

Group Factorisation for Smaller Signatures from Cryptographic Group Actions

Edoardo Signorini Joint work with Giuseppe D'Alconzo and Alessio Meneghetti

CrypTOgraphy Days, Torino - May 17, 2024

- 1. Introduction
- 2. Group Action from Linear Code Equivalence
- 3. Equivalence Relation from Groups Factorisation
- 4. Applications
- 5. Conclusions

Introduction

Let $\mathcal G$ be a group, X be a set and $\star\colon \mathcal G\times X\to X.$

 (\mathcal{G},X,\star) is a group action if \star is compatible with the group operation:

- $e \star x = x;$
- $g \star (h \star x) = (gh) \star x;$

for all $g, h \in \mathcal{G}$ and $x \in X$.

Let $\mathcal G$ be a group, X be a set and $\star\colon \mathcal G\times X\to X.$

 (\mathcal{G},X,\star) is a group action if \star is compatible with the group operation:

- $e \star x = x;$
- $g \star (h \star x) = (gh) \star x;$

for all $g, h \in \mathcal{G}$ and $x \in X$.

Cryptographic group action means that it has interesting properties for cryptographic applications.

Let $\mathcal G$ be a group, X be a set and $\star\colon \mathcal G\times X\to X.$

 (\mathcal{G},X,\star) is a group action if \star is compatible with the group operation:

- $e \star x = x;$
- $g \star (h \star x) = (gh) \star x;$

for all $g, h \in \mathcal{G}$ and $x \in X$.

Cryptographic group action means that it has interesting properties for cryptographic applications.

Effective

Polynomial time algorithms for the following:

- Operations on \mathcal{G} .
- Computing \star on almost all \mathcal{G}, X .
- Uniformly sampling from *G* and *X*.

Let \mathcal{G} be a group, X be a set and $\star \colon \mathcal{G} \times X \to X$.

 (\mathcal{G},X,\star) is a group action if \star is compatible with the group operation:

- $e \star x = x;$
- $g \star (h \star x) = (gh) \star x;$

for all $g, h \in \mathcal{G}$ and $x \in X$.

Cryptographic group action means that it has interesting properties for cryptographic applications.

Effective

Polynomial time algorithms for the following:

- Operations on \mathcal{G} .
- Computing \star on almost all \mathcal{G}, X .
- Uniformly sampling from *G* and *X*.

Security

One-way assumption (GAIP): given $x,y\in X$, find, if any, $g\in \mathcal{G}$ such that $y=g\star x$

Fiat-Shamir Transform

Transform any public-coin interactive proof into a *non-interactive* proof in the random oracle model¹.

¹Fiat and Shamir. "How to prove yourself: Practical solutions to identification and signature problems". 1986.

Fiat-Shamir Transform

Transform any public-coin interactive proof into a *non-interactive* proof in the random oracle model¹.

Idea

Replace the challenge from the verifier with the output of a random oracle on the current transcript (add a message to obtain a signature-scheme).

 $\begin{array}{ccc} \mathsf{Prover}(x,w) & \mathsf{Verifier}(x) \\ \mathsf{com} \leftarrow \mathsf{P}_1(x) \\ \mathsf{ch} \leftarrow \mathsf{H}(\mathsf{com},\mathsf{msg}) \\ \\ \mathsf{rsp} \leftarrow \mathsf{P}_2(x,w,\mathsf{com},\mathsf{ch}) & \underbrace{\mathsf{com},\mathsf{rsp}} \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ &$

¹Fiat and Shamir. "How to prove yourself: Practical solutions to identification and signature problems". 1986.

Fiat-Shamir Transform

Transform any public-coin interactive proof into a *non-interactive* proof in the random oracle model¹.

Idea

Replace the challenge from the verifier with the output of a random oracle on the current transcript (add a message to obtain a signature-scheme).

 $\begin{array}{ccc} \mathsf{Prover}(x,w) & \mathsf{Verifier}(x) \\ \mathsf{com} \leftarrow \mathsf{P}_1(x) \\ \mathsf{ch} \leftarrow \mathsf{H}(\mathsf{com},\mathsf{msg}) \\ \mathsf{rsp} \leftarrow \mathsf{P}_2(x,w,\mathsf{com},\mathsf{ch}) & \underbrace{\mathsf{com},\mathsf{rsp}} \\ & & \mathsf{ch} \leftarrow \mathsf{H}(\mathsf{com},\mathsf{msg}) \\ & & 1/0 \leftarrow \mathsf{V}(x,\mathsf{com},\mathsf{ch},\mathsf{rsp}) \end{array}$

<u>The protocol is commitment-recoverable</u>, if com can be recovered from ch and rsp. ¹Fiat and Shamir. "How to prove yourself: Practical solutions to identification and signature problems". 1986.

Consider a cryptographic group action (\mathcal{G}, X, \star) and $x \in X$. Let $g \in \mathcal{G}$ be the witness for the statement (x, y) with $y = g \star x$.

Consider a cryptographic group action (\mathcal{G}, X, \star) and $x \in X$. Let $g \in \mathcal{G}$ be the witness for the statement (x, y) with $y = g \star x$.

• The commitment is $\tilde{g} \star x$, where $\tilde{g} \leftarrow G$.

Consider a cryptographic group action (\mathcal{G}, X, \star) and $x \in X$. Let $g \in \mathcal{G}$ be the witness for the statement (x, y) with $y = g \star x$.

- The commitment is $\tilde{g} \star x$, where $\tilde{g} \leftarrow G$.
- If ch = 0, reveal rsp = \tilde{g} .

