𝖵𝗋𝖿𝗒, and retrieves 𝑚′ ← 𝖬𝖳[̃𝑥, 𝑟,𝐿,𝑚], the message
sampled during a random oracle query to 𝖧2, such that 𝑚′ ∈ ℳ. There are
two possibilities that can cause the 𝖻𝖺𝖽𝗆𝖼𝗈𝗅 event: either in 𝖧2 (Line 8) if it
samples 𝑚′ ∈ 𝖬 that is already in ℳ, or in 𝖮𝖬𝗎𝖲𝗂𝗀𝗇 (Line 6) if it samples
𝑚′ ∈ 𝖬 such that it is already a value in 𝖬𝖳. The set ℳ is populated by
𝖮𝖬𝗎𝖲𝗂𝗀𝗇, so that its entries are at most 𝗊𝖲. Since |𝖬| = 2ℓ𝖬, the probability
that a uniformly random𝑚′ ∈ 𝖬 produces a collision with one of the entries
of ℳ is then at most 𝗊𝖲/|𝖬| ≤ 𝗊𝖲/2ℓ𝖬. Since at most 𝗊𝖧 queries are made to
𝖧2, the probability of the first occurrence is at most 𝗊𝖧𝗊𝖲/2ℓ𝖬. Similarly, the
table 𝖬𝖳 is populated by 𝖧2 with at most 𝗊𝖧 entries, and the probability

144

5.2 – Multi-Signature from Cryptographic Group Action

that a uniformly random𝑚′ ∈ 𝖬 produces a collision with one of the entries
of 𝖬𝖳 is at most 𝗊𝖧/2ℓ𝖬. Since at most 𝗊𝖲 queries are made to 𝖮𝖬𝗎𝖲𝗂𝗀𝗇, the
probability of the second occurrence is at most 𝗊𝖧𝗊𝖲/2ℓ𝖬. Therefore, we
obtain Pr[𝖻𝖺𝖽𝗆𝖼𝗈𝗅] ≤ 2𝗊𝖲𝗊𝖧/2ℓ𝖬.

Combining the previous bound on 𝖻𝖺𝖽 events, we obtain the claimed estimate
of 𝖠𝖽𝗏MS-UF-CMA

𝖬𝖲-𝖦𝖠[⋆] (𝒜).

Concurrent executions Note that the security proof reduces the security of the
multi-signature to the security of a centralized signature, which is concurrently
secure since it does not require interactions between parties. Also, the simulation
does not require ℬ to rewind the adversary during the execution of the training
phase, when the adversary queries the sign oracle and builds signatures of chosen
messages with its support. The rewinding is executed only once when the adver-
sary of the multi-signature produces its forgery. This means that the execution
time of the simulator ℬ is polynomial in the execution time of the adversary,
which is polynomial in lambda.

Moreover, since the signing parties commit to the 𝑟𝑖, for all 𝑖 in the signing
set, and these determine the value of 𝑟 which is used to compute the challenge 𝖼𝗁,
the protocol is resistant to the practical attacks that can occur in the concurrent
setting [25].

Identifiable abort Our protocol can be adapted to allow the signers to identify
when a party misbehaves. If during the construction of the commitment, each
party broadcasts their partial commitment, then in an eventual failure of the
signature protocol the honest party will always be able to identify at least one ma-
licious party for each signing protocol execution. In fact, when the commitments
are opened, one can check that the group element ̃𝑔𝑖 of the parties 𝑃𝑖 which are
not selected by the challenge actually maps the previous partial commitment ̃𝑥𝑖−1
to ̃𝑥𝑖.

5.2.5 Signature Optimizations
In this section we discuss the applicability to the multi-signature scheme of
the standard optimizations discussed for group action-based Σ-protocol and
centralized signature scheme in Section 4.3. Note that when defining the multi-
signature protocol, it is necessary to ensure that the centralized signature keys
are compatible with the interactive protocol. Therefore, all optimizations that do
not intervene directly on the keys are potentially applicable.

As in the case of aggregation, one of the main efficiency measures for the
multi-signature scheme is the compression rate, i.e., the reduction in the length
of the signature aggregation of 𝑛 users compared to the trivial concatenation of

145

Aggregate and Multi-Signatures from Group Actions

𝑛 individual signatures. Let Σ𝑛 be the multi-signature of 𝑛 users and let 𝜎 be
the individual signature of the centralized scheme. The compression rate of 𝑛
signatures is defined as 𝜏(𝑛) = 1 − |Σ𝑛|

𝑛⋅|𝜎|
. In order to optimize the compression rate,

we reduce the size of Σ𝑛 without affecting the security of the scheme.
Consider a group action (𝐺,𝑋, ⋆) and a security parameter 𝜆. In the non-

optimized version of the multi-signature, the signature produced by 𝑛 users is
given by Σ𝑛 = (𝖼𝗁, 𝑟, 𝑧1,… , 𝑧𝑡(𝑛)). The expected sizes (in bits) of the elements of
Σ𝑛 are expressed by

|𝖼𝗁| = log2(𝑛 + 1)𝑡(𝑛), |𝑟| = 2𝜆, |𝑧| = 𝑡(𝑛)ℓ𝖦,

where ℓ𝖦 is the bit size of elements in 𝐺.

Compression of Random Elements

The compression of random elements for the base Σ-protocol Π is described in
Section 4.3.1. Recall that in Π, about half of the responses are expected to be
random elements of the group, which can be compressed using short seeds.

When we consider the multi-signature described in Algorithm 5.5, things
get more complicated because the signers 𝑃1,… ,𝑃𝑛 build the responses 𝑧𝑖, 𝑖 ∈
[𝑡(𝑛)], in a round-robin fashion by multiplying the group elements that they
have generated as described in Equation (5.1). Therefore, when the challenge
𝖼𝗁𝑖 = 0, no contribution is required from the secret keys of the participants, and
the response to the 𝑖-th repetition of the sigma protocol can be encoded in two
possible ways:

• with the full list of seeds (𝑠1,… , 𝑠𝑛) corresponding to the group element of
each party, which are multiplied to retrieve the response 𝑧𝑖;

• with the direct encoding of the group element 𝑧𝑖.

This means that the use of seeds is convenient as long as the representation of
an element in 𝐺 is heavier than the concatenation of 𝑛 seeds, i.e. 𝑛𝜆 < ℓ𝖦, and if
the expected number of zeros in a 𝑡(𝑛)-bit long challenge is 𝑡(𝑛)

𝑛+1
, then the expected

number of bits saved by using this technique is 𝑡(𝑛)(ℓ𝖦−𝑛𝜆)
𝑛+1

.
Similarly, the challenge 𝖼𝗁 can be expanded from a digest 𝑑 ∈ {0,1}2𝜆 obtained

from 𝖧2 in Algorithm 5.5.
Applying the aforementioned optimizations, the expected sizes (in bits) of the

challenge and the response array are approximated by

|𝖼𝗁| = 2𝜆, |𝑟| = 2𝜆, |𝑧| =
𝑡(𝑛)
𝑛 + 1

(𝑛ℓ𝖦 + ℓ𝗌𝖾𝖾𝖽𝗌), ℓ𝗌𝖾𝖾𝖽𝗌 = min{𝑛𝜆, ℓ𝖦}

where the terms of |𝑧| correspond to the size of the responses to non-zero and
zero challenges, respectively.

146

5.2 – Multi-Signature from Cryptographic Group Action

Seed Trees

The use of seed tree for the base Σ-protocol is described in Section 4.3.2. After
building a binary tree to represent 𝑡 seeds, recall that, to communicate the value
of all the 𝑡 seeds except for those indexed by a subset of {1,… , 𝑡} of size 𝜔, it is
enough to send the values of the following number of nodes:

2⌈log2(𝜔)⌉ + 𝜔(⌈log2(𝑡)⌉ − ⌈log2(𝜔)⌉ − 1).

It follows that the communication cost of using a seed tree is advantageous
when there are at least 𝑡

2
zero challenges. In the multi-signature, the expected

number of zero challenges is 𝑡(𝑛)
𝑛+1

. Therefore, the use of a seed tree is already
ineffective for 𝑛 = 2 users.

Fixed-Weight Challenges

The use of fixed-weight challenges for the base Σ-protocol is described in Sec-
tion 4.3.3. In the proposed multi-signature, the use of fixed-weight challenges
can still be useful to decrease the cheating probability of the adversary. In fact,
the best strategy for an adversary is to control all parties except the target user 𝑃𝑖
and to have a challenge with few components 𝖼𝗁𝑗 = 𝑖. To make this possibility
negligible, a large number of parallel repetitions 𝑡(𝑛) must be chosen, making
the signature inefficient. As a countermeasure, we can consider challenges where
each value 𝑖 ∈ [1,𝑛] appears the same number of times. More in detail, for each
𝑛 ∈ ℕ, we choose 𝑡,𝜔 such that the challenges are elements of [0,𝑛]𝑡 with exactly
𝜔 components equal to 𝑖, for each 𝑖 ∈ [1,𝑛], and the remaining 𝑡 − 𝑛𝜔 components
are equal to 0. Let 𝖢𝗁𝑡,𝜔𝑛 denote the challenge set mentioned above. The number
of challenges in 𝖢𝗁𝑡,𝜔𝑛 is

𝑡!
(𝑡 − 𝑛𝜔)!(𝜔!)𝑛

.

Once a commitment is fixed, let 𝜂𝑡,𝜔 be the maximum number of challenges in
𝖢𝗁𝑡,𝜔𝑛 an adversary can answer to without knowing the private key (i.e. from the
responses to such challenges it would not be possible to extract the witness). Then
𝑡,𝜔 must be chosen such that

𝜂𝑡,𝜔
|𝖢𝗁𝑡,𝜔𝑛 |

≤ 2−𝜆. (5.2)

Lemma 5.9. Given 𝑛 ∈ ℕ, the value 𝜂𝑡,𝜔 can be expressed as

max
0≤𝑘≤𝑛−1

(𝑡 − (𝑛 − 𝑘)𝜔)!
(𝑡 − 𝑛𝜔)!(𝜔!)𝑘

((𝑛 − 𝑘)𝜔)!
(𝜔!)𝑛−𝑘

. (5.3)

147

Aggregate and Multi-Signatures from Group Actions

Proof. Suppose w.l.o.g. that the target user is 𝑃1, so that, without knowing their
private key, an adversary cannot answer two challenges with 0 and 1 in the same
component. In the following, let𝖢𝗁𝑛 = {0,… ,𝑛} and let𝖢𝗁𝑡𝑛 be the set of challenge
strings of length 𝑡. For a subset 𝐶 ⊂ 𝖢𝗁𝑡𝑛, let ℋ𝐶 be the undirected graph whose
vertices are the elements of 𝖢𝗁𝑛 and in which, for any 𝑥, 𝑦 ∈ 𝖢𝗁𝑛, there is a link
between 𝑥 and 𝑦 in ℋ𝐶 if and only if there exist two challenge strings 𝖼𝗁, 𝖼𝗁′ ∈ 𝐶
such that 𝖼𝗁𝑖 = 𝑥 and 𝖼𝗁′𝑖 = 𝑦 for some index 1 ≤ 𝑖 ≤ 𝑡.

Let 𝒞 be the set of all subsets 𝐶 of 𝖢𝗁𝑡,𝜔𝑛 such that 0 and 1 are not connected in
ℋ𝐶. It follows that 𝜂𝑡,𝜔 is the maximum cardinality among the sets in 𝒞. Given a
set 𝐶 ∈ 𝒞, let 𝑘 be the number of challenges 𝛼1,… ,𝛼𝑘 ∈ 𝖢𝗁𝑛∖{1} for which there is
a path between 0 and 𝛼𝑖 inℋ𝐶. The remaining 𝑛 − 𝑘 − 1 challenges 𝛽1,… , 𝛽𝑛−𝑘−1 ∈
𝖢𝗁𝑛∖{0,1} can either be all connected to 1 or form smaller connected components.
For any 𝖼𝗁 ∈ 𝖢𝗁𝑡,𝜔𝑛 , there are exactly 𝜔 components of 𝖼𝗁 equal to 𝛼𝑖 or 𝛽𝑗, and
𝑡 − 𝑛𝜔 components equal to 0. Therefore, in 𝐶 we can have at most (𝑡−(𝑛−𝑘)𝜔)!

(𝑡−𝑛𝜔)!(𝜔!)𝑘

choices for the entries that have a path to 0. The remaining (𝑛 − 𝑘)𝜔 entries, can
have at most ((𝑛−𝑘)𝜔)!

(𝜔!)𝑛−𝑘
choices when 𝛽1,… , 𝛽𝑛−𝑘−1 are all connected to 1. Therefore,

the maximal size of a set 𝐶 ∈ 𝒞 is

max
0≤𝑘≤𝑛−1

(𝑡 − (𝑛 − 𝑘)𝜔)!
(𝑡 − 𝑛𝜔)!(𝜔!)𝑘

((𝑛 − 𝑘)𝜔)!
(𝜔!)𝑛−𝑘

.

In the following, we choose 𝑡 = (𝑛+1)𝜔, so that each value in {0,… ,𝑛} appears
exactly 𝜔 times.

Lemma 5.10. Given 𝑛 ∈ ℕ, let 𝜂𝜔 = 𝜂(𝑛+1)𝜔,𝜔. Then

𝜂𝜔 =
(𝑛𝜔)!
(𝜔!)𝑛

.

Proof. Substituting 𝑡 = (𝑛 + 1)𝜔 in Equation (5.3), we obtain

𝜂𝜔 = 𝜂(𝑛+1)𝜔,𝜔 = max
0≤𝑘≤𝑛−1

((𝑘 + 1)𝜔)!
(𝜔!)𝑘+1

((𝑛 − 𝑘)𝜔)!
(𝜔!)𝑛−𝑘

.

Consider the discrete function 𝑓(𝑘) taking values in { 0,… ,𝑛 − 1 }, defined by

𝑓(𝑘) =
((𝑘 + 1)𝜔)!
(𝜔!)𝑘+1

((𝑛 − 𝑘)𝜔)!
(𝜔!)𝑛−𝑘

.

Notice that 𝑓(𝑘) = 𝑓(𝑛 − 1 − 𝑘), it is then sufficient to prove that 𝑓 is decreasing
for 𝑘 ≤ ⌊(𝑛 − 1)/2⌋. In fact, for any 𝑘, it holds that

𝑓(𝑘)
𝑓(𝑘 + 1)

=
((𝑘 + 1)𝜔)!
((𝑘 + 2)𝜔)!

((𝑛 − 𝑘)𝜔)!
((𝑛 − 𝑘 − 1)𝜔)!

=
𝜔−1

∏
𝑖=1

(𝑛 − 𝑘)𝜔 − 𝑖
(𝑘 + 2)𝜔 − 𝑖

.

148

5.2 – Multi-Signature from Cryptographic Group Action

Notice that for any term in the product, it holds that

(𝑛 − 𝑘)𝜔 − 𝑖 ≥ (𝑘 + 2)𝜔 − 𝑖 ⟺ 𝑘 ≤ ⌊𝑛 − 2
2

⌋ .

Therefore,

𝜂𝜔 = 𝑓(0) = 𝑓(𝑛 − 1) =
(𝑛𝜔)!
(𝜔!)𝑛

.

If we substitute the value of 𝜂𝜔 from previous lemma in Equation (5.2), then
the choice of 𝜔 should be made such that

2−𝜆 ≥
𝜂𝜔

|𝖢𝗁(𝑛+1)𝜔,𝜔𝑛 |
= (

(𝑛 + 1)𝜔
𝜔

)
−1

.

