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Introduction



Cryptographic Group Action

Let G be a group, X be a set and ⋆ : G ×X → X.

(G, X, ⋆) is a group action if ⋆ is compatible with the group operation:

• e ⋆ x = x;
• g ⋆ (h ⋆ x) = (gh) ⋆ x;

for all g, h ∈ G and x ∈ X.

Cryptographic group action means that it has interesting properties for cryptographic
applications.

Effective
Polynomial time algorithms for the
following:

• Operations on G.
• Computing ⋆ on almost all G, X.
• Uniformly sampling from G and

X.

Security
One-way assumption (GAIP): given
x, y ∈ X, find, if any, g ∈ G such
that y = g ⋆ x

x y�g
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Fiat-Shamir Transform

Transform any public-coin interactive proof into a non-interactive proof in the random
oracle model1.

Idea
Replace the challenge from the verifier with the output of a random oracle on the
current transcript (add a message to obtain a signature-scheme).

Prover(x, w) Verifier(x)

com← P1(x) com

ch ch←$ Ch

rsp← P2(x, w, com, ch) rsp

1/0← V(x, com, ch, rsp)

The protocol is commitment-recoverable, if com can be recovered from ch and rsp.

1Fiat and Shamir. “How to prove yourself: Practical solutions to identification and signature problems”. 1986.
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Σ-Protocol from Group Actions

Consider a cryptographic group action (G, X, ⋆) and x ∈ X. Let g ∈ G be the witness
for the statement (x, y) with y = g ⋆ x.

x x̃ y

g

g̃ g̃g−1Base element Public Key

• The commitment is g̃ ⋆ x, where g̃ ←$ G.
• If ch = 0, reveal rsp = g̃.
• If ch = 1, reveal rsp = g̃g−1.

It requires λ parallel repetition before applying Fiat-Shamir.
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Signature Optimizations

Signature size is dominated by the size of elements in G.

Compression of Random Elements
Responses to ch = 0 are random elements in G and can be replaced by a seed.

Unbalanced Challenges
Use a challenge string with a fixed small weight ω.

 Fewer group elements to be sent =⇒ smaller signature.
 More repetitions =⇒ less efficient signing and verification.

Multiple Public Keys
Use multiple public keys and multi-bit challenges.

 Lower soundness error =⇒ fewer parallel repetition.
 Increased public key size.

Idea: Leverage group factorisation to restrict the group action on a quotient space
=⇒ same parametrization with smaller group elements.
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Group Action from Linear Code
Equivalence



Linear Codes

• Given n, k and q, a [n, k] Linear Code C is a subspace of Fn
q of dimension k.

• The weight is the usual Hamming Weight

wt(v) = |{ i | vi ̸= 0 }|.

• A linear code can be defined via a Generator Matrix G ∈ Fk×n
q :

v ∈ C ⇐⇒ ∃x ∈ Fk
q s.t. v = xG.

G is unique up to a change of basis, i.e. C(G) = C(SG) for any S ∈ GLk(q).
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Isometries of Linear Codes

An isometry is a map ϕ : Fn
q → Fn

q that preserves the weight:

wt(ϕ(x)) = wt(x), for all x ∈ Fn
q .

Isometries that preserve the Hamming weight:

• Permutations: ϕ(x) = xP with P ∈ Sn.
• Monomials (permutations and scaling factors): ϕ(x) = x(PD) with P ∈ Sn and

D ∈ (F∗
q)n.

Code Equivalence
Two codes C and C′ are equivalent if there is an isometry between them, i.e.
ϕ(C) = C′.
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Code Equivalence and Related Problems

We can formulate the following equivalence problem using generator matrices.

Linear Equivalence Problem (LEP)
Let G1, G2 ∈ Fk×n

q be two generator matrices for two equivalent codes C1 and C2.
Find two matrices L ∈ GLk(q) and Q ∈ Mn(q) such that

G2 = LG1Q

We can formulate it as the GAIP of a group action of G = GLk(q)×Mn(q) on the set
X of full rank matrices in Fk×n

q :

⋆ : G ×X → X, ((L, Q), G) 7→ LGQ
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Systematic Form

Since G is acting on codes, we can choose a canonical representation (e.g. systematic
form).

(Q, G) 7→ SF(GQ).

In practice, we are considering the restricted action of Mn(q) on the set of [n, k] linear
codes over Fq.

Can this be generalized?

