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» A passive attacker can read messages on C.

» An active attacker has complete control on C.

We need an authenticated channel.
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Goal: build an authenticated channel from an insecure channel and a
shared secret key.
» Choose a tag-generation algorithm MAC: K x M — T and a
verification algorithm Vf: K x M x T — {0,1}.

» Given a message m and the key k a tag t is computed.
> The couple (m,t) is sent to Bob and intercepted by Eve.
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Goal: build an authenticated channel from an insecure channel and a
shared secret key.

» Choose a tag-generation algorithm MAC: K x M — T and a
verification algorithm Vf: K x M x T — {0,1}.

» Given a message m and the key k a tag t is computed.
> The couple (m,t) is sent to Bob and intercepted by Eve.
> Bob verifies whether the received tag t’ is valid.
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ka(m, MACk(m)) =1.
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Real-world MACs

We require:

» Correctness: for every k € K, m € M, it holds
ka(m, MACk(m)) =1.

> Security: given access to an oracle of MAC(-), the attacker has a
negligible probability of forging a valid couple (m, t).

Secure MACs can be built from many cryptographic primitives:
» From block ciphers: CBC-MAC, GMAC.
» From hash functions: HMAC, KMAC.
» From pseudorandom function families: Poly1305.

All the above constructions have computational security.
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Computational vs Information-Theoretic Security

» Computational security is defined in terms of a security parameter n
and the presence of a probabilistic polynomial-time (PPT) adversary.

» A PPT adversary has a bounded computational power which is
polynomial in n.

A cryptographic scheme is computationally secure if any PPT adversary
has negligible probability (w.r.t. n) of breaking the scheme.

» Information-Theoretic security (ITS) is defined in the presence of an
adversary with unlimited computational power.

A cryptographic scheme is ITS if any adversary has negligible fixed
probability of breaking the scheme.
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e-Almost Strongly Universal, (e-ASU,) functions
A family of functions H = {h: M — T} is e-ASUy, for e > 1/|T], if
1. Foranyme M and t €T

)
heH| h(m) =t} = —
the #] hm) = e} = 1
2. Forany mim' e M,m# m' and t,t' € T
[(h € H | h(m) = £, h(m') = ¢/}] < %
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> Let H = {hi}kex, given a shared random key k, the tag t on
message m is obtained as t = hy(m).

» The attacker can try to:
1. Impersonate Alice, succeeding with probability 1/|7].
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> Let H = {hi}kex, given a shared random key k, the tag t on
message m is obtained as t = hy(m).
» The attacker can try to:

1. Impersonate Alice, succeeding with probability 1/|7].
2. Substitute Alice, succeeding with probability at most ¢.

Telsy -



Telsy

Section 2

Authentication in Quantum Key Distribution



_ Authentication QKD
QKD in two slides |

Q |¢> | Quantum channel Q | |w> ﬂ)

Alice Bob

Goal: build an ITS key exchange from a quantum channel.

Telsy o



QKD in two slides |

Q |¢> | Quantum channel Q | |w> ﬂ

Alice ) Bob

Eve

Goal: build an ITS key exchange from a quantum channel.

» No-cloning theorem prevents a passive attacker on the quantum
channel.

Telsy o



QKD in two slides |

Q |¢> | Quantum channel Q | |¢> ﬂ)

Alice [¥) o) Bob

Eve

Goal: build an ITS key exchange from a quantum channel.

» No-cloning theorem prevents a passive attacker on the quantum
channel.

» An active attacker can perform a man-in-the-middle attack.
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Quantum Key Distribution (QKD) builds an ITS key exchange from a
quantum channel and an authenticated classical channel.
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Quantum Key Distribution (QKD) builds an ITS key exchange from a
quantum channel and an authenticated classical channel.

» QKD protocols involve the use of classical authentication schemes.
» Overall unbounded security requires ITS MACs.

» A portion of the exchanged key can be used as the one-time
authentication key for the next round.
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QKD composability

Composability principle

The composition of secure cryptographic schemes should also be secure.

» QKD produces keys that are not uniformly distributed for the
attacker.

» ASU,-based one-time MACs are originally formulated in terms of
uniformly distributed keys.

Both QKD [Ben+05] and ASU,-based one-time MACs [AL14] are proved
to be secure in the Universally Composable (UC) framework.
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Key length
The length of the authentication key directly impacts the QKD key rate.
» The optimal case for e = 1/|T| is impractical.

Let H = {he: M — T }rex be e-ASUp, € > 1/|T|. If [M| > |T]|, then
log|KC| > 2log(| 7| — 1) — log(e[T] - 1)

» In many constructions both ¢ and |K| depends on |M|.

Idea [WC81]: recycle part of the key.
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Key recycling

Let 7 = (F2)" and let H = {hx: M — T }xex be e-ASUy. Then
{8k () == hie (1) @ k2 | (ka, ko) € K x T}
is e-ASU,.

> The tag for message m is obtained as hy,(m) & ko.
» The OTP key ko “hides” the value hy, (m).
» k; can be recycled in subsequent authentication rounds.

Key length consumption is asymptotically the optimal value log|T| = t.

Previous results on composability do not apply directly to this scheme.

= Telsy 13



Conclusions

» “Classical” information theory and cryptography are fundamental
components of QKD.

Telsy 14



Conclusions

» “Classical” information theory and cryptography are fundamental
components of QKD.

» QKD literature often underestimates the role of authentication.

Telsy 14



Authentication QKD

Conclusions

» “Classical” information theory and cryptography are fundamental
components of QKD.

» QKD literature often underestimates the role of authentication.

» Non-definitive results on the authentication method based on key
recycling.

Telsy 14



Authentication

QKD

Conclusions

Telsy

“Classical” information theory and cryptography are fundamental
components of QKD.

QKD literature often underestimates the role of authentication.

Non-definitive results on the authentication method based on key
recycling.

Risk of security gap between theoretical model and practical
realization.
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