The choice of 𝜔 is made with the aim of minimizing the size of the response
array 𝑧, where

|𝑧| = 𝑛𝜔ℓ𝖦 + 𝜔ℓ𝗌𝖾𝖾𝖽𝗌. (5.4)

In Section 5.3 we provide a concrete analysis of the optimal values for 𝜔 for
the selected signature schemes.

Multiple Public Keys

The use ofmultiple public keys for the baseΣ-protocol is described in Section 4.3.4.
In the centralized scheme, each user generates 𝑠 public keys, and the challenge
space is extended so that a challenge selects one of the keys. The response is then
generated using the relevant private key, exhibiting a group element that maps
the selected public key to the commitment. The challenge space of the single
instance is then extended from a binary space to one of 𝑠 + 1 elements, thereby
reducing the soundness error.

Using this optimization in the multi-signature requires minor modifications
to the𝖬𝖲 protocol described in Algorithm 5.5. In fact, the protocol already allows
multi-bit challenges to select a specific user’s key. It is, therefore, sufficient to
extend the challenge space so that one of the user’s keys can be selected. Notice,
however, that this optimization modifies the public keys of the underlying signa-
ture, and is therefore applicable only if the signature scheme provides for it. The
changes described below will then be used in Section 5.3 for the parameterization
of signatures using multiple public keys.

In the following, we combine the use of multiple public keys with the un-
balanced challenge optimization of the previous section, evaluating its impact
on soundness error and signature size. Concretely, suppose each user 𝑃𝑖 has 𝑠
public keys 𝑥(0)𝑖 ,… , 𝑥(𝑠−1)𝑖 ∈ 𝑋, where 𝑥(0)𝑖 = 𝑥0. For a fixed 𝑛 ∈ ℕ, let 𝖢𝗁𝑛,𝑠 =
{0,… ,𝑛(𝑠 − 1)} be the challenge space of the single instance, where 0 identifies 𝑥0

149

Aggregate and Multi-Signatures from Group Actions

and 𝑘 = (𝑖 − 1)(𝑠 − 1) + 𝑗 identifies 𝑥(𝑗)𝑖 of user 𝑃𝑖, with 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑠 − 1.
Similarly to the single key case, we choose 𝑡,𝜔 such that the challenges are ele-
ments of 𝖢𝗁𝑡𝑛,𝑠 with exactly 𝜔 components corresponding to the 𝑖-th user, and the
remaining 𝑡 − 𝑛𝜔 components are equal to 0. Let 𝖢𝗁𝑡,𝜔𝑛,𝑠 denote the challenge set
described above. The number of challenges in 𝖢𝗁𝑡,𝜔𝑛,𝑠 is

𝑡!
(𝑡 − 𝑛𝜔)!(𝜔!)𝑛

(𝑠 − 1)𝑛𝜔.

Let 𝜂𝑡,𝜔 be the maximum number of challenges in 𝖢𝗁𝑡,𝜔𝑛,𝑠 an adversary can answer
to without knowledge of the private key. Then 𝑡,𝜔 must be chosen such that

𝜂𝑡,𝜔
|𝖢𝗁𝑡,𝜔𝑛,𝑠 |

≤ 2−𝜆. (5.5)

As in the case of the single key, we simplify by choosing 𝑡 = (𝑛 + 1)𝜔. By adapting
𝐿𝑒𝑚𝑚𝑎 5.9 and 𝐿𝑒𝑚𝑚𝑎 5.10, we obtain that

𝜂𝜔 = max
𝑘1+…+𝑘𝑠=𝑛−1

𝑠

∏
𝑖=1

((𝑘𝑖 + 1)𝜔)!
(𝜔!)𝑘𝑖+1

(𝑠 − 1)𝑘𝑖𝜔 =
(𝑛𝜔)!
(𝜔!)𝑛

(𝑠 − 1)(𝑛−1)𝜔.

If we substitute the value of 𝜂𝜔 in Equation (5.5), then the choice of 𝜔 should be
made such that

2−𝜆 ≥
𝜂𝜔

|𝖢𝗁(𝑛+1)𝜔,𝜔𝑛,𝑠 |
= (

(𝑛 + 1)𝜔
𝜔

)
−1

(𝑠 − 1)−𝜔. (5.6)

With respect to Equation (5.4), the expression for the size of the response size
remains unchanged. On the other hand, as 𝑠 increases, we can choose a smaller 𝜔
in order to obtain a more compact signature.

5.3 Instantiation and Evaluation
In this section, we will provide concrete applications of the multi-signature
scheme described in Section 5.2.3 to the digital signature schemes based on group
actions described in Section 4.4, namely LESS, MEDS, and ALTEQ. We evaluate
the efficiency of the scheme by measuring the compression rate, as defined in
Section 5.2.5. We will not provide a similar analysis of the aggregated sequen-
tial signature proposed in Section 5.1 since, as previously discussed, challenge
aggregation achieves a compression rate of less than 1%.

Consider a group action (𝐺,𝑋, ⋆) and a security parameter 𝜆. Using the opti-
mizations described in the previous section, in Table 5.1 we summarize the bit

150

5.3 – Instantiation and Evaluation

length of 𝑁 centralized signatures and the multi-signature of 𝑁 users3 associated
with the group action. In more detail, we assume that for both centralized and
multi-signature, we have the same size for random salts ℓ𝗌𝖺𝗅𝗍 = 2𝜆, outputs of the
random oracle ℓ𝖽𝗂𝗀𝖾𝗌𝗍 = 2𝜆, seeds for random elements 𝜆, and group elements ℓ𝖦.
For the centralized signature, the number of repetitions 𝑡 and fixed-weight param-
eter of the challenges 𝜔 are chosen according to Equation (4.2), and are reported
in the parameter sets of each scheme. In the multi-signature, the fixed-weight
parameter 𝜔′ is chosen according to Equation (5.6) and depends on the number of
signers. Notice that, as discussed in Section 5.2.5, only the centralized signature
can exploit the use of seed trees. It follows that the length of 𝑁 concatenated
signatures is given by:

𝑁 ⋅ |𝜎| = 𝑁 ⋅ (ℓ𝗌𝖺𝗅𝗍 + ℓ𝖽𝗂𝗀𝖾𝗌𝗍 + 𝜔ℓ𝖦 + ℓ𝗌𝖾𝖾𝖽𝗌)
= 𝑁 ⋅ (4𝜆 + 𝜔ℓ𝖦 + (2⌈log2(𝜔)⌉ + 𝜔(⌈log2(𝑡)⌉ − ⌈log2(𝜔)⌉ − 1)) ⋅ ℓ𝗍𝗋𝖾𝖾_𝗌𝖾𝖾𝖽).

On the other hand, compression of random elements can also be exploited in the
case of multi-signatures if the number of signers 𝑁 is less than ⌊ℓ𝖦/𝜆⌋. It follows
that the length of a multi-signature of 𝑁 users is given by:

|Σ𝑁| = ℓ𝗌𝖺𝗅𝗍 + ℓ𝖽𝗂𝗀𝖾𝗌𝗍 + 𝑁𝜔′ℓ𝖦 + ℓ𝗌𝖾𝖾𝖽𝗌 = 4𝜆 + 𝑁𝜔′ℓ𝖦 +min{𝜔′ℓ𝖦,𝑁𝜔′𝜆}.

We observe that in both cases, the length of the signatures is dominated by
𝑁𝜔ℓ𝖦 (resp. 𝑁𝜔′ℓ𝖦). The fixed-weight parameter 𝜔 for the centralized signature
is fixed for each set of parameters, so that the term 𝑁𝜔ℓ𝖦 grows linearly with
𝑁. On the other hand, the fixed-weight parameter 𝜔′ for the multi-signature
depends on the number of signers, and is given by:

𝜔′ = argmin
𝜔

⎧
⎨
⎩
(
(𝑁 + 1)𝜔

𝜔
)
−1

(𝑠 − 1)−𝜔 ≤ 2−𝜆
⎫
⎬
⎭
.

We can use the following bound from [66, Theorem 11.1.3] to find a simplified
expression of 𝜔′:

(
𝑛
𝑘
) ≤ 2𝑛𝐻𝑏(𝑘/𝑛),

where 𝐻𝑏(𝑛) = −𝑛 log2(𝑛) − (1 − 𝑛) log2(1 − 𝑛) is the binary entropy function. There-
fore, for any 𝑁 > 1,

2(𝑁+1)𝜔′𝐻𝑏(1/(𝑁+1))(𝑠 − 1)𝜔′ ≥ (
(𝑁 + 1)𝜔′

𝜔′)(𝑠 − 1)𝜔′ ≥ 2𝜆,

3In this section we use 𝑁 to denote the number of signers as 𝑛 is often used as an internal
parameter for the underlying signature scheme.

151

Aggregate and Multi-Signatures from Group Actions

Table 5.1: Data sizes (in bits) and choice of parameters comparison between
single-signature and multi-signature schemes with 𝑁 users.

Centralized Signature Multi-signature

ℓ𝗌𝖺𝗅𝗍 2𝜆
ℓ𝖽𝗂𝗀𝖾𝗌𝗍 2𝜆
ℓ𝗍𝗋𝖾𝖾_𝗌𝖾𝖾𝖽 𝜆
ℓ𝖦 Byte size of elements in 𝐺
𝑠 Number of public keys

𝜔 min {𝜔 | (𝑡𝜔)
−1(𝑠 − 1)−𝜔 ≤ 2−𝜆} min {𝜔 | ((𝑁+1)𝜔

𝜔)
−1
(𝑠 − 1)−𝜔 ≤ 2−𝜆}

ℓ𝗌𝖾𝖾𝖽𝗌
(2⌈log2(𝜔)⌉ + 𝜔(⌈log2(𝑡)⌉ −
⌈log2(𝜔)⌉ − 1)) ⋅ ℓ𝗍𝗋𝖾𝖾_𝗌𝖾𝖾𝖽

min{𝜔ℓ𝖦,𝑁𝜔𝜆}

ℓ𝗌𝗂𝗀 𝑁 ⋅ (ℓ𝗌𝖺𝗅𝗍 + ℓ𝖽𝗂𝗀𝖾𝗌𝗍 + 𝜔ℓ𝖦 + ℓ𝗌𝖾𝖾𝖽𝗌) ℓ𝗌𝖺𝗅𝗍 + ℓ𝖽𝗂𝗀𝖾𝗌𝗍 + 𝑁𝜔ℓ𝖦 + ℓ𝗌𝖾𝖾𝖽𝗌

so that

(𝑁 + 1)𝜔′𝐻𝑏(1/(𝑁 + 1)) + 𝜔′ log2(𝑠 − 1) ≥ 𝜆

⟹ 𝜔′ = ⌈ 𝜆
(𝑁 + 1)𝐻𝑏(1/(𝑁 + 1)) + log2(𝑠 − 1)

⌉ .

It follows that a rough approximation for the compression rate 𝜏(𝑁) is given by

𝜏(𝑁) = 1 −
|Σ𝑁|
𝑁 ⋅ |𝜎|

≈ 1 −
𝑁𝜔′ℓ𝖦
𝑁𝜔ℓ𝖦

= 1 − 1
𝜔
⌈ 𝜆
(𝑁 + 1)𝐻𝑏(1/(𝑁 + 1)) + log2(𝑠 − 1)

⌉ .

Remark. The above expression provides an initial estimate of the effectiveness
of using multi-signature. In particular, we will have higher compression as the
number of signers increases, and higher maximum compression for parameter
sets using a fixed-weight parameter that is not too low.

A second metric relevant to the analysis of multi-signature efficiency concerns
the computational costs of producing a signature. In the case of group action-
based signatures, the main parameter affecting the performance of the signing
and verification process is the number 𝑡 of protocol repetitions. In particular, the
computational cost of producing a signature linearly increase with 𝑡. Similarly to
the fixed-weight parameter, the number of repetitions for the centralized signature
is fixed for each set of parameters, and when 𝑁 signatures are concatenated, the
single instance of the protocol is repeated 𝑁 ⋅ 𝑡 times distributed among 𝑁 users.
The number of repetitions for the multi-signature is determined by the number

152

5.3 – Instantiation and Evaluation

of signers and is given by (𝑁 + 1)𝜔′. Applying a similar analysis as above, the
repetition rate, i.e., the rate of reduction in the number of iterations between
centralized and multi-signature, is given by

1 −
(𝑁 + 1)𝜔′

𝑁 ⋅ 𝑡
≈ 1 − 𝜔′

𝑡
= 1 − 1

𝑡
⌈ 𝜆
(𝑁 + 1)𝐻𝑏(1/(𝑁 + 1)) + log2(𝑠 − 1)

⌉ .

Remark. The previous expression compares performance only in terms of itera-
tions of the underlying protocol. In the case of an interactive multi-signature,
however, it is also necessary to consider the cost associated with the communica-
tion rounds between the parties during the signing process. The analysis of this
cost is beyond the scope of this work and is not further analysed.

5.3.1 LESS
We consider the signature scheme described in Section 4.4.2 and the parameters
proposed in [13] with respect to NIST security levels I, III, and V as reported in
Table 4.1.

Recall that the LESS group action is ⋆𝖫𝖤𝖯, which is given by the action of the
monomial group Mon(𝑛, 𝑞) on the set 𝑋 of [𝑛, 𝑘, 𝑞] linear codes represented by
generator matrices in systematic form:

⋆𝖫𝖤𝖯 ∶ Mon(𝑛, 𝑞) × 𝑋 → 𝑋, (𝐐,𝐆) ↦ SF(𝐆𝐐).

The elements of the group Mon(𝑛, 𝑞) are represented using the information set
optimization with a string of length ℓ𝖦 = 𝑘(⌈log2(𝑛)⌉ + ⌈log2(𝑞 − 1)⌉). Since in
LESS, the parameter 𝑘 is approximately equal to the security parameter 𝜆, the
compression of random elements in the multi-signature can be applied when the
number of users 𝑁 is less than

⌊
ℓ𝖦
𝜆
⌋ ≈ ⌈log2(𝑛)⌉ + ⌈log2(𝑞 − 1)⌉.

For each NIST security level I, III, and V, the LESS specification proposes three
sets of parameters with a progressive trade-off between signature size and public
key size, starting with the balanced set that does not use multiple keys, with a
gradual increase in the intermediate and short sets. The increase in the number
of public keys also corresponds to a lower fixed-weight parameter 𝜔, leading to
lower multi-signature compression for “shorter” parameters. The trend of the
fixed-weight parameter 𝜔′ for the multi-signature as the number of users changes
is shown in Figure 5.2a.

Figure 5.2b shows the compression rates as the number of users increases. The
best aggregation rates are obtained with the balanced parameter of security level
I, with a compression rate greater than 30% for 𝑁 > 15 and greater than 50%

153

Aggregate and Multi-Signatures from Group Actions

(a) Fixed-Weight parameters for LESS parameters.

(b) Compression rates for LESS parameters.

(c) Repetitions rates for LESS parameters.

Figure 5.2: Multi-signature rates and parameters for LESS.

154

5.3 – Instantiation and Evaluation

for 𝑁 > 75. Figure 5.2c similarly shows the repetitions rates upon varying the
number of users. Here the best results are obtained for level III and V parameters
with reductions in the number of repetitions exceeding 90% for any number of
users.

5.3.2 MEDS
We consider the signature scheme described in Section 4.4.3 and the parameters
proposed in [60] with respect to NIST security levels I, III, and V as reported in
Table 4.2.

Recall that the MEDS group action is ⋆𝖬𝖢𝖤, which is given by the action of
GL𝑛(𝑞) ×GL𝑚(𝑞) on the set 𝑋 of [𝑚 × 𝑛, 𝑘, 𝑞] matrix codes:

⋆𝖬𝖢𝖤 ∶ (GL𝑛(𝑞) ×GL𝑚(𝑞)) × 𝑋 → 𝑋, ((𝐋,𝐒),ℭ) ↦ 𝜓𝐋,𝐒(ℭ).