 Yes! Up to semi-direct product factorisation G = G1 ⋊ G2.
 Without requiring new assumptions on the group action.
 Same parametrizations, smaller signatures.
 Requires finding a canonical form for the relation induced by G1.
 Potential overhead introduced by the computation of the canonical form.
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Equivalence Relation from
Groups Factorisation



Equivalence Relation from Groups Factorisation

Suppose we can write G = G1 × G2 and that it is efficient to find a decomposition
g = (g1, g2) for all g ∈ G.

Define the following relation on X ×X:

x∼ y ⇐⇒ ∃g1 ∈ G1 such that y = (g1, e) ⋆ x.

∼ is an equivalence relation and we can define a new group action (G2, X∼, ⋆̃) on the
quotient space X∼ as follows

g2 ⋆̃ [x]∼ 7→ [(e, g2) ⋆ x]∼

The action above is well-defined when G1 is normal in G.
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First Attempt: Finding Orbit Equivalence

Orbit Equivalence Algorithm
Let (G, X, ⋆) be a group action such that G = G1 × G2. An orbit equivalence
algorithm for G1 is a polynomial-time computable map OE : X ×X → G1 ∪ {⊥} such
that OE(x0, x1) ∈ G1 and (OE(x0, x1), e) ⋆ x0 = x1 if and only if x0 and x1 are in
the same orbit with respect to ∼, and OE(x0, x1) = ⊥ otherwise.

x0

x1

OE

11



Sigma Protocol from Orbit Equivalence

Consider a cryptographic group action (G, X, ⋆), x ∈ X,G = G1 × G2 and a OE
algorithm for G1. Let g2 ∈ G2 be the witness for the statement (x, y).

x tildex

x̃

ỹ

y

∼
g2

(h1, h2)

∼
h2g−1

2OE?
Base element Public Key

• The commitment is (h1, h2) ⋆ x, where (h1, h2)←$ G1 × G2.
• If ch = 0, reveal rsp = (h1, h2).
• If ch = 1, reveal rsp = h2g−1

2 .
• Compute ỹ = (e, rsp) ⋆ y and verify OE(x̃, ỹ) ̸= ⊥

 Not commitment recoverable!
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• Compute ỹ = (e, rsp) ⋆ y and verify OE(x̃, ỹ) ̸= ⊥
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ỹ

y

∼
g2

(h1, h2)

∼
h2g−1

2OE?
Base element Public Key

Commitment

• The commitment is (h1, h2) ⋆ x, where (h1, h2)←$ G1 × G2.
• If ch = 0, reveal rsp = (h1, h2).
• If ch = 1, reveal rsp = h2g−1

2 .
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 Not commitment recoverable!

12



Sigma Protocol from Orbit Equivalence

Consider a cryptographic group action (G, X, ⋆), x ∈ X,G = G1 × G2 and a OE
algorithm for G1. Let g2 ∈ G2 be the witness for the statement (x, y).

x tildex

x̃

ỹ
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Canonical Forms

To compute ⋆̃, we use a special class of representatives.

Definition2

A canonical form with failure for a relation ∼ on X ×X is a map CF : X → X ∪ {⊥}
such that, for any x, y ∈ X,

1. if x∼ y then CF(x) = CF(y);
2. if CF(x) ̸= ⊥ then CF(x)∼ x.

The quotient action is given by g2 ⋆̃ x 7→ CF((e, g2) ⋆ x).

x x̃ y

∼
g2

∼
h2

∼
h2g−1

2

2Chou, Persichetti, and Santini. “On Linear Equivalence, Canonical Forms, and Digital Signatures”. 2023.
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Remarks

x x̃ y

∼
g2

∼
h2

∼
h2g−1

2
Base element Public KeyCommitment

• GAIP⋆ for (G, X, ⋆) and GAIP⋆̃ for (G2, X∼, ⋆̃) are equivalent.

• The use of a canonical form compresses both signatures and public keys:
• Respond to challenges using only elements of G2.
• Canonical representatives of X∼ may have a particular form (e.g. systematic form).
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Applications



Application to LESS

Our canonical form for LEP can be applied to LESS.

Parameter set Sec. Level LEP IS-LEP3 CF-LEP4 This work

LESS-1b I 15726 8646 2496 9096
LESS-3b III 30408 17208 5658 18858
LESS-5b V 53896 30616 10056 34696

 We obtain a compression only with respect to a basic form of LESS.
 Recently, [CPS23] introduced a new notion of linear equivalence (which can be

partially framed within our framework).

3Persichetti and Santini. “A New Formulation of the Linear Equivalence Problem and Shorter LESS Signatures”.
2023.
4Chou, Persichetti, and Santini. “On Linear Equivalence, Canonical Forms, and Digital Signatures”. 2023.
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Matrix Code Equivalence I

Given n, m, k and q, a Matrix Code C is a linear subspace of Fn×m
q of dimension k.