The elements of the groupGL𝑛(𝑞)×GL𝑚(𝑞) are represented with a string of length
ℓ𝖦 = (𝑛2 + 𝑚2)⌈log2 𝑞⌉.

For each NIST security level I, III, and V, the MEDS specification proposes
two sets of parameters with a strong trade-off between signature size and scheme
efficiency due to heavy use of the Fixed-Weight optimization. For the shorter
parameterization, the high number of repetitions allows for an extremely low
fixed-weight parameter 𝜔, reducing the compression of the multi-signature. This
is particularly observable in the short parameterization of security level I, where
there is positive aggregation only from 𝑁 = 36. The trend of the fixed-weight
parameter 𝜔′ for the multi-signature as the number of users changes is shown in
Figure 5.3a.

Figure 5.3b shows the compression rates as the number of users increases. The
best aggregation rates are obtained with the balanced parameter of security level
V, with a compression rate greater than 30% already for 𝑁 > 2 and greater than
50% for 𝑁 > 19. Figure 5.3c similarly shows the repetitions rates upon varying
the number of users. Here the best results are obtained for level I and III balanced
parameters with reductions in the number of repetitions exceeding 95% for any
number of users.

5.3.3 ALTEQ
We consider the signature scheme described in Section 4.4.4 and the parameters
proposed in [37] with respect to NIST security levels I and III as reported in
Table 4.3.

Recall that the ALTEQ group action is ⋆𝖠𝖳𝖥𝖤, which is given by the action of
GL𝑛(𝑞) on the set of alternating trilinear formsATF(𝑛, 𝑞) = {𝜙∶ 𝔽𝑛

𝑞 ×𝔽𝑛
𝑞 ×𝔽𝑛

𝑞 → 𝔽𝑞}:

⋆𝖠𝖳𝖥𝖤 ∶ GL𝑛(𝑞) × ATF(𝑛, 𝑞) → ATF(𝑛, 𝑞), (𝐀,𝜙) ↦ 𝜙 ∘ 𝐀.

155

Aggregate and Multi-Signatures from Group Actions

(a) Fixed-Weight parameters for MEDS parameters.

(b) Compression rates for MEDS parameters.

(c) Repetitions rates for MEDS parameters.

Figure 5.3: Multi-signature rates and parameters for MEDS.

156

5.3 – Instantiation and Evaluation

(a) Fixed-Weight parameters for ALTEQ parameters.

(b) Compression rates for ALTEQ parameters.

(c) Repetitions rates for ALTEQ parameters.

Figure 5.4: Multi-signature rates and parameters for ALTEQ.

157

Aggregate and Multi-Signatures from Group Actions

The elements of the group GL𝑛(𝑞) are represented with a string of length ℓ𝖦 =
𝑛2⌈log2 𝑞⌉.

For each NIST security level I and III the ALTEQ specification proposes two
sets of parameters with a strong trade-off between signature size and public key
size due to heavy use of the Multiple Public Keys optimization. The increase in
the number of public keys also corresponds to a lower fixed-weight parameter 𝜔,
leading to slightly lower multi-signature compression for “shorter” parameters.
On the other hand, the large number of public keys also benefits the multi-
signature, with little reduction in compression compared to the MEDS case. The
trend of the fixed-weight parameter 𝜔′ for the multi-signature as the number of
users changes is shown in Figure 5.4a.

Figure 5.4b shows the compression rates as the number of users increases.
Similar results are achieved by all parameterizations, with Level I sets having
slightly higher aggregation for fewer users. Considering the balanced parameters
of security level I, the compression rate is greater than 30% for𝑁 > 17 and greater
than 50% for 𝑁 > 236. Figure 5.4c similarly shows the repetitions rates upon
varying the number of users. Here the best results are obtained for the balanced
parameters of level III with reductions in the number of repetitions exceeding
80% for any number of users.

158

Conclusions

In this thesis, we investigated sequential and interactive aggregation techniques
for two classes of digital signatures, with applications to recent proposals of
post-quantum signatures. Specifically, we designed a sequential aggregation
framework for Hash-and-Sign schemes based on generic trapdoor functions, and
an interactive multi-signature framework for group action-based signatures in
the Fiat-Shamir paradigm.

During NIST’s first call for standardization of post-quantum schemes, the dig-
ital signature landscape was mainly dominated by solutions based on structured
lattices. The significant activity in the development of lattice-based solutions, has
led the research to focus on advanced protocols based on the same assumptions,
including aggregate signatures. The additional properties of lattices, however,
make these constructions often incompatible with other post-quantum assump-
tions, even when the signature schemes share the same paradigms. The call for
additional post-quantum signatures launched by NIST in 2023 greatly expanded
the post-quantum signature landscape, differentiating security assumptions with
numerous proposals in both the Hash-and-Sign and Fiat-Shamir paradigms.

For signature aggregation in the Hash-and-Sign paradigm, there is a long
track record of works describing sequential aggregation frameworks based on
trapdoor permutations, such as RSA. Later works have attempted to extend these
approaches to trapdoor functions from post-quantum assumptions. In Chap-
ter 3, we showed that these attempts turn out to be insecure when the trapdoor
function lacks some advanced properties available, for instance, for lattice-based
PSFs. To obtain a generic framework in the absence of strong assumptions on
the underlying functions, we adopted the probabilistic Hash-and-Sign with retry
paradigm in the context of sequential aggregation. In particular, we proposed a
partial-signature history-free sequential aggregate signature scheme, generalizing
previous results and minimizing the requirements for the underlying trapdoor
functions. We proved the security of our scheme in the random oracle model,
assuming only the non-invertibility of the underlying TDF and an additional
notion of indistinguishability on preimages, known as preimage sampleability.
This additional property is provable or implicitly assumed for numerous post-
quantum TDFs to achieve the security of the associated signature schemes. We

159

Conclusions

explicitly instantiated our framework with three multivariate-based signature
schemes, namely UOV, PROV and MAYO, and one code-based scheme, Wave. For
each scheme, we have shown how it is possible to reduce the security of sequential
aggregation to the same underlying assumptions of the digital signature. Further-
more, although the aggregate signature size is linear with the number of users,
we achieved a compression rate between 5% and 34%, also for a small number of
signers.

In the second part of the thesis we investigated the aggregation of Fiat-Shamir
signatures based on non-abelian group actions. Previous attempts at aggregation
in the Fiat-Shamir paradigm mainly involve the Schnorr signature and signatures
based on lattices such as Dilithium. Unfortunately, these approaches are not ex-
tendable to non-Abelian group actions that lack the necessary algebraic structure.
In Chapter 5, we first investigated the design of a sequential aggregation frame-
work based on partial-signature aggregation involving challenges. The security
of this construction can be reduced to that of the underlying signature, however
it achieves extremely low compression rates and is of little use in practical ap-
plications. Next, we propose an interactive multi-signature protocol, achieving
a trade-off between aggregation capability and the need for party interaction.
The underlying protocol simulates a group action Σ-protocol, where public keys
are distributed among participants. The resulting multi-signature is provably
secure and can be reduced to the inverse problem of the group action. Finally, we
show how the scheme can be instantiated with the three main proposals submit-
ted to NIST competition, namely LESS, MEDS, and ALTEQ, achieving relevant
compression rates even for a small number of participants.

160

Abbreviations

APSF Average Preimage Sampleable Function.

AS Aggregate Signature.

CA Certificate Authority.

CR Collision Resistance.

EUF-CMA Existential Unforgeability against Chosen-Message Attacks.

FDH Full Domain Hash.

FH-SAS Full-History Sequential Aggregate Signature.

FH-UF-CMA Full-History existential Unforgeability against Chosen-Message
Attacks.

HaS Hash-and-Sign.

HF-SAS History-Free Sequential Aggregate Signature.

INV Non-Invertibility.

MPC Multi-Party Computation.

MQ Multivariate Quadratic.

MS-UF-CMA Multi-Signature existential Unforgeability against Chosen-Message
Attacks.

NIST National Institute of Standards and Technology.

OW One-Wayness.

PKI Public Key Infrastructure.

161

Abbreviations

PQC Post-Quantum Cryptography.

PS Preimage Sampling.

PS-HF-SAS Partial-Signature History-Free Sequential Aggregate Signature.

PS-HF-UF-CMA Partial-SignatureHistory-Free existential Unforgeability against
Chosen-Message Attacks.

PSF Preimage Sampleable Function.

QROM Quantum Random Oracle Model.

ROM Random Oracle Model.

SAS Sequential Aggregated Signature.

SAS-EUF-CMA Sequential Existential Unforgeability against Chosen-Message
Attacks.

SUF-CMA Strong existential Unforgeability against Chosen-Message Attacks.

TDF Trapdoor Function.

TDP Trapdoor Permutation.

UOV Unbalanced Oil and Vinegar.

162

List of Tables

1.1 Categories and number of digital signature proposals between the
first and second NIST calls. 19

2.1 Summary of existing security proof for Hash-and-Sign schemes in
the ROM. 29

2.2 Proposed parameters for Falcon [172] with corresponding key/sig-
nature sizes. 39

2.3 Proposed parameters for Wave [15] with corresponding key/signa-
ture sizes. 41

2.4 Proposed parameters for UOV [31] with corresponding key/signa-
ture sizes. 48

2.5 Proposed parameters for PROV [115] with corresponding key/sig-
nature sizes. 48

2.6 Proposed parameters for MAYO [30] with corresponding key/sig-
nature sizes. 48

3.1 Aggregate signature sizes and compression rates for UOV [31]. . . 82
3.2 Aggregate signature sizes and compression rates for PROV [115]. . 82
3.3 Aggregate signature sizes and compression rates for MAYO [30]. . 82
3.4 Aggregate signature sizes and compression rates for Wave [71]. . . 86

4.1 Proposed parameters for LESS [13] with corresponding key/signa-
ture sizes. 117

4.2 Proposed parameters for MEDS [60] with corresponding key/sig-
nature sizes. 117

4.3 Proposed parameters for ALTEQ [37] with corresponding key/sig-
nature sizes. 117

5.1 Data sizes (in bits) and choice of parameters comparison between
single-signature and multi-signature schemes with 𝑁 users. 152

163

List of Figures

3.1 Simplified description of SAS scheme from [143] 51
3.2 Simplified description of 𝖥𝖧-𝖲𝖠𝖲 54
3.3 High-level description of 𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲 scheme 65

4.1 High-level description of Protocol 4.30. 103

5.1 High-level description of 𝖬𝖲-𝖦𝖠 scheme of Algorithm 5.5. 137
5.2 Multi-signature rates and parameters for LESS. 154
5.3 Multi-signature rates and parameters for MEDS. 156
5.4 Multi-signature rates and parameters for ALTEQ. 157

164

List of Algorithms

2.1 Hash-and-Sign with retry . 28
2.2 Falcon Signature Scheme . 37
2.3 Wave Signature Scheme . 40
2.4 UOV Signature Scheme . 44
2.5 Provable UOV Signature Scheme 45
2.6 MAYO Signature Scheme . 46
3.1 𝖥𝖧-𝖲𝖠𝖲𝖳 Scheme for Generic TDF 54
3.2 Hash-and-Sign History-Free SAS (𝖧𝖺𝖲-𝖧𝖥-𝖲𝖠𝖲) 65
3.3 Full Reduction OW ⟹ PS-HF-UF-CMA 68
4.1 3-Round Protocol . 96
4.2 Fiat-Shamir Transformation of a Σ-protocol 99
4.3 Signature Scheme based on Group Actions 105
5.1 Group-Action History-Free SAS (𝖦𝖠-𝖧𝖥-𝖲𝖠𝖲) 120
5.2 Full Reduction EUF-CMA ⟹ PS-HF-UF-CMA 124
5.3 Group Action Σ-Protocol with 𝑛 ephemeral keys 133
5.4 Variant Signature Scheme based on Group Actions 136
5.5 Multi-Signature from Group Action (𝖬𝖲-𝖦𝖠[⋆]) 139
5.6 Full Reduction EUF-CMA ⟹ MS-UF-CMA 141

165

List of Experiments

1.1 Experiment template . 10
1.2 One-way function . 12
1.3 (Strong) Existential Unforgeability against Chosen-Message Attack 14
2.1 Trapdoor Function OW, INV, and CR 24
2.2 Trapdoor Function Preimage Sampleability 27
3.1 SAS Full-History EUF-CMA . 53
3.2 SAS (Strong) Partial-Signature History-Free EUF-CMA 63
5.1 Multi-Signature EUF-CMA . 131

166

Bibliography

[1] Marius A. Aardal, Diego F. Aranha, Katharina Boudgoust, Sebastian Kolby,
and Akira Takahashi.Aggregating Falcon Signatures with LaBRADOR. Cryp-
tology ePrint Archive, Paper 2024/311. https://eprint.iacr.org/2024/311.
2024 (cit. on p. 3).

[2] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprem-
pre. “From Identification to Signatures via the Fiat-Shamir Transform:
Minimizing Assumptions for Security and Forward-Security.” In: EURO-
CRYPT 2002. Ed. by Lars R. Knudsen. Vol. 2332. LNCS. Springer, Heidel-
berg, Apr. 2002, pp. 418–433. doi: 10.1007/3-540-46035-7_28 (cit. on
p. 98).

[3] Jae Hyun Ahn, Matthew Green, and Susan Hohenberger. “Synchronized
aggregate signatures: new definitions, constructions and applications.” In:
ACM CCS 2010. Ed. by Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly
Shmatikov. ACM Press, Oct. 2010, pp. 473–484. doi: 10.1145/1866307.
1866360 (cit. on p. 2).

[4] Miklós Ajtai. “Generating Hard Instances of Lattice Problems (Extended
Abstract).” In: 28th ACM STOC. ACM Press, May 1996, pp. 99–108. doi:
10.1145/237814.237838 (cit. on p. 36).

[5] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang,
John Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene
Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone. Status re-
port on the third round of the NIST Post-Quantum Cryptography Standardiza-
tion process. Tech. rep. NIST IR 8413. Gaithersburg, MD: National Institute
of Standards and Technology, Sept. 2022. doi: 10.6028/nist.ir.8413-upd1
(cit. on pp. 1, 19).

[6] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis.
“Cryptographic Group Actions and Applications.” In: ASIACRYPT 2020,
Part II. Ed. by Shiho Moriai and Huaxiong Wang. Vol. 12492. LNCS.
Springer, Heidelberg, Dec. 2020, pp. 411–439. doi: 10.1007/978-3-030-
64834-3_14 (cit. on pp. 101, 102, 103).

167

https://eprint.iacr.org/2024/311
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1145/1866307.1866360
https://doi.org/10.1145/1866307.1866360
https://doi.org/10.1145/237814.237838
https://doi.org/10.6028/nist.ir.8413-upd1
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14

BIBLIOGRAPHY

[7] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and
Sri Aravinda Krishnan Thyagarajan. “Lattice-Based SNARKs: Publicly
Verifiable, Preprocessing, and Recursively Composable - (Extended Ab-
stract).” In: CRYPTO 2022, Part II. Ed. by Yevgeniy Dodis and Thomas
Shrimpton. Vol. 13508. LNCS. Springer, Heidelberg, Aug. 2022, pp. 102–
132. doi: 10.1007/978-3-031-15979-4_4 (cit. on pp. 2, 3).

[8] Handan Kilinç Alper and Jeffrey Burdges. “Two-Round Trip SchnorrMulti-
signatures via Delinearized Witnesses.” In: CRYPTO 2021, Part I. Ed. by
Tal Malkin and Chris Peikert. Vol. 12825. LNCS. Virtual Event: Springer,
Heidelberg, Aug. 2021, pp. 157–188. doi: 10.1007/978-3-030-84242-0_7
(cit. on p. 3).

[9] Andris Ambainis, Mike Hamburg, and Dominique Unruh. “Quantum
Security Proofs Using Semi-classical Oracles.” In: CRYPTO 2019, Part II.
Ed. by Alexandra Boldyreva and Daniele Micciancio. Vol. 11693. LNCS.
Springer, Heidelberg, Aug. 2019, pp. 269–295. doi: 10.1007/978-3-030-
26951-7_10 (cit. on p. 33).

[10] Thomas Attema and Serge Fehr. “Parallel Repetition of (𝑘1,… , 𝑘𝜇)-Special-
Sound Multi-round Interactive Proofs.” In: CRYPTO 2022, Part I. Ed.
by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13507. LNCS. Springer,
Heidelberg, Aug. 2022, pp. 415–443. doi: 10.1007/978-3-031-15802-5_15
(cit. on pp. 97, 98).

[11] László Babai. “Trading Group Theory for Randomness.” In: 17th ACM
STOC. ACM Press, May 1985, pp. 421–429. doi: 10.1145/22145.22192
(cit. on pp. 92, 93).

[12] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. “Multisignatures
secure under the discrete logarithm assumption and a generalized forking
lemma.” In: ACM CCS 2008. Ed. by Peng Ning, Paul F. Syverson, and
Somesh Jha. ACM Press, Oct. 2008, pp. 449–458. doi: 10.1145/1455770.
1455827 (cit. on p. 3).

[13] Marco Baldi, Alessandro Barenghi, Luke Beckwith, Jean-François Biasse,
Andre Esser, Kris Gaj, Kamyar Mohajerani, Gerardo Pelosi, Edoardo Per-
sichetti, Markku-Juhani O. Saarinen, Paolo Santini, and Robert Wallace.
LESS — Linear Equivalence Signature Scheme. Tech. rep. available at https:
//csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.
National Institute of Standards and Technology, 2023 (cit. on pp. 4, 91,
110, 113, 117, 120, 153).

[14] Marco Baldi, Marco Bianchi, Franco Chiaraluce, Joachim Rosenthal, and
Davide Schipani. “Using LDGM Codes and Sparse Syndromes to Achieve
Digital Signatures.” In: Post-Quantum Cryptography - 5th International

168

https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-030-84242-0_7
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/978-3-031-15802-5_15
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1145/1455770.1455827
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

BIBLIOGRAPHY

Workshop, PQCrypto 2013. Ed. by Philippe Gaborit. Springer, Heidelberg,
June 2013, pp. 1–15. doi: 10.1007/978-3-642-38616-9_1 (cit. on p. 34).

[15] Gustavo Banegas, Kévin Carrier, André Chailloux, Alain Couvreur,
ThomasDebris-Alazard, PhilippeGaborit, Pierre Karpman, Johanna Loyer,
Ruben Niederhagen, Nicolas Sendrier, Benjamin Smith, and Jean-Pierre
Tillich. Wave. Tech. rep. available at https://csrc.nist.gov/Projects/pqc-
dig-sig/round-1-additional-signatures. National Institute of Standards
and Technology, 2023 (cit. on p. 41).

[16] Gustavo Banegas, Thomas Debris-Alazard, Milena Nedeljković, and Ben-
jamin Smith. Wavelet: Code-based postquantum signatures with fast verifi-
cation on microcontrollers. Cryptology ePrint Archive, Report 2021/1432.
https://eprint.iacr.org/2021/1432. 2021 (cit. on p. 86).

[17] Alessandro Barenghi, Jean-François Biasse, Edoardo Persichetti, and Paolo
Santini. “LESS-FM: Fine-Tuning Signatures from the Code Equivalence
Problem.” In: Post-Quantum Cryptography - 12th International Workshop,
PQCrypto 2021. Ed. by Jung Hee Cheon and Jean-Pierre Tillich. Springer,
Heidelberg, 2021, pp. 23–43. doi: 10.1007/978-3-030-81293-5_2 (cit. on
pp. 4, 91, 103, 108, 112).

[18] Michele Battagliola, Riccardo Longo, Federico Pintore, Edoardo Signorini,
and Giovanni Tognolini. Security of Fixed-Weight Repetitions of Special-
Sound Multi-Round Proofs. Cryptology ePrint Archive, Paper 2024/884.
https://eprint.iacr.org/2024/884. 2024 (cit. on p. 108).

[19] Mihir Bellare, ChanathipNamprempre, andGregoryNeven. “Unrestricted
Aggregate Signatures.” In: ICALP 2007. Ed. by Lars Arge, Christian Cachin,
Tomasz Jurdzinski, and Andrzej Tarlecki. Vol. 4596. LNCS. Springer, Hei-
delberg, July 2007, pp. 411–422. doi: 10.1007/978-3-540-73420-8_37
(cit. on p. 2).

[20] Mihir Bellare and Gregory Neven. “Multi-signatures in the plain public-
Key model and a general forking lemma.” In: ACM CCS 2006. Ed. by Ari
Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati. ACM
Press, Oct. 2006, pp. 390–399. doi: 10.1145/1180405.1180453 (cit. on
p. 3).

[21] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols.” In: ACM CCS 93. Ed. by
Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby. ACM Press, Nov. 1993, pp. 62–73. doi: 10.1145/168588.
168596 (cit. on pp. 4, 11, 23, 24, 27).

169

https://doi.org/10.1007/978-3-642-38616-9_1
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2021/1432
https://doi.org/10.1007/978-3-030-81293-5_2
https://eprint.iacr.org/2024/884
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596

BIBLIOGRAPHY

[22] Mihir Bellare and Phillip Rogaway. “The Exact Security of Digital Signa-
tures: How to Sign with RSA and Rabin.” In: EUROCRYPT’96. Ed. by Ueli
M.Maurer. Vol. 1070. LNCS. Springer, Heidelberg, May 1996, pp. 399–416.
doi: 10.1007/3-540-68339-9_34 (cit. on pp. 4, 23, 27, 29).

[23] Mihir Bellare andMoti Yung. “Certifying Cryptographic Tools: The Case of
Trapdoor Permutations.” In:CRYPTO’92. Ed. by Ernest F. Brickell. Vol. 740.
LNCS. Springer, Heidelberg, Aug. 1993, pp. 442–460. doi: 10.1007/3-540-
48071-4_31 (cit. on p. 51).

[24] Emanuele Bellini, Rusydi H. Makarim, Carlo Sanna, and Javier A. Verbel.
“An Estimator for theHardness of theMQProblem.” In:AFRICACRYPT 22.
Ed. by Lejla Batina and Joan Daemen. Vol. 2022. LNCS. Springer Nature,
July 2022, pp. 323–347. doi: 10.1007/978-3-031-17433-9_14 (cit. on
p. 42).

[25] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and
Mariana Raykova. “On the (in)Security of ROS.” In: Journal of Cryptology
35.4 (Oct. 2022), p. 25. doi: 10.1007/s00145-022-09436-0 (cit. on p. 145).

[26] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg.
“On the inherent intractability of certain coding problems (Corresp.)” In:
IEEE Trans. Inf. Theory 24.3 (1978), pp. 384–386. doi: 10.1109/TIT.1978.
1055873 (cit. on p. 40).

[27] Ward Beullens. “Breaking Rainbow Takes a Weekend on a Laptop.” In:
CRYPTO 2022, Part II. Ed. by Yevgeniy Dodis and Thomas Shrimpton.
Vol. 13508. LNCS. Springer, Heidelberg, Aug. 2022, pp. 464–479. doi:
10.1007/978-3-031-15979-4_16 (cit. on p. 34).

[28] Ward Beullens. “ImprovedCryptanalysis of UOV andRainbow.” In: EURO-
CRYPT 2021, Part I. Ed. by Anne Canteaut and François-Xavier Standaert.
Vol. 12696. LNCS. Springer, Heidelberg, Oct. 2021, pp. 348–373. doi:
10.1007/978-3-030-77870-5_13 (cit. on p. 43).

[29] Ward Beullens. “MAYO: Practical Post-quantum Signatures from Oil-and-
Vinegar Maps.” In: SAC 2021. Ed. by Riham AlTawy and Andreas Hülsing.
Vol. 13203. LNCS. Springer, Heidelberg, Sept. 2022, pp. 355–376. doi:
10.1007/978-3-030-99277-4_17 (cit. on pp. 46, 47, 50, 85).

[30] Ward Beullens, Fabio Campos, Sofía Celi, Basil Hess, and Matthias J. Kan-
nwischer.MAYO. Tech. rep. available at https://csrc.nist.gov/Projects/pqc-
dig-sig/round-1-additional-signatures. National Institute of Standards
and Technology, 2023 (cit. on pp. 4, 34, 47, 48, 82, 84, 85).

170

https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/3-540-48071-4_31
https://doi.org/10.1007/3-540-48071-4_31
https://doi.org/10.1007/978-3-031-17433-9_14
https://doi.org/10.1007/s00145-022-09436-0
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1007/978-3-030-77870-5_13
https://doi.org/10.1007/978-3-030-99277-4_17
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

BIBLIOGRAPHY

[31] Ward Beullens, Ming-Shing Chen, Jintai Ding, Boru Gong, Matthias J. Kan-
nwischer, Jacques Patarin, Bo-Yuan Peng, Dieter Schmidt, Cheng-Jhih Shih,
Chengdong Tao, and Bo-Yin Yang. UOV — Unbalanced Oil and Vinegar.
Tech. rep. available at https://csrc.nist.gov/Projects/pqc-dig-sig/round-
1-additional-signatures. National Institute of Standards and Technology,
2023 (cit. on pp. 4, 34, 44, 48, 81, 82).

[32] Ward Beullens, Shuichi Katsumata, and Federico Pintore. “Calamari and
Falafl: Logarithmic (Linkable) Ring Signatures from Isogenies and Lat-
tices.” In: ASIACRYPT 2020, Part II. Ed. by Shiho Moriai and Huaxiong
Wang. Vol. 12492. LNCS. Springer, Heidelberg, Dec. 2020, pp. 464–492.
doi: 10.1007/978-3-030-64834-3_16 (cit. on pp. 107, 108).

[33] Ward Beullens and Bart Preneel. “Field Lifting for Smaller UOV Public
Keys.” In: INDOCRYPT 2017. Ed. by Arpita Patra and Nigel P. Smart.
Vol. 10698. LNCS. Springer, Heidelberg, Dec. 2017, pp. 227–246 (cit. on
p. 34).

[34] Jean-François Biasse, Giacomo Micheli, Edoardo Persichetti, and Paolo
Santini. “LESS is More: Code-Based Signatures Without Syndromes.”
In: AFRICACRYPT 20. Ed. by Abderrahmane Nitaj and Amr M. Youssef.
Vol. 12174. LNCS. Springer, Heidelberg, July 2020, pp. 45–65. doi: 10.
1007/978-3-030-51938-4_3 (cit. on p. 112).

[35] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing,
and Edoardo Persichetti. “Tighter Proofs of CCA Security in the Quantum
RandomOracle Model.” In: TCC 2019, Part II. Ed. by Dennis Hofheinz and
Alon Rosen. Vol. 11892. LNCS. Springer, Heidelberg, Dec. 2019, pp. 61–90.
doi: 10.1007/978-3-030-36033-7_3 (cit. on p. 33).

[36] Markus Bläser, Zhili Chen, Dung Hoang Duong, Antoine Joux, Tuong
Nguyen, Thomas Plantard, Youming Qiao, Willy Susilo, and Gang Tang.
“On Digital Signatures Based on Group Actions: QROM Security and Ring
Signatures.” In: Post-Quantum Cryptography - 15th International Workshop,
PQCrypto 2024. Ed. by Markku-Juhani Saarinen and Daniel Smith-Tone.
Springer, Heidelberg, June 2024, pp. 227–261. doi: 10.1007/978-3-031-
62743-9_8 (cit. on pp. 100, 105).

[37] Markus Bläser, Dung Hoang Duong, Anand Kumar Narayanan, Thomas
Plantard, Youming Qiao, Arnaud Sipasseuth, and Gang Tang. ALTEQ.
Tech. rep. available at https://csrc.nist.gov/Projects/pqc-dig-sig/round-
1-additional-signatures. National Institute of Standards and Technology,
2023 (cit. on pp. 4, 91, 110, 116, 117, 120, 155).

171

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-36033-7_3
https://doi.org/10.1007/978-3-031-62743-9_8
https://doi.org/10.1007/978-3-031-62743-9_8
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures

BIBLIOGRAPHY

[38] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. “Random Oracles in a QuantumWorld.” In:
ASIACRYPT 2011. Ed. by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073.
LNCS. Springer, Heidelberg, Dec. 2011, pp. 41–69. doi: 10.1007/978-3-
642-25385-0_3 (cit. on pp. 12, 30).

[39] Dan Boneh, Manu Drijvers, and Gregory Neven. “Compact Multi-
signatures for Smaller Blockchains.” In: ASIACRYPT 2018, Part II. Ed. by
Thomas Peyrin and Steven Galbraith. Vol. 11273. LNCS. Springer, Hei-
delberg, Dec. 2018, pp. 435–464. doi: 10.1007/978-3-030-03329-3_15
(cit. on p. 2).

[40] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. “Aggregate
and Verifiably Encrypted Signatures from Bilinear Maps.” In: EURO-
CRYPT 2003. Ed. by Eli Biham. Vol. 2656. LNCS. Springer, Heidelberg,
May 2003, pp. 416–432. doi: 10.1007/3-540-39200-9_26 (cit. on p. 2).

[41] Dan Boneh and Sam Kim. “One-time and interactive aggregate signatures
from lattices.” In: preprint 4 (2020) (cit. on p. 3).

[42] Dan Boneh and Brent Waters. “Constrained Pseudorandom Functions and
Their Applications.” In: ASIACRYPT 2013, Part II. Ed. by Kazue Sako and
Palash Sarkar. Vol. 8270. LNCS. Springer, Heidelberg, Dec. 2013, pp. 280–
300. doi: 10.1007/978-3-642-42045-0_15 (cit. on p. 107).

[43] Giacomo Borin, Edoardo Persichetti, Paolo Santini, Federico Pintore, and
Krijn Reijnders. A Guide to the Design of Digital Signatures based on Crypto-
graphic Group Actions. Cryptology ePrint Archive, Paper 2023/718. https:
//eprint.iacr.org/2023/718. 2023 (cit. on pp. 103, 109).

[44] Joppe W. Bos, Olivier Bronchain, Léo Ducas, Serge Fehr, Yu-Hsuan Huang,
Thomas Pornin, Eamonn W. Postlethwaite, Thomas Prest, Ludo N. Pulles,
and Wessel van Woerden. HAWK. Tech. rep. available at https://csrc.
nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures. National
Institute of Standards and Technology, 2023 (cit. on p. 34).

[45] Cecilia Boschini, Akira Takahashi, and Mehdi Tibouchi. “MuSig-L:
Lattice-Based Multi-signature with Single-Round Online Phase.” In:
CRYPTO 2022, Part II. Ed. by Yevgeniy Dodis and Thomas Shrimpton.
Vol. 13508. LNCS. Springer, Heidelberg, Aug. 2022, pp. 276–305. doi:
10.1007/978-3-031-15979-4_10 (cit. on p. 3).

[46] Leif Both and Alexander May. “Decoding Linear Codes with High Error
Rate and Its Impact for LPN Security.” In: Post-QuantumCryptography - 9th
International Conference, PQCrypto 2018. Ed. by Tanja Lange and Rainer
Steinwandt. Springer, Heidelberg, 2018, pp. 25–46. doi: 10.1007/978-3-
319-79063-3_2 (cit. on p. 40).