The weight is given by the rank: wt(A) = rk(A).

In the rank metric, the code equivalence can be formulated as follows.

Matrix Code Equivalence (MCE)
Let {Mi}i, {Ni}i be two bases for two equivalent codes C1 and C2. Find two
matrices A ∈ GLn(q) and B ∈ GLm(q) such that

⟨AMiB⟩i = ⟨Ni⟩.

16



Matrix Code Equivalence II

Using representatives, we can formulate the MCE as the GAIP of a group action of
G ≃ GLn(q)︸ ︷︷ ︸

G1

×GLm(q)×GLk(q)︸ ︷︷ ︸
G2

on the set X = {(M1, . . . , Mk) |Mi ∈ Fn×m
q }:

(A, B, C) ⋆ (M1, . . . , Mk) = C(AM1B, . . . , AMkB).

Or, equivalently, by defining M = [M1 |M2 | . . . |Mk] ∈ Fn×mk
q ,

(A, B, C) ⋆ M = CM(AT ⊗B).

We can apply our framework by defining the following relation induced by
G2 = GLm(q)×GLk(q):

M ∼N ⇐⇒ ∃B ∈ GLm(q), C ∈ GLk(q) s.t. N = CM(In ⊗B) = (In, B, C) ⋆ M,

which induces the group action (GLn(q), X∼, ⋆̃).

17
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G ≃ GLn(q)︸ ︷︷ ︸

G1

×GLm(q)×GLk(q)︸ ︷︷ ︸
G2

on the set X = {(M1, . . . , Mk) |Mi ∈ Fn×m
q }:

(A, B, C) ⋆ (M1, . . . , Mk) = C(AM1B, . . . , AMkB).

Or, equivalently, by defining M = [M1 |M2 | . . . |Mk] ∈ Fn×mk
q ,

(A, B, C) ⋆ M = CM(AT ⊗B).

We can apply our framework by defining the following relation induced by
G2 = GLm(q)×GLk(q):

M ∼N ⇐⇒ ∃B ∈ GLm(q), C ∈ GLk(q) s.t. N = CM(In ⊗B) = (In, B, C) ⋆ M,

which induces the group action (GLn(q), X∼, ⋆̃).
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Canonical Form for MCE I

We assume n = m. Let M = [M1 |M2 | . . . |Mk] ∈ Fn×nk
q and let X, Y ∈ GLn(q).

1. Put M in systematic form.
2. Find the solution set V of matrices B ∈ GL(n, q) such that B−1M̄j′B is equal to

circ(en) on the first n− 1 columns.
3. Find the unique solution B ∈ V that minimizes the first column of B−1M̄3B

(according to an ordering for Fn
q ).

M = [M1 |M2 | . . . |Mk]

[In |M−1
1 M2 | . . . |M−1

1 Mk]

[In | M̄2 | . . . | M̄k]

SF

M̄i = M−1
1 Mi

N = [XM1Y | XM2Y | . . . | XMkY ]

[In | Y −1M−1
1 M2Y | . . . | Y −1M−1

1 MkY ]

[In | Y −1M̄2Y | . . . | Y −1M̄kY ]

SF

M̄i = M−1
1 Mi

We need to find a canonical form for a tuple of simultaneously similar matrices.
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Canonical Form for MCE II

We assume n = m. Let M = [M1 |M2 | . . . |Mk] ∈ Fn×nk
q and let X, Y ∈ GLn(q).

1. Put M in systematic form.

2. Find the solution set V of matrices B ∈ GLn(q) such that B−1M̄2B is equal to
circ(en) on the first n− 1 columns.

3. Find the unique solution B ∈ V that minimizes the first column of B−1M̄3B

(according to an ordering for Fn
q ).

[In | M̄2 | . . . | M̄k] [In | Y −1M̄2Y | . . . | Y −1M̄kY ]

M̄2 is similar to its Frobenius Normal Form (FNF). If M̄2 is non-degenerate, its FNF
has the following form

0 0 . . . 0 −c0

1 0 . . . 0 −c1

0 1 . . . 0 −c2
...

...
. . .

...
...

0 0 . . . 1 −cn−1

 , where
n−1∑
i=0

ciX
i = det(M̄2 −XIn)
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Canonical Form for MCE III

We assume n = m. Let M = [M1 |M2 | . . . |Mk] ∈ Fn×nk
q and let X, Y ∈ GLn(q).