172

https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/978-3-642-42045-0_15
https://eprint.iacr.org/2023/718
https://eprint.iacr.org/2023/718
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1007/978-3-031-15979-4_10
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2

BIBLIOGRAPHY

[47] Katharina Boudgoust and Adeline Roux-Langlois. “Overfull: Too Large
Aggregate Signatures Based on Lattices.” In: The Computer Journal 67.2
(2024), pp. 719–727. doi: 10.1093/COMJNL/BXAD013 (cit. on p. 3).

[48] Katharina Boudgoust and Akira Takahashi. “Sequential Half-Aggregation
of Lattice-Based Signatures.” In: ESORICS 2023, Part I. Ed. by Gene Tsudik,
Mauro Conti, Kaitai Liang, and Georgios Smaragdakis. Vol. 14344. LNCS.
Springer, Heidelberg, Sept. 2023, pp. 270–289. doi: 10.1007/978-3-031-
50594-2_14 (cit. on pp. 3, 5, 63, 64, 80, 87, 119, 121).

[49] Kyle Brogle, Sharon Goldberg, and Leonid Reyzin. “Sequential Aggregate
Signatures with Lazy Verification fromTrapdoor Permutations - (Extended
Abstract).” In: ASIACRYPT 2012. Ed. by Xiaoyun Wang and Kazue Sako.
Vol. 7658. LNCS. Springer, Heidelberg, Dec. 2012, pp. 644–662. doi: 10.
1007/978-3-642-34961-4_39 (cit. on pp. 2, 49, 51, 57, 62, 64, 66).

[50] Antoine Casanova, Jean-Charles Faugère, Gilles Macario-Rat, Jacques
Patarin, Ludovic Perret, and Jocelyn Ryckeghem. GeMSS. Tech. rep. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-3-submissions. National
Institute of Standards and Technology, 2020 (cit. on p. 34).

[51] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. “CSIDH: An Efficient Post-Quantum Commutative Group Action.”
In: ASIACRYPT 2018, Part III. Ed. by Thomas Peyrin and Steven Galbraith.
Vol. 11274. LNCS. Springer, Heidelberg, Dec. 2018, pp. 395–427. doi:
10.1007/978-3-030-03332-3_15 (cit. on pp. 4, 91).

[52] André Chailloux and Thomas Debris-Alazard. “Tight and Optimal Re-
ductions for Signatures Based on Average Trapdoor Preimage Sampleable
Functions and Applications to Code-Based Signatures.” In: PKC 2020,
Part II. Ed. by Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas. Vol. 12111. LNCS. Springer, Heidelberg, May 2020, pp. 453–
479. doi: 10.1007/978-3-030-45388-6_16 (cit. on pp. 23, 25, 26, 29, 31,
34, 41, 79).

[53] André Chailloux and Simona Etinski. “On the (in)security of optimized
Stern-like signature schemes.” In: Designs, Codes and Cryptography 92.3
(2024), pp. 803–832. doi: 10.1007/S10623-023-01329-Y (cit. on p. 107).

[54] Konstantinos Chalkias, François Garillot, Yashvanth Kondi, and Valeria
Nikolaenko. “Non-interactive Half-Aggregation of EdDSA and Variants
of Schnorr Signatures.” In: CT-RSA 2021. Ed. by Kenneth G. Paterson.
Vol. 12704. LNCS. Springer, Heidelberg, May 2021, pp. 577–608. doi:
10.1007/978-3-030-75539-3_24 (cit. on p. 119).

173

https://doi.org/10.1093/COMJNL/BXAD013
https://doi.org/10.1007/978-3-031-50594-2_14
https://doi.org/10.1007/978-3-031-50594-2_14
https://doi.org/10.1007/978-3-642-34961-4_39
https://doi.org/10.1007/978-3-642-34961-4_39
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-45388-6_16
https://doi.org/10.1007/S10623-023-01329-Y
https://doi.org/10.1007/978-3-030-75539-3_24

BIBLIOGRAPHY

[55] Sanjit Chatterjee, M. Prem Laxman Das, and Tapas Pandit. “Revisiting
the Security of Salted UOV Signature.” In: Progress in Cryptology - IN-
DOCRYPT 2022 - 23rd International Conference on Cryptology in India,
Kolkata, India, December 11-14, 2022, Proceedings. Ed. by Takanori Isobe
and Santanu Sarkar. Vol. 13774. Lecture Notes in Computer Science. 2022,
pp. 697–719. doi: 10.1007/978-3-031-22912-1_31 (cit. on pp. 32, 34).

[56] Jiahui Chen, Jie Ling, JiantingNing, Zhiniang Peng, andYang Tan. “MQAg-
gregate Signature Schemes with Exact Security Based on UOV Signature.”
In: Information Security and Cryptology - 15th International Conference, In-
scrypt 2019, Nanjing, China, December 6-8, 2019, Revised Selected Papers.
Ed. by Zhe Liu and Moti Yung. Vol. 12020. Lecture Notes in Computer
Science. 2019, pp. 443–451. doi: 10.1007/978-3-030-42921-8_26 (cit. on
pp. 4, 49, 51, 52, 53, 54, 58, 60, 80).

[57] YanboChen. “DualMS: Efficient Lattice-Based Two-RoundMulti-signature
with Trapdoor-Free Simulation.” In: CRYPTO 2023, Part V. Ed. by Helena
Handschuh and Anna Lysyanskaya. Vol. 14085. LNCS. Springer, Heidel-
berg, Aug. 2023, pp. 716–747. doi: 10.1007/978-3-031-38554-4_23
(cit. on p. 3).

[58] Yanbo Chen and Yunlei Zhao. “Half-Aggregation of Schnorr Signatures
with Tight Reductions.” In: ESORICS 2022, Part II. Ed. by Vijayalakshmi
Atluri, Roberto Di Pietro, Christian Damsgaard Jensen, and Weizhi Meng.
Vol. 13555. LNCS. Springer, Heidelberg, Sept. 2022, pp. 385–404. doi:
10.1007/978-3-031-17146-8_19 (cit. on pp. 49, 119).

[59] Yilei Chen, Nicholas Genise, and Pratyay Mukherjee. “Approximate
Trapdoors for Lattices and Smaller Hash-and-Sign Signatures.” In:
ASIACRYPT 2019, Part III. Ed. by Steven D. Galbraith and Shiho Mo-
riai. Vol. 11923. LNCS. Springer, Heidelberg, Dec. 2019, pp. 3–32. doi:
10.1007/978-3-030-34618-8_1 (cit. on p. 26).

[60] Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Lars Ran, Tovoh-
ery Hajatiana Randrianarisoa, Krijn Reijnders, Simona Samardjiska, and
Monika Trimoska. MEDS — Matrix Equivalence Digital Signature. Tech.
rep. available at https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-
additional-signatures. National Institute of Standards and Technology,
2023 (cit. on pp. 4, 91, 110, 115, 117, 120, 155).

[61] Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Tovohery Haja-
tiana Randrianarisoa, Krijn Reijnders, Simona Samardjiska, and Monika
Trimoska. “Take Your MEDS: Digital Signatures from Matrix Code Equiv-
alence.” In: AFRICACRYPT 23. Ed. by Nadia El Mrabet, Luca De Feo, and
Sylvain Duquesne. Vol. 14064. LNCS. Springer Nature, July 2023, pp. 28–
52. doi: 10.1007/978-3-031-37679-5_2 (cit. on pp. 4, 91, 114).

174

https://doi.org/10.1007/978-3-031-22912-1_31
https://doi.org/10.1007/978-3-030-42921-8_26
https://doi.org/10.1007/978-3-031-38554-4_23
https://doi.org/10.1007/978-3-031-17146-8_19
https://doi.org/10.1007/978-3-030-34618-8_1
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1007/978-3-031-37679-5_2

BIBLIOGRAPHY

[62] Tung Chou, Edoardo Persichetti, and Paolo Santini. On Linear Equivalence,
Canonical Forms, and Digital Signatures. Cryptology ePrint Archive, Paper
2023/1533. https://eprint.iacr.org/2023/1533. 2023 (cit. on p. 113).

[63] Benoît Cogliati, Pierre-Alain Fouque, Louis Goubin, and Brice Minaud.
New Security Proofs and Techniques for Hash-and-Sign with Retry Signature
Schemes. Cryptology ePrint Archive, Paper 2024/609. https://eprint.iacr.
org/2024/609. 2024 (cit. on pp. 12, 32).

[64] Nicolas Courtois, Matthieu Finiasz, andNicolas Sendrier. “How to Achieve
a McEliece-Based Digital Signature Scheme.” In: ASIACRYPT 2001. Ed. by
Colin Boyd. Vol. 2248. LNCS. Springer, Heidelberg, Dec. 2001, pp. 157–
174. doi: 10.1007/3-540-45682-1_10 (cit. on p. 34).

[65] Jean-Marc Couveignes. Hard Homogeneous Spaces. Cryptology ePrint
Archive, Report 2006/291. https://eprint.iacr.org/2006/291. 2006 (cit. on
p. 103).

[66] ThomasM. Cover and Joy A. Thomas. Elements of information theory. Hobo-
ken, NJ: Wiley-Interscience, 2006 (cit. on p. 151).

[67] Özgür Dagdelen, Marc Fischlin, and Tommaso Gagliardoni. “The Fiat-
Shamir Transformation in aQuantumWorld.” In:ASIACRYPT2013, Part II.
Ed. by Kazue Sako and Palash Sarkar. Vol. 8270. LNCS. Springer, Heidel-
berg, Dec. 2013, pp. 62–81. doi: 10.1007/978-3-642-42045-0_4 (cit. on
pp. 12, 100).

[68] Ivan Damgård, Oded Goldreich, Tatsuaki Okamoto, and Avi Wigderson.
“Honest Verifier vs Dishonest Verifier in Public Cain Zero-Knowledge
Proofs.” In: CRYPTO’95. Ed. by Don Coppersmith. Vol. 963. LNCS.
Springer, Heidelberg, Aug. 1995, pp. 325–338. doi: 10.1007/3-540-44750-
4_26 (cit. on p. 95).

[69] Ivan Damgård, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi.
“Two-Round n-out-of-n and Multi-signatures and Trapdoor Commitment
from Lattices.” In: PKC 2021, Part I. Ed. by Juan Garay. Vol. 12710. LNCS.
Springer, Heidelberg, May 2021, pp. 99–130. doi: 10.1007/978-3-030-
75245-3_5 (cit. on pp. 3, 131).

[70] Luca De Feo and Steven D. Galbraith. “SeaSign: Compact Isogeny Signa-
tures from Class Group Actions.” In: EUROCRYPT 2019, Part III. Ed. by
Yuval Ishai and Vincent Rijmen. Vol. 11478. LNCS. Springer, Heidelberg,
May 2019, pp. 759–789. doi: 10.1007/978-3-030-17659-4_26 (cit. on
pp. 4, 91, 108).

175

https://eprint.iacr.org/2023/1533
https://eprint.iacr.org/2024/609
https://eprint.iacr.org/2024/609
https://doi.org/10.1007/3-540-45682-1_10
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-642-42045-0_4
https://doi.org/10.1007/3-540-44750-4_26
https://doi.org/10.1007/3-540-44750-4_26
https://doi.org/10.1007/978-3-030-75245-3_5
https://doi.org/10.1007/978-3-030-75245-3_5
https://doi.org/10.1007/978-3-030-17659-4_26

BIBLIOGRAPHY

[71] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. “Wave:
A New Family of Trapdoor One-Way Preimage Sampleable Functions
Based on Codes.” In: ASIACRYPT 2019, Part I. Ed. by Steven D. Galbraith
and Shiho Moriai. Vol. 11921. LNCS. Springer, Heidelberg, Dec. 2019,
pp. 21–51. doi: 10.1007/978-3-030-34578-5_2 (cit. on pp. 34, 41, 50, 86).

[72] Thomas Debris-Alazard and Jean-Pierre Tillich. “Two Attacks on Rank
Metric Code-Based Schemes: RankSign and an IBE Scheme.” In: ASI-
ACRYPT 2018, Part I. Ed. by Thomas Peyrin and Steven Galbraith.
Vol. 11272. LNCS. Springer, Heidelberg, Dec. 2018, pp. 62–92. doi:
10.1007/978-3-030-03326-2_3 (cit. on p. 34).

[73] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan.
“Rate-1 Non-Interactive Arguments for Batch-NP and Applications.” In:
63rd FOCS. IEEE Computer Society Press, Oct. 2022, pp. 1057–1068. doi:
10.1109/FOCS54457.2022.00103 (cit. on p. 2).

[74] Antonio J. Di Scala, Carlo Sanna, and Edoardo Signorini. “On the condition
number of the Vandermonde matrix of the nth cyclotomic polynomial.”
In: Journal of Mathematical Cryptology 15.1 (Nov. 2021), pp. 174–178. doi:
10.1515/JMC-2020-0009 (cit. on p. 5).

[75] Antonio J. Di Scala, Carlo Sanna, and Edoardo Signorini. “RLWE and
PLWE over cyclotomic fields are not equivalent.” In: Applicable Algebra in
Engineering, Communication and Computing 35.3 (2022), pp. 351–358. doi:
10.1007/S00200-022-00552-9 (cit. on p. 5).

[76] Whitfield Diffie and Martin E. Hellman. “New Directions in Cryptogra-
phy.” In: IEEE Transactions on Information Theory 22.6 (1976), pp. 644–654.
doi: 10.1109/TIT.1976.1055638 (cit. on p. 103).

[77] Jintai Ding, Joshua Deaton, Kurt Schmidt, Vishakha, and Zheng Zhang.
“Cryptanalysis of the Lifted Unbalanced Oil Vinegar Signature Scheme.”
In: CRYPTO 2020, Part III. Ed. by Daniele Micciancio and Thomas Ris-
tenpart. Vol. 12172. LNCS. Springer, Heidelberg, Aug. 2020, pp. 279–298.
doi: 10.1007/978-3-030-56877-1_10 (cit. on p. 34).

[78] Jintai Ding, Boru Gong, Hao Guo, Xiaoou He, Yi Jin, Yuansheng Pan,
Dieter Schmidt, Chengdong Tao, Danli Xie, Bo-Yin Yang, and Ziyu Zhao.
TUOV — Triangular Unbalanced Oil and Vinegar. Tech. rep. available at
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.
National Institute of Standards and Technology, 2023 (cit. on pp. 4, 34).

[79] Jintai Ding and Dieter Schmidt. “Rainbow, a New Multivariable Polyno-
mial Signature Scheme.” In: ACNS 05. Ed. by John Ioannidis, Angelos
Keromytis, and Moti Yung. Vol. 3531. LNCS. Springer, Heidelberg, June
2005, pp. 164–175. doi: 10.1007/11496137_12 (cit. on p. 34).

176

https://doi.org/10.1007/978-3-030-34578-5_2
https://doi.org/10.1007/978-3-030-03326-2_3
https://doi.org/10.1109/FOCS54457.2022.00103
https://doi.org/10.1515/JMC-2020-0009
https://doi.org/10.1007/S00200-022-00552-9
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-030-56877-1_10
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1007/11496137_12

BIBLIOGRAPHY

[80] Jintai Ding and Bo-Yin Yang. “Degree of Regularity for HFEv and HFEv-.”
In: Post-Quantum Cryptography - 5th International Workshop, PQCrypto
2013. Ed. by Philippe Gaborit. Springer, Heidelberg, June 2013, pp. 52–66.
doi: 10.1007/978-3-642-38616-9_4 (cit. on p. 34).

[81] JelleDon, Serge Fehr, andChristianMajenz. “TheMeasure-and-Reprogram
Technique 2.0: Multi-round Fiat-Shamir and More.” In: CRYPTO 2020,
Part III. Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12172.
LNCS. Springer, Heidelberg, Aug. 2020, pp. 602–631. doi: 10.1007/978-3-
030-56877-1_21 (cit. on p. 33).

[82] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. “Secu-
rity of the Fiat-Shamir Transformation in the Quantum Random-Oracle
Model.” In:CRYPTO2019, Part II. Ed. byAlexandra Boldyreva andDaniele
Micciancio. Vol. 11693. LNCS. Springer, Heidelberg, Aug. 2019, pp. 356–
383. doi: 10.1007/978-3-030-26951-7_13 (cit. on pp. 12, 100).

[83] Yarkın Doröz, Jeffrey Hoffstein, Joseph H. Silverman, and Berk Sunar.
MMSAT: A Scheme for Multimessage Multiuser Signature Aggregation. Cryp-
tology ePrint Archive, Report 2020/520. https://eprint.iacr.org/2020/520.
2020 (cit. on p. 3).

[84] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss,
Gregory Neven, and Igors Stepanovs. “On the Security of Two-Round
Multi-Signatures.” In: 2019 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2019, pp. 1084–1101. doi: 10.1109/SP.2019.
00050 (cit. on p. 3).

[85] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. “Efficient Identity-
Based Encryption over NTRU Lattices.” In: ASIACRYPT 2014, Part II. Ed.
by Palash Sarkar and Tetsu Iwata. Vol. 8874. LNCS. Springer, Heidelberg,
Dec. 2014, pp. 22–41. doi: 10.1007/978-3-662-45608-8_2 (cit. on p. 34).

[86] Léo Ducas and Phong Q. Nguyen. “Learning a Zonotope and More: Crypt-
analysis of NTRUSign Countermeasures.” In: ASIACRYPT 2012. Ed. by
Xiaoyun Wang and Kazue Sako. Vol. 7658. LNCS. Springer, Heidelberg,
Dec. 2012, pp. 433–450. doi: 10.1007/978-3-642-34961-4_27 (cit. on
p. 33).

[87] Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, and Wessel P. J. van
Woerden. “Hawk: Module LIP Makes Lattice Signatures Fast, Compact
and Simple.” In: ASIACRYPT 2022, Part IV. Ed. by Shweta Agrawal and
Dongdai Lin. Vol. 13794. LNCS. Springer, Heidelberg, Dec. 2022, pp. 65–
94. doi: 10.1007/978-3-031-22972-5_3 (cit. on p. 34).

177

https://doi.org/10.1007/978-3-642-38616-9_4
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-030-56877-1_21
https://doi.org/10.1007/978-3-030-26951-7_13
https://eprint.iacr.org/2020/520
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-031-22972-5_3

BIBLIOGRAPHY

[88] Léo Ducas and Thomas Prest. “Fast Fourier Orthogonalization.” In: Pro-
ceedings of the ACM on International Symposium on Symbolic and Algebraic
Computation, ISSAC 2016, Waterloo, ON, Canada, July 19-22, 2016. Ed. by
Sergei A. Abramov, Eugene V. Zima, and Xiao-Shan Gao. 2016, pp. 191–
198. doi: 10.1145/2930889.2930923 (cit. on p. 34).

[89] Léo Ducas and Wessel P. J. van Woerden. “On the Lattice Isomorphism
Problem, Quadratic Forms, Remarkable Lattices, and Cryptography.” In:
EUROCRYPT 2022, Part III. Ed. by Orr Dunkelman and Stefan Dziem-
bowski. Vol. 13277. LNCS. Springer, Heidelberg, May 2022, pp. 643–673.
doi: 10.1007/978-3-031-07082-2_23 (cit. on pp. 4, 91).

[90] Oliver Eikemeier, Marc Fischlin, Jens-Fabian Götzmann, Anja Lehmann,
Dominique Schröder, Peter Schröder, and Daniel Wagner. “History-Free
Aggregate Message Authentication Codes.” In: SCN 10. Ed. by Juan A.
Garay and Roberto De Prisco. Vol. 6280. LNCS. Springer, Heidelberg, Sept.
2010, pp. 309–328. doi: 10.1007/978-3-642-15317-4_20 (cit. on p. 51).

[91] Rachid El Bansarkhani and Johannes Buchmann. “Towards Lattice Based
Aggregate Signatures.” In: AFRICACRYPT 14. Ed. by David Pointcheval
and Damien Vergnaud. Vol. 8469. LNCS. Springer, Heidelberg, May 2014,
pp. 336–355. doi: 10.1007/978-3-319-06734-6_21 (cit. on pp. 3, 49, 51,
52, 62).

[92] Rachid El Bansarkhani, Mohamed Saied Emam Mohamed, and Albrecht
Petzoldt. “MQSAS - A Multivariate Sequential Aggregate Signature
Scheme.” In: ISC 2016. Ed. by Matt Bishop and Anderson C. A. Nasci-
mento. Vol. 9866. LNCS. Springer, Heidelberg, Sept. 2016, pp. 426–439.
doi: 10.1007/978-3-319-45871-7_25 (cit. on pp. 3, 4, 49, 51, 52, 53, 54,
58, 60, 80).

[93] Rachid El Bansarkhani and Jan Sturm. “An Efficient Lattice-Based Mul-
tisignature Scheme with Applications to Bitcoins.” In: CANS 16. Ed. by
Sara Foresti and Giuseppe Persiano. Vol. 10052. LNCS. Springer, Heidel-
berg, Nov. 2016, pp. 140–155. doi: 10.1007/978-3-319-48965-0_9 (cit. on
p. 3).

[94] Andre Esser and Emanuele Bellini. “Syndrome Decoding Estimator.” In:
PKC 2022, Part I. Ed. by Goichiro Hanaoka, Junji Shikata, and YoheiWatan-
abe. Vol. 13177. LNCS. Springer, Heidelberg, Mar. 2022, pp. 112–141. doi:
10.1007/978-3-030-97121-2_5 (cit. on p. 40).

[95] Jean-Charles Faugère, Valérie Gauthier-Umaña, Ayoub Otmani, Ludovic
Perret, and Jean-Pierre Tillich. “A distinguisher for high rate McEliece
cryptosystems.” In: 2011 IEEE Information Theory Workshop, ITW 2011,
Paraty, Brazil, October 16-20, 2011. IEEE, 2011, pp. 282–286. doi: 10.1109/
ITW.2011.6089437 (cit. on p. 34).

178

https://doi.org/10.1145/2930889.2930923
https://doi.org/10.1007/978-3-031-07082-2_23
https://doi.org/10.1007/978-3-642-15317-4_20
https://doi.org/10.1007/978-3-319-06734-6_21
https://doi.org/10.1007/978-3-319-45871-7_25
https://doi.org/10.1007/978-3-319-48965-0_9
https://doi.org/10.1007/978-3-030-97121-2_5
https://doi.org/10.1109/ITW.2011.6089437
https://doi.org/10.1109/ITW.2011.6089437

BIBLIOGRAPHY

[96] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions to
Identification and Signature Problems.” In:CRYPTO’86. Ed. by AndrewM.
Odlyzko. Vol. 263. LNCS. Springer, Heidelberg, Aug. 1987, pp. 186–194.
doi: 10.1007/3-540-47721-7_12 (cit. on pp. 91, 95, 99).

[97] Matthieu Finiasz. “Parallel-CFS - Strengthening the CFS McEliece-Based
Signature Scheme.” In: SAC 2010. Ed. by Alex Biryukov, Guang Gong, and
Douglas R. Stinson. Vol. 6544. LNCS. Springer, Heidelberg, Aug. 2011,
pp. 159–170. doi: 10.1007/978-3-642-19574-7_11 (cit. on p. 34).

[98] Marc Fischlin, Anja Lehmann, and Dominique Schröder. “History-Free
Sequential Aggregate Signatures.” In: SCN 12. Ed. by Ivan Visconti and
Roberto De Prisco. Vol. 7485. LNCS. Springer, Heidelberg, Sept. 2012,
pp. 113–130. doi: 10.1007/978-3-642-32928-9_7 (cit. on pp. 2, 51, 62).

[99] Nils Fleischhacker, Gottfried Herold, Mark Simkin, and Zhenfei Zhang.
“Chipmunk: Better Synchronized Multi-Signatures from Lattices.” In:
ACM CCS 2023. Ed. by Weizhi Meng, Christian Damsgaard Jensen, Cas
Cremers, and Engin Kirda. ACM Press, Nov. 2023, pp. 386–400. doi: 10.
1145/3576915.3623219 (cit. on p. 3).

[100] Nils Fleischhacker, Mark Simkin, and Zhenfei Zhang. “Squirrel: Efficient
Synchronized Multi-Signatures from Lattices.” In: ACM CCS 2022. Ed. by
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi. ACM Press, Nov.
2022, pp. 1109–1123. doi: 10.1145/3548606.3560655 (cit. on p. 3).

[101] Scott Fluhrer. Reassessing Grover’s Algorithm. Cryptology ePrint Archive,
Report 2017/811. https://eprint.iacr.org/2017/811. 2017 (cit. on p. 18).

[102] Giacomo Fregona, Claudia De Lazzari, Damiano Giani, Fernando Chirici,
Francesco Stocco, Edoardo Signorini, Guglielmo Morgari, Tommaso Oc-
chipinti, Alessandro Zavatta, and Davide Bacco. “Authentication Methods
for Quantum Key Distribution: Challenges and Perspectives.” In: Toward a
Quantum-Safe Communication Infrastructure. Ed. by André Xuereb Rainer
Steinwandt. Vol. 64. NATO Science for Peace and Security Series - D: In-
formation and Communication Security. IOS Press, Apr. 2024, pp. 54–66.
doi: 10.3233/NICSP240007 (cit. on p. 5).

[103] Masayuki Fukumitsu and Shingo Hasegawa. “A Lattice-Based Provably
Secure Multisignature Scheme in Quantum Random Oracle Model.” In:
ProvSec 2020. Ed. by Khoa Nguyen, Wenling Wu, Kwok-Yan Lam, and
Huaxiong Wang. Vol. 12505. LNCS. Springer, Heidelberg, Nov. 2020,
pp. 45–64. doi: 10.1007/978-3-030-62576-4_3 (cit. on p. 3).

179

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-19574-7_11
https://doi.org/10.1007/978-3-642-32928-9_7
https://doi.org/10.1145/3576915.3623219
https://doi.org/10.1145/3576915.3623219
https://doi.org/10.1145/3548606.3560655
https://eprint.iacr.org/2017/811
https://doi.org/10.3233/NICSP240007
https://doi.org/10.1007/978-3-030-62576-4_3

BIBLIOGRAPHY

[104] Hiroki Furue, Yasuhiko Ikematsu, Fumitaka Hoshino, Tsuyoshi Takagi,
Kan Yasuda, Toshiyuki Miyazawa, Tsunekazu Saito, and Akira Nagai. QR-
UOV. Tech. rep. available at https://csrc.nist.gov/Projects/pqc-dig-
sig/round-1-additional-signatures. National Institute of Standards and
Technology, 2023 (cit. on pp. 4, 34).

[105] Philippe Gaborit, Olivier Ruatta, Julien Schrek, and Gilles Zémor. “New
Results for Rank-Based Cryptography.” In: AFRICACRYPT 14. Ed. by
David Pointcheval and Damien Vergnaud. Vol. 8469. LNCS. Springer,
Heidelberg, May 2014, pp. 1–12. doi: 10.1007/978-3-319-06734-6_1
(cit. on p. 34).

[106] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. “Strengthening Zero-
Knowledge Protocols Using Signatures.” In: Journal of Cryptology 19.2
(Apr. 2006), pp. 169–209. doi: 10.1007/s00145-005-0307-3 (cit. on p. 95).

[107] Craig Gentry, Adam O’Neill, and Leonid Reyzin. “A Unified Framework
for Trapdoor-Permutation-Based Sequential Aggregate Signatures.” In:
PKC 2018, Part II. Ed. by Michel Abdalla and Ricardo Dahab. Vol. 10770.
LNCS. Springer, Heidelberg, Mar. 2018, pp. 34–57. doi: 10.1007/978-3-
319-76581-5_2 (cit. on pp. 2, 3).

[108] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors for
hard lattices and new cryptographic constructions.” In: 40th ACM STOC.
Ed. by Richard E. Ladner and Cynthia Dwork. ACM Press, May 2008,
pp. 197–206. doi: 10.1145/1374376.1374407 (cit. on pp. 3, 23, 25, 26, 29,
30, 33, 36, 37, 60, 80).

[109] Craig Gentry and Zulfikar Ramzan. “Identity-Based Aggregate Signa-
tures.” In: PKC 2006. Ed. by Moti Yung, Yevgeniy Dodis, Aggelos Kiayias,
and TalMalkin. Vol. 3958. LNCS. Springer, Heidelberg, Apr. 2006, pp. 257–
273. doi: 10.1007/11745853_17 (cit. on p. 2).

[110] Danilo Gligoroski, Simona Samardjiska, Håkon Jacobsen, and Sergey Bez-
zateev. McEliece in the world of Escher. Cryptology ePrint Archive, Report
2014/360. https://eprint.iacr.org/2014/360. 2014 (cit. on p. 34).

[111] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. “Public-Key Cryp-
tosystems from Lattice Reduction Problems.” In: CRYPTO’97. Ed. by
Burton S. Kaliski Jr. Vol. 1294. LNCS. Springer, Heidelberg, Aug. 1997,
pp. 112–131. doi: 10.1007/BFb0052231 (cit. on pp. 33, 37).

[112] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge
Complexity of Interactive Proof Systems.” In: SIAM Journal on Computing
18.1 (1989), pp. 186–208 (cit. on pp. 94, 95).

180

https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1007/978-3-319-06734-6_1
https://doi.org/10.1007/s00145-005-0307-3
https://doi.org/10.1007/978-3-319-76581-5_2
https://doi.org/10.1007/978-3-319-76581-5_2
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/11745853_17
https://eprint.iacr.org/2014/360
https://doi.org/10.1007/BFb0052231

BIBLIOGRAPHY

[113] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge
Complexity of Interactive Proof-Systems (Extended Abstract).” In: 17th
ACM STOC. ACM Press, May 1985, pp. 291–304. doi: 10.1145/22145.
22178 (cit. on p. 92).

[114] Shafi Goldwasser and Michael Sipser. “Private Coins versus Public Coins
in Interactive Proof Systems.” In: 18th ACM STOC. ACM Press, May 1986,
pp. 59–68. doi: 10.1145/12130.12137 (cit. on p. 93).

[115] Louis Goubin, Benoît Cogliati, Jean-Charles Faugère, Pierre-Alain Fouque,
Robin Larrieu, Gilles Macario-Rat, Brice Minaud, and Jacques Patarin.
PROV — PRovable unbalanced Oil and Vinegar. Tech. rep. available at
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.
National Institute of Standards and Technology, 2023 (cit. on pp. 4, 34,
46, 48, 82, 83, 84).

[116] Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Christian
Majenz. “Tight Adaptive Reprogramming in the QROM.” In: ASI-
ACRYPT 2021, Part I. Ed. by Mehdi Tibouchi and Huaxiong Wang.
Vol. 13090. LNCS. Springer, Heidelberg, Dec. 2021, pp. 637–667. doi:
10.1007/978-3-030-92062-3_22 (cit. on p. 33).

[117] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database
Search.” In: 28th ACM STOC. ACM Press, May 1996, pp. 212–219. doi:
10.1145/237814.237866 (cit. on p. 17).

[118] Gunnar Hartung, Björn Kaidel, Alexander Koch, Jessica Koch, and Andy
Rupp. “Fault-Tolerant Aggregate Signatures.” In: PKC 2016, Part I. Ed.
by Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin
Yang. Vol. 9614. LNCS. Springer, Heidelberg, Mar. 2016, pp. 331–356. doi:
10.1007/978-3-662-49384-7_13 (cit. on p. 2).