1. Put M in systematic form.
2. Find the solution set V of matrices B ∈ GLn(q) such that B−1M̄2B is equal to

circ(en) on the first n− 1 columns.

3. Find the unique solution B ∈ V that minimizes the first column of B−1M̄3B

(according to an ordering for Fn
q ).

[In | M̄2 | . . . | M̄k]

[In | B−1M̄2B | . . . | B−1M̄kB]

B

[In | Y −1M̄2Y | . . . | Y −1M̄kY ]

[In | B′−1Y −1M̄2Y B′ | . . . | B′−1Y −1M̄kY B′]

[In | B−1M̄2B | . . . | B−1M̄kB]

B′

B′ = Y −1B

There is a one-to-one correspondence between V and V ′ given by B 7→ Y −1B.

20



Canonical Form for MCE III

We assume n = m. Let M = [M1 |M2 | . . . |Mk] ∈ Fn×nk
q and let X, Y ∈ GLn(q).

1. Put M in systematic form.
2. Find the solution set V of matrices B ∈ GLn(q) such that B−1M̄2B is equal to

circ(en) on the first n− 1 columns.
3. Find the unique solution B ∈ V that minimizes the first column of B−1M̄3B

(according to an ordering for Fn
q ).

[In | M̄2 | . . . | M̄k]

[In | B−1M̄2B | . . . | B−1M̄kB]

B

[In | Y −1M̄2Y | . . . | Y −1M̄kY ]

[In | B′−1Y −1M̄2Y B′ | . . . | B′−1Y −1M̄kY B′]

[In | B−1M̄2B | . . . | B−1M̄kB]

B′

B′ = Y −1B

There is a one-to-one correspondence between V and V ′ given by B 7→ Y −1B.

20



Canonical Form for MCE III

We assume n = m. Let M = [M1 |M2 | . . . |Mk] ∈ Fn×nk
q and let X, Y ∈ GLn(q).

1. Put M in systematic form.
2. Find the solution set V of matrices B ∈ GLn(q) such that B−1M̄2B is equal to

circ(en) on the first n− 1 columns.
3. Find the unique solution B ∈ V that minimizes the first column of B−1M̄3B

(according to an ordering for Fn
q ).

[In | M̄2 | . . . | M̄k]

[In | B−1M̄2B | . . . | B−1M̄kB]

B

[In | Y −1M̄2Y | . . . | Y −1M̄kY ]

[In | B′−1Y −1M̄2Y B′ | . . . | B′−1Y −1M̄kY B′]

[In | B−1M̄2B | . . . | B−1M̄kB]

B′

B′ = Y −1B

There is a one-to-one correspondence between V and V ′ given by B 7→ Y −1B. 20



Designated Forms

 The canonical form for MCE is expected polynomial time but inefficient (runs in
O(qn6)).

We can use a near-canonical form and an additional information from the commitment
to efficiently designate a representative in X∼.

x tildex

x̃

ỹ

y

∼
g2

∼
h2

∼
h2g−1

2

In the previous procedure, B is randomly chosen in V and the first column of
B−1M̄3B is sent together with the response.

21



Designated Forms

 The canonical form for MCE is expected polynomial time but inefficient (runs in
O(qn6)).

We can use a near-canonical form and an additional information from the commitment
to efficiently designate a representative in X∼.

x tildex

x̃

ỹ
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Application to MEDS

Our canonical form for MCE can be applied to MEDS.

Parameter set Sec. Level MEDS5 This work Gain

MEDS-9923 I 9896 6074 38.6%
MEDS-13220 I 12976 7516 42.1%
MEDS-41711 III 41080 23062 43.9%
MEDS-69497 III 54736 29788 45.6%
MEDS-134180 V 132424 70284 46.9%
MEDS-167717 V 165332 86462 47.7%

 The signature size is almost halved.
 We introduce a computational overhead in the signing and verification procedure.

5Chou et al. “Matrix Equivalence Digital Signature”. 2023.
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Conclusions



Conclusions and Future Work

• Recipe: factor G ≃ G1 ⋊ G2 and find a canonical form for the relation induced by
G1.
 Same computational assumption.
 Smaller signature and (somewhat) smaller public key.
 Computational overhead.

• Extended usage: the restricted action is still a group action and can be employed
beyond digital signatures.

• Possible cryptanalytic advantages: once we have found a canonical form, we
can focus on the action of G2 and solve GAIP⋆̃.

Future work:

• Extend the framework to other kinds of group factorization.
• Integrate new optimizations for MEDS.
• Apply the framework to ALTEQ.
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Questions?
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