[119] JeffreyHoffstein, NickHowgrave-Graham, Jill Pipher, JosephH. Silverman,
and William Whyte. “NTRUSIGN: Digital Signatures Using the NTRU
Lattice.” In: CT-RSA 2003. Ed. by Marc Joye. Vol. 2612. LNCS. Springer,
Heidelberg, Apr. 2003, pp. 122–140. doi: 10.1007/3-540-36563-X_9
(cit. on pp. 33, 37).

[120] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. “NTRU: A Ring-
Based Public Key Cryptosystem.” In: Third Algorithmic Number Theory
Symposium (ANTS). Vol. 1423. LNCS. Springer, Heidelberg, June 1998,
pp. 267–288 (cit. on p. 38).

[121] SusanHohenberger, Venkata Koppula, and BrentWaters. “Universal Signa-
ture Aggregators.” In: EUROCRYPT 2015, Part II. Ed. by Elisabeth Oswald
and Marc Fischlin. Vol. 9057. LNCS. Springer, Heidelberg, Apr. 2015,
pp. 3–34. doi: 10.1007/978-3-662-46803-6_1 (cit. on p. 2).

181

https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/12130.12137
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1007/978-3-030-92062-3_22
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-662-49384-7_13
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/978-3-662-46803-6_1

BIBLIOGRAPHY

[122] Akinori Hosoyamada and Kan Yasuda. “Building Quantum-One-Way
Functions from Block Ciphers: Davies-Meyer and Merkle-Damgård Con-
structions.” In: ASIACRYPT 2018, Part I. Ed. by Thomas Peyrin and Steven
Galbraith. Vol. 11272. LNCS. Springer, Heidelberg, Dec. 2018, pp. 275–
304. doi: 10.1007/978-3-030-03326-2_10 (cit. on p. 25).

[123] James Howe, Thomas Prest, and Daniel Apon. “SoK: How (not) to Design
and Implement Post-quantum Cryptography.” In: CT-RSA 2021. Ed. by
Kenneth G. Paterson. Vol. 12704. LNCS. Springer, Heidelberg, May 2021,
pp. 444–477. doi: 10.1007/978-3-030-75539-3_19 (cit. on p. 26).

[124] Andreas Hülsing, Daniel J. Bernstein, Christoph Dobraunig, Maria
Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis,
Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben
Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe, Jean-
Philippe Aumasson, Bas Westerbaan, and Ward Beullens. SPHINCS+.
Tech. rep. available at https://csrc.nist.gov/Projects/post-quantum-
cryptography/selected-algorithms-2022. National Institute of Standards
and Technology, 2022 (cit. on pp. 2, 19).

[125] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Zero-
knowledge from secure multiparty computation.” In: 39th ACM STOC.
Ed. by David S. Johnson and Uriel Feige. ACM Press, June 2007, pp. 21–30.
doi: 10.1145/1250790.1250794 (cit. on p. 109).

[126] K. Itakura and K. Nakamura. “A public-key cryptosystem suitable for
digital multisignature.” In: NEC research and development 71 (1983), pp. 1–
8 (cit. on p. 3).

[127] Antoine Joux. MPC in the head for isomorphisms and group actions. Cryptol-
ogy ePrint Archive, Paper 2023/664. https://eprint.iacr.org/2023/664.
2023 (cit. on p. 109).

[128] Saqib A. Kakvi, Eike Kiltz, and Alexander May. “Certifying RSA.” In:
ASIACRYPT 2012. Ed. by XiaoyunWang and Kazue Sako. Vol. 7658. LNCS.
Springer, Heidelberg, Dec. 2012, pp. 404–414. doi: 10.1007/978-3-642-
34961-4_25 (cit. on p. 51).

[129] Eike Kiltz, Daniel Masny, and Jiaxin Pan. “Optimal Security Proofs for
Signatures from Identification Schemes.” In: CRYPTO 2016, Part II. Ed. by
Matthew Robshaw and Jonathan Katz. Vol. 9815. LNCS. Springer, Heidel-
berg, Aug. 2016, pp. 33–61. doi: 10.1007/978-3-662-53008-5_2 (cit. on
p. 100).

[130] Aviad Kipnis, Jacques Patarin, and Louis Goubin. “Unbalanced Oil and
Vinegar Signature Schemes.” In: EUROCRYPT’99. Ed. by Jacques Stern.
Vol. 1592. LNCS. Springer, Heidelberg, May 1999, pp. 206–222. doi: 10.
1007/3-540-48910-X_15 (cit. on pp. 34, 44, 50).

182

https://doi.org/10.1007/978-3-030-03326-2_10
https://doi.org/10.1007/978-3-030-75539-3_19
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1145/1250790.1250794
https://eprint.iacr.org/2023/664
https://doi.org/10.1007/978-3-642-34961-4_25
https://doi.org/10.1007/978-3-642-34961-4_25
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/3-540-48910-X_15

BIBLIOGRAPHY

[131] Aviad Kipnis and Adi Shamir. “Cryptanalysis of the Oil & Vinegar Signa-
ture Scheme.” In: CRYPTO’98. Ed. by Hugo Krawczyk. Vol. 1462. LNCS.
Springer, Heidelberg, Aug. 1998, pp. 257–266. doi: 10.1007/BFb0055733
(cit. on pp. 34, 43).

[132] Philip N. Klein. “Finding the closest lattice vector when it’s unusually
close.” In: 11th SODA. Ed. by David B. Shmoys. ACM-SIAM, Jan. 2000,
pp. 937–941 (cit. on p. 37).

[133] Neal Koblitz and Alfred J. Menezes. “The random oracle model: a twenty-
year retrospective.” In: DCC 77.2-3 (2015), pp. 587–610. doi: 10.1007/
s10623-015-0094-2 (cit. on p. 11).

[134] Haruhisa Kosuge and Keita Xagawa. “Probabilistic Hash-and-Sign with
Retry in the Quantum RandomOracle Model.” In: PKC 2024, Part I. Ed. by
Qiang Tang and Vanessa Teague. Vol. 14601. LNCS. Springer, Heidelberg,
Apr. 2024, pp. 259–288. doi: 10.1007/978-3-031-57718-5_9 (cit. on
pp. 12, 23, 27, 29, 32, 33, 35, 43, 45, 49).

[135] Gregory Landais and Nicolas Sendrier. “Implementing CFS.” In: IN-
DOCRYPT 2012. Ed. by Steven D. Galbraith and Mridul Nandi. Vol. 7668.
LNCS. Springer, Heidelberg, Dec. 2012, pp. 474–488. doi: 10.1007/978-3-
642-34931-7_27 (cit. on p. 34).

[136] Kwangsu Lee, Dong Hoon Lee, and Moti Yung. “Sequential Aggregate Sig-
naturesMade Shorter.” In:ACNS 13. Ed. byMichael J. Jacobson Jr., Michael
E. Locasto, PaymanMohassel, and Reihaneh Safavi-Naini. Vol. 7954. LNCS.
Springer, Heidelberg, June 2013, pp. 202–217. doi: 10.1007/978-3-642-
38980-1_13 (cit. on p. 2).

[137] Kwangsu Lee, Dong Hoon Lee, and Moti Yung. “Sequential Aggregate
Signatures with Short Public Keys: Design, Analysis and Implementation
Studies.” In: PKC 2013. Ed. by Kaoru Kurosawa and Goichiro Hanaoka.
Vol. 7778. LNCS. Springer, Heidelberg, Feb. 2013, pp. 423–442. doi: 10.
1007/978-3-642-36362-7_26 (cit. on p. 2).

[138] Wijik Lee, Young-Sik Kim, Yong-Woo Lee, and Jong-Seon No. pqsigRM.
Tech. rep. available at https://csrc.nist.gov/projects/post-quantum-
cryptography/post-quantum-cryptography-standardization/round-1-
submissions. National Institute of Standards and Technology, 2017 (cit. on
p. 34).

[139] A.A. Levitskaya. “Systems of random equations over finite algebraic struc-
tures.” In: Cybernetics and Systems Analysis 41 (2005), pp. 67–93 (cit. on
p. 84).

183

https://doi.org/10.1007/BFb0055733
https://doi.org/10.1007/s10623-015-0094-2
https://doi.org/10.1007/s10623-015-0094-2
https://doi.org/10.1007/978-3-031-57718-5_9
https://doi.org/10.1007/978-3-642-34931-7_27
https://doi.org/10.1007/978-3-642-34931-7_27
https://doi.org/10.1007/978-3-642-38980-1_13
https://doi.org/10.1007/978-3-642-38980-1_13
https://doi.org/10.1007/978-3-642-36362-7_26
https://doi.org/10.1007/978-3-642-36362-7_26
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions

BIBLIOGRAPHY

[140] Qipeng Liu andMark Zhandry. “Revisiting Post-quantum Fiat-Shamir.” In:
CRYPTO2019, Part II. Ed. byAlexandra Boldyreva andDanieleMicciancio.
Vol. 11693. LNCS. Springer, Heidelberg, Aug. 2019, pp. 326–355. doi:
10.1007/978-3-030-26951-7_12 (cit. on pp. 12, 100).

[141] Yu Liu, Haodong Jiang, and Yunlei Zhao. Tighter Post-quantum Proof
for Plain FDH, PFDH and GPV-IBE. Cryptology ePrint Archive, Report
2022/1441. https://eprint.iacr.org/2022/1441. 2022 (cit. on p. 12).

[142] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters.
“Sequential Aggregate Signatures and Multisignatures Without Random
Oracles.” In: EUROCRYPT 2006. Ed. by Serge Vaudenay. Vol. 4004. LNCS.
Springer, Heidelberg, May 2006, pp. 465–485. doi: 10.1007/11761679_28
(cit. on p. 2).

[143] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham.
“Sequential Aggregate Signatures from Trapdoor Permutations.” In: EU-
ROCRYPT 2004. Ed. by Christian Cachin and Jan Camenisch. Vol. 3027.
LNCS. Springer, Heidelberg, May 2004, pp. 74–90. doi: 10.1007/978-3-
540-24676-3_5 (cit. on pp. 2, 4, 49, 50, 51, 52, 54, 55, 60, 61, 62).

[144] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Pe-
ter Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-
DILITHIUM. Tech. rep. available at https://csrc.nist.gov/Projects/post-
quantum-cryptography/selected-algorithms-2022. National Institute of
Standards and Technology, 2022 (cit. on pp. 2, 19).

[145] Changshe Ma, Jian Weng, Yingjiu Li, and Robert H. Deng. “Efficient dis-
crete logarithm based multi-signature scheme in the plain public key
model.” In: DCC 54.2 (2010), pp. 121–133. doi: 10.1007/s10623-009-
9313-z (cit. on p. 3).

[146] Florence Jessie MacWilliams. “Combinatorial problems of elementary
abelian groups.” PhD thesis. Radcliffe College, 1962 (cit. on p. 112).

[147] Tsutomu Matsumoto and Hideki Imai. “Public Quadratic Polynominal-
Tuples for Efficient Signature-Verification and Message-Encryption.” In:
EUROCRYPT’88. Ed. by C. G. Günther. Vol. 330. LNCS. Springer, Heidel-
berg, May 1988, pp. 419–453. doi: 10.1007/3-540-45961-8_39 (cit. on
p. 42).

[148] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille.
“Simple Schnorr multi-signatures with applications to Bitcoin.” In: DCC
87.9 (2019), pp. 2139–2164. doi: 10.1007/s10623-019-00608-x (cit. on
p. 3).

184

https://doi.org/10.1007/978-3-030-26951-7_12
https://eprint.iacr.org/2022/1441
https://doi.org/10.1007/11761679_28
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.1007/978-3-540-24676-3_5
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/s10623-009-9313-z
https://doi.org/10.1007/s10623-009-9313-z
https://doi.org/10.1007/3-540-45961-8_39
https://doi.org/10.1007/s10623-019-00608-x

BIBLIOGRAPHY

[149] Alessio Meneghetti and Edoardo Signorini. “History-Free Sequential Ag-
gregation of Hash-and-Sign Signatures.” In:CT-RSA 2024. Ed. by Elisabeth
Oswald. Vol. 14643. LNCS. Springer, Heidelberg, May 2024, pp. 187–223.
doi: 10.1007/978-3-031-58868-6_8 (cit. on p. 50).

[150] Daniele Micciancio and Chris Peikert. “Hardness of SIS and LWE with
Small Parameters.” In: CRYPTO 2013, Part I. Ed. by Ran Canetti and Juan
A. Garay. Vol. 8042. LNCS. Springer, Heidelberg, Aug. 2013, pp. 21–39.
doi: 10.1007/978-3-642-40041-4_2 (cit. on p. 36).

[151] Daniele Micciancio and Chris Peikert. “Trapdoors for Lattices: Simpler,
Tighter, Faster, Smaller.” In: EUROCRYPT 2012. Ed. by David Pointcheval
and Thomas Johansson. Vol. 7237. LNCS. Springer, Heidelberg, Apr. 2012,
pp. 700–718. doi: 10.1007/978-3-642-29011-4_41 (cit. on p. 34).

[152] Daniele Micciancio and Oded Regev. “Worst-Case to Average-Case Re-
ductions Based on Gaussian Measures.” In: 45th FOCS. IEEE Computer
Society Press, Oct. 2004, pp. 372–381. doi: 10.1109/FOCS.2004.72 (cit. on
p. 36).

[153] Dustin Moody and Ray A. Perlner. “Vulnerabilities of “McEliece in the
World of Escher”.” In: Post-Quantum Cryptography - 7th International Work-
shop, PQCrypto 2016. Ed. by Tsuyoshi Takagi. Springer, Heidelberg, 2016,
pp. 104–117. doi: 10.1007/978-3-319-29360-8_8 (cit. on p. 34).

[154] Guglielmo Morgari, Edoardo Signorini, and Francesco Stocco. “On the
classical authentication in Quantum Key Distribution.” In: CrypTOrino
2021. Vol. 4. Collectio Ciphrarum. Aracne, May 2021 (cit. on p. 5).

[155] Katherine Morrison. “Equivalence for Rank-Metric and Matrix Codes and
Automorphism Groups of Gabidulin Codes.” In: IEEE Transactions on
Information Theory 60.11 (2014), pp. 7035–7046. doi: 10.1109/TIT.2014.
2359198 (cit. on p. 114).

[156] Gregory Neven. “Efficient Sequential Aggregate Signed Data.” In: EURO-
CRYPT 2008. Ed. by Nigel P. Smart. Vol. 4965. LNCS. Springer, Heidelberg,
Apr. 2008, pp. 52–69. doi: 10.1007/978-3-540-78967-3_4 (cit. on pp. 2, 3,
4, 49, 51, 52, 62, 64).

[157] Phong Q. Nguyen and Oded Regev. “Learning a Parallelepiped: Cryptanal-
ysis of GGH and NTRU Signatures.” In: EUROCRYPT 2006. Ed. by Serge
Vaudenay. Vol. 4004. LNCS. Springer, Heidelberg, May 2006, pp. 271–288.
doi: 10.1007/11761679_17 (cit. on p. 33).

[158] Jonas Nick, TimRuffing, and Yannick Seurin. “MuSig2: Simple Two-Round
Schnorr Multi-signatures.” In: CRYPTO 2021, Part I. Ed. by Tal Malkin
and Chris Peikert. Vol. 12825. LNCS. Virtual Event: Springer, Heidelberg,
Aug. 2021, pp. 189–221. doi: 10.1007/978-3-030-84242-0_8 (cit. on p. 3).

185

https://doi.org/10.1007/978-3-031-58868-6_8
https://doi.org/10.1007/978-3-642-40041-4_2
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.1007/978-3-319-29360-8_8
https://doi.org/10.1109/TIT.2014.2359198
https://doi.org/10.1109/TIT.2014.2359198
https://doi.org/10.1007/978-3-540-78967-3_4
https://doi.org/10.1007/11761679_17
https://doi.org/10.1007/978-3-030-84242-0_8

BIBLIOGRAPHY

[159] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. “MuSig-DN:
Schnorr Multi-Signatures with Verifiably Deterministic Nonces.” In: ACM
CCS 2020. Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna. ACM Press, Nov. 2020, pp. 1717–1731. doi: 10.1145/3372297.
3417236 (cit. on p. 3).

[160] Antonio Nicolosi, Maxwell N. Krohn, Yevgeniy Dodis, and DavidMazières.
“Proactive Two-Party Signatures for User Authentication.” In: NDSS 2003.
The Internet Society, Feb. 2003 (cit. on p. 3).

[161] NIST. Call for Additional Digital Signature Schemes for the Post-Quantum
Cryptography Standardization Process. URL: https://csrc.nist.gov/projects/
pqc-dig-sig/standardization/call-for-proposals. 2022 (cit. on pp. 2, 19,
91, 110).

[162] NIST. Post-Quantum Cryptography Standardization. URL: https://csrc.nist.
gov/Projects/Post-Quantum-Cryptography. 2017 (cit. on pp. 1, 19).

[163] Kazuo Ohta and Tatsuaki Okamoto. “Multi-signature schemes secure
against active insider attacks.” In: IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences 82.1 (1999), pp. 21–31
(cit. on p. 3).

[164] Tatsuaki Okamoto. “A digital multisignature scheme using bijective
public-key cryptosystems.” In: ACM Transactions on Computer Systems
(TOCS) 6.4 (1988), pp. 432–441 (cit. on p. 3).

[165] Jacques Patarin. “Hidden Fields Equations (HFE) and Isomorphisms of
Polynomials (IP): Two New Families of Asymmetric Algorithms.” In: EU-
ROCRYPT’96. Ed. by Ueli M. Maurer. Vol. 1070. LNCS. Springer, Hei-
delberg, May 1996, pp. 33–48. doi: 10.1007/3-540-68339-9_4 (cit. on
p. 34).

[166] Jacques Patarin. “The oil and vinegar algorithm for signatures.” In:
Dagstuhl Workshop on Cryptography, 1997. 1997 (cit. on pp. 34, 43).

[167] Jacques Patarin, Benoît Cogliati, Jean-Charles Faugère, Pierre-Alain
Fouque, Louis Goubin, Robin Larrieu, Gilles Macario-Rat, and Brice
Minaud. VOX. Tech. rep. available at https://csrc.nist.gov/Projects/pqc-
dig-sig/round-1-additional-signatures. National Institute of Standards
and Technology, 2023 (cit. on pp. 4, 34).

[168] Jacques Patarin, Nicolas Courtois, and Louis Goubin. “QUARTZ, 128–Bit
Long Digital Signatures.” In: CT-RSA 2001. Ed. by David Naccache.
Vol. 2020. LNCS. Springer, Heidelberg, Apr. 2001, pp. 282–297. doi:
10.1007/3-540-45353-9_21 (cit. on p. 34).

186

https://doi.org/10.1145/3372297.3417236
https://doi.org/10.1145/3372297.3417236
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://doi.org/10.1007/3-540-68339-9_4
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1007/3-540-45353-9_21

BIBLIOGRAPHY

[169] Edoardo Persichetti and Paolo Santini. “A New Formulation of the Linear
Equivalence Problem and Shorter LESS Signatures.” In: ASIACRYPT 2023,
Part VII. Ed. by Jian Guo and Ron Steinfeld. Vol. 14444. LNCS. Springer,
Heidelberg, Dec. 2023, pp. 351–378. doi: 10.1007/978-981-99-8739-9_12
(cit. on p. 113).

[170] Albrecht Petzoldt, Enrico Thomae, Stanislav Bulygin, and Christopher
Wolf. “Small Public Keys and Fast Verification forℳultivariate 𝒬uadratic
Public Key Systems.” In: CHES 2011. Ed. by Bart Preneel and Tsuyoshi
Takagi. Vol. 6917. LNCS. Springer, Heidelberg, Sept. 2011, pp. 475–490.
doi: 10.1007/978-3-642-23951-9_31 (cit. on p. 43).

[171] Aurélie Phesso and Jean-Pierre Tillich. “An Efficient Attack on a Code-
Based Signature Scheme.” In: Post-Quantum Cryptography - 7th Interna-
tional Workshop, PQCrypto 2016. Ed. by Tsuyoshi Takagi. Springer, Hei-
delberg, 2016, pp. 86–103. doi: 10.1007/978-3-319-29360-8_7 (cit. on
p. 34).

[172] Thomas Prest, Pierre-Alain Fouque, JeffreyHoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Tech. rep. available at https://csrc.
nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.
National Institute of Standards and Technology, 2022 (cit. on pp. 2, 19,
34, 38, 39, 80).

[173] Robert Ransom. Constant-time verification for cut-and-choose-based signa-
tures. Cryptology ePrint Archive, Report 2020/1184. https://eprint.iacr.
org/2020/1184. 2020 (cit. on p. 108).

[174] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems.” In: Com-
munications of the Association for Computing Machinery 21.2 (Feb. 1978),
pp. 120–126. doi: 10.1145/359340.359342 (cit. on pp. 1, 23, 33).

[175] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. “On Provable
Security of UOV and HFE Signature Schemes against Chosen-Message
Attack.” In: Post-Quantum Cryptography - 4th International Workshop,
PQCrypto 2011. Ed. by Bo-Yin Yang. Springer, Heidelberg, Nov. 2011,
pp. 68–82. doi: 10.1007/978-3-642-25405-5_5 (cit. on pp. 23, 25, 32, 34,
43, 45, 84).

[176] Claus-Peter Schnorr. “Efficient Identification and Signatures for Smart
Cards.” In: CRYPTO’89. Ed. by Gilles Brassard. Vol. 435. LNCS. Springer,
Heidelberg, Aug. 1990, pp. 239–252. doi: 10.1007/0-387-34805-0_22
(cit. on p. 1).

187

https://doi.org/10.1007/978-981-99-8739-9_12
https://doi.org/10.1007/978-3-642-23951-9_31
https://doi.org/10.1007/978-3-319-29360-8_7
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2020/1184
https://eprint.iacr.org/2020/1184
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/978-3-642-25405-5_5
https://doi.org/10.1007/0-387-34805-0_22

BIBLIOGRAPHY

[177] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards.”
In: Journal of Cryptology 4.3 (Jan. 1991), pp. 161–174. doi: 10 . 1007 /
BF00196725 (cit. on p. 91).

[178] Travis L. Scholten, Carl J. Williams, Dustin Moody, Michele Mosca,
William Hurley, William J. Zeng, Matthias Troyer, and Jay M. Gam-
betta. Assessing the Benefits and Risks of Quantum Computers. 2024. arXiv:
2401.16317 (cit. on p. 18).

[179] Adi Shamir. “IP=PSPACE.” In: 31st FOCS. IEEE Computer Society Press,
Oct. 1990, pp. 11–15. doi: 10.1109/FSCS.1990.89519 (cit. on p. 93).

[180] Peter W. Shor. “Algorithms for Quantum Computation: Discrete Loga-
rithms and Factoring.” In: 35th FOCS. IEEE Computer Society Press, Nov.
1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700 (cit. on p. 18).

[181] Victor Shoup. Sequences of games: a tool for taming complexity in security
proofs. Cryptology ePrint Archive, Report 2004/332. https://eprint.iacr.
org/2004/332. 2004 (cit. on p. 11).

[182] Damien Stehlé and Ron Steinfeld. “Making NTRU as Secure as Worst-Case
Problems over Ideal Lattices.” In: EUROCRYPT 2011. Ed. by Kenneth G.
Paterson. Vol. 6632. LNCS. Springer, Heidelberg, May 2011, pp. 27–47.
doi: 10.1007/978-3-642-20465-4_4 (cit. on p. 34).

[183] Anton Stolbunov. “Cryptographic schemes based on isogenies.” PhD thesis.
Norwegian University of Science and Technology, 2012 (cit. on p. 107).

[184] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jo-
vanovic, LinusGasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. “Keep-
ing Authorities “Honest or Bust” with Decentralized Witness Cosigning.”
In: 2016 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, May 2016, pp. 526–545. doi: 10.1109/SP.2016.38 (cit. on p. 3).

[185] Gang Tang, Dung Hoang Duong, Antoine Joux, Thomas Plantard, Youm-
ing Qiao, and Willy Susilo. “Practical Post-Quantum Signature Schemes
from Isomorphism Problems of Trilinear Forms.” In: EUROCRYPT 2022,
Part III. Ed. by Orr Dunkelman and Stefan Dziembowski. Vol. 13277.
LNCS. Springer, Heidelberg, May 2022, pp. 582–612. doi: 10.1007/978-3-
031-07082-2_21 (cit. on pp. 4, 91, 115).

[186] Chengdong Tao, Albrecht Petzoldt, and Jintai Ding. “Efficient Key Re-
covery for All HFE Signature Variants.” In: CRYPTO 2021, Part I. Ed. by
Tal Malkin and Chris Peikert. Vol. 12825. LNCS. Virtual Event: Springer,
Heidelberg, Aug. 2021, pp. 70–93. doi: 10.1007/978-3-030-84242-0_4
(cit. on p. 34).

188

https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://arxiv.org/abs/2401.16317
https://doi.org/10.1109/FSCS.1990.89519
https://doi.org/10.1109/SFCS.1994.365700
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1109/SP.2016.38
https://doi.org/10.1007/978-3-031-07082-2_21
https://doi.org/10.1007/978-3-031-07082-2_21
https://doi.org/10.1007/978-3-030-84242-0_4

BIBLIOGRAPHY

[187] Rodolfo Canto Torres and Nicolas Sendrier. “Analysis of Information Set
Decoding for a Sub-linear Error Weight.” In: Post-Quantum Cryptogra-
phy - 7th International Workshop, PQCrypto 2016. Ed. by Tsuyoshi Takagi.
Springer, Heidelberg, 2016, pp. 144–161. doi: 10.1007/978-3-319-29360-
8_10 (cit. on p. 40).

[188] Dominique Unruh. “Computationally Binding Quantum Commitments.”
In: EUROCRYPT 2016, Part II. Ed. by Marc Fischlin and Jean-Sébastien
Coron. Vol. 9666. LNCS. Springer, Heidelberg, May 2016, pp. 497–527.
doi: 10.1007/978-3-662-49896-5_18 (cit. on p. 100).

[189] Dominique Unruh. “Post-quantum Security of Fiat-Shamir.” In: ASI-
ACRYPT 2017, Part I. Ed. by Tsuyoshi Takagi and Thomas Peyrin.
Vol. 10624. LNCS. Springer, Heidelberg, Dec. 2017, pp. 65–95. doi:
10.1007/978-3-319-70694-8_3 (cit. on pp. 12, 100).

[190] Lih-Chung Wang, Chun-Yen Chou, Jintai Ding, Yen-Liang Kuan, Ming-
Siou Li, Bo-Shu Tseng, Po-En Tseng, and Chia-Chun Wang. SNOVA. Tech.
rep. available at https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-
additional-signatures. National Institute of Standards and Technology,
2023 (cit. on pp. 4, 34).

[191] Zhipeng Wang and Qianhong Wu. “A Practical Lattice-Based Sequential
Aggregate Signature.” In: ProvSec 2019. Ed. by Ron Steinfeld and Tsz Hon
Yuen. Vol. 11821. LNCS. Springer, Heidelberg, Oct. 2019, pp. 94–109. doi:
10.1007/978-3-030-31919-9_6 (cit. on pp. 3, 80).

[192] Brent Waters and David J. Wu. “Batch Arguments for NP and More from
Standard Bilinear Group Assumptions.” In: CRYPTO 2022, Part II. Ed.
by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13508. LNCS. Springer,
Heidelberg, Aug. 2022, pp. 433–463. doi: 10.1007/978-3-031-15979-4_15
(cit. on p. 2).

[193] Takashi Yamakawa andMark Zhandry. “Classical vs QuantumRandomOr-
acles.” In: EUROCRYPT 2021, Part II. Ed. by Anne Canteaut and François-
Xavier Standaert. Vol. 12697. LNCS. Springer, Heidelberg, Oct. 2021,
pp. 568–597. doi: 10.1007/978-3-030-77886-6_20 (cit. on p. 29).

[194] Mark Zhandry. “Secure Identity-Based Encryption in the Quantum Ran-
dom Oracle Model.” In: CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and
Ran Canetti. Vol. 7417. LNCS. Springer, Heidelberg, Aug. 2012, pp. 758–
775. doi: 10.1007/978-3-642-32009-5_44 (cit. on pp. 12, 29).

189

https://doi.org/10.1007/978-3-319-29360-8_10
https://doi.org/10.1007/978-3-319-29360-8_10
https://doi.org/10.1007/978-3-662-49896-5_18
https://doi.org/10.1007/978-3-319-70694-8_3
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://doi.org/10.1007/978-3-030-31919-9_6
https://doi.org/10.1007/978-3-031-15979-4_15
https://doi.org/10.1007/978-3-030-77886-6_20
https://doi.org/10.1007/978-3-642-32009-5_44

	Introduction
	Preliminaries
	Notation
	Provable Security
	Cryptographic Primitives
	One-Way Functions
	Hash Functions
	Digital Signatures
	Aggregate Signatures
	Sequential Aggregate Signatures

	Post-Quantum Cryptography
	NIST Standardization Processes

	I Trapdoor-based Signature Aggregation
	Hash-and-Sign Paradigm
	Trapdoor Functions
	Preimage Sampleable Functions

	Hash-and-Sign Schemes
	Security Analysis

	Post-Quantum Hash-and-Sign Schemes
	Lattice-based Cryptography
	Code-based Cryptography
	Multivariate-based Cryptography

	History-Free Sequential Aggregation of Hash-and-Sign Signatures
	Sequential Aggregation from Trapdoor Permutation
	LMRS Scheme for Generic Trapdoor Functions
	The Scheme
	Provable Security

	Security of Existing Multivariate SAS Schemes
	Description of the Forgery
	Discussion

	Sequential Aggregation of Hash-and-Sign Signatures
	History-Free Sequential Aggregate Signature
	The Scheme
	Security Proof

	Optimizing the Scheme for (Average) Preimage Sampleable Functions
	PSF-based Signatures
	APSF-based Signatures

	Instantiation and Evaluation
	Original Unbalanced Oil and Vinegar
	Provable Unbalanced Oil and Vinegar
	MAYO
	Wave
	Signature-Specific Optimizations

	II Group Action-based Signature Aggregation
	Signatures from Cryptographic Group Actions
	Interactive Proofs
	Zero-Knowledge Proofs
	Sigma-Protocols
	Fiat-Shamir Transform

	Group Actions
	Effective Group Actions
	Computational Assumptions
	Digital Signatures

	Signature Optimizations
	Compression of Random Elements
	Seed Trees
	Fixed-Weight Challenges
	Multiple Public Keys
	Further Optimizations

	Post-Quantum Group Actions
	Code Equivalence
	Linear Code Equivalence
	Matrix Code Equivalence
	Alternating Trilinear Form Equivalence

	Aggregate and Multi-Signatures from Group Actions
	Sequential Half-Aggregation of Group Action-Based Signatures
	Security Proof
	Support for Standard Optimizations

	Multi-Signature from Cryptographic Group Action
	Multi-Signatures
	Sigma Protocol Variant
	The Multi-Signature Scheme
	Security Proof
	Signature Optimizations

	Instantiation and Evaluation
	LESS
	MEDS
	ALTEQ

	Conclusions
	Abbreviations
	List of Tables
	List of Figures
	List of Algorithms
	List of Experiments
	Bibliography