Consider a cryptographic group action (\mathcal{G}, X, \star) and $x \in X$. Let $g \in \mathcal{G}$ be the witness for the statement (x, y) with $y = g \star x$.

- The commitment is $\tilde{g} \star x$, where $\tilde{g} \leftarrow G$.
- If ch = 0, reveal rsp = \tilde{g} .
- If ch = 1, reveal rsp = $\tilde{g}g^{-1}$.

Consider a cryptographic group action (\mathcal{G}, X, \star) and $x \in X$. Let $g \in \mathcal{G}$ be the witness for the statement (x, y) with $y = g \star x$.

- The commitment is $\tilde{g} \star x$, where $\tilde{g} \leftarrow G$.
- If ch = 0, reveal $rsp = \tilde{g}$.
- If ch = 1, reveal rsp = $\tilde{g}g^{-1}$.

It requires λ parallel repetition before applying Fiat-Shamir.

Signature size is dominated by the size of elements in $\mathcal{G}.$

Compression of Random Elements

Responses to ch = 0 are random elements in \mathcal{G} and can be replaced by a seed.

Signature size is dominated by the size of elements in $\ensuremath{\mathcal{G}}.$

Compression of Random Elements

Responses to ch = 0 are random elements in \mathcal{G} and can be replaced by a seed.

Unbalanced Challenges

Use a challenge string with a fixed small weight ω .

ightharpoonup Fewer group elements to be sent \implies smaller signature.

 \mathbf{Q} More repetitions \implies less efficient signing and verification.

Signature size is dominated by the size of elements in $\ensuremath{\mathcal{G}}.$

Compression of Random Elements

Responses to ch = 0 are random elements in G and can be replaced by a seed.

Unbalanced Challenges

Use a challenge string with a fixed small weight ω .

ightharpoonup Fewer group elements to be sent \implies smaller signature.

 \mathbf{Q} More repetitions \implies less efficient signing and verification.

Multiple Public Keys

Use multiple public keys and multi-bit challenges.

 \bigcirc Lower soundness error \implies fewer parallel repetition.

♥ Increased public key size.

Signature size is dominated by the size of elements in $\mathcal{G}.$

Compression of Random Elements

Responses to ch = 0 are random elements in G and can be replaced by a seed.

Unbalanced Challenges

Use a challenge string with a fixed small weight ω .

 \mathcal{O} Fewer group elements to be sent \implies smaller signature.

 \mathbf{Q} More repetitions \implies less efficient signing and verification.

Multiple Public Keys

Use multiple public keys and multi-bit challenges.

 \bigcirc Lower soundness error \implies fewer parallel repetition.

♥ Increased public key size.

Idea: Leverage group factorisation to restrict the group action on a quotient space \implies same parametrization with smaller group elements.

Group Action from Linear Code Equivalence

- Given n, k and q, a [n, k] Linear Code \mathfrak{C} is a subspace of \mathbb{F}_q^n of dimension k.
- The weight is the usual Hamming Weight

$$\mathsf{wt}(v) = |\{ i \mid v_i \neq 0 \}|.$$

• A linear code can be defined via a Generator Matrix $G \in \mathbb{F}_{q}^{k \times n}$:

$$v \in \mathfrak{C} \iff \exists x \in \mathbb{F}_q^k \text{ s.t. } v = xG.$$

G is unique up to a change of basis, i.e. $\mathfrak{C}(G) = \mathfrak{C}(SG)$ for any $S \in \mathrm{GL}_k(q)$.

An isometry is a map $\phi\colon \mathbb{F}_q^n\to \mathbb{F}_q^n$ that preserves the weight:

 $\operatorname{wt}(\phi(x)) = \operatorname{wt}(x), \quad \text{for all } x \in \mathbb{F}_q^n.$

An isometry is a map $\phi \colon \mathbb{F}_q^n \to \mathbb{F}_q^n$ that preserves the weight:

$$\operatorname{wt}(\phi(x)) = \operatorname{wt}(x), \text{ for all } x \in \mathbb{F}_q^n.$$

Isometries that preserve the Hamming weight:

- **Permutations**: $\phi(x) = xP$ with $P \in S_n$.
- Monomials (permutations and scaling factors): $\phi(x) = x(PD)$ with $P \in S_n$ and $D \in (\mathbb{F}_q^*)^n$.

An isometry is a map $\phi \colon \mathbb{F}_q^n \to \mathbb{F}_q^n$ that preserves the weight:

$$\operatorname{wt}(\phi(x)) = \operatorname{wt}(x), \text{ for all } x \in \mathbb{F}_q^n.$$

Isometries that preserve the Hamming weight:

- **Permutations**: $\phi(x) = xP$ with $P \in S_n$.
- Monomials (permutations and scaling factors): $\phi(x) = x(PD)$ with $P \in S_n$ and $D \in (\mathbb{F}_q^*)^n$.

Code Equivalence

Two codes $\mathfrak C$ and $\mathfrak C'$ are equivalent if there is an isometry between them, i.e. $\phi(\mathfrak C)=\mathfrak C'.$

We can formulate the following equivalence problem using generator matrices.

Linear Equivalence Problem (LEP)

Let $G_1, G_2 \in \mathbb{F}_q^{k \times n}$ be two generator matrices for two equivalent codes \mathfrak{C}_1 and \mathfrak{C}_2 . Find two matrices $L \in \mathrm{GL}_k(q)$ and $Q \in \mathrm{M}_n(q)$ such that

 $G_2 = LG_1Q$

We can formulate the following equivalence problem using generator matrices.

Linear Equivalence Problem (LEP)

Let $G_1, G_2 \in \mathbb{F}_q^{k \times n}$ be two generator matrices for two equivalent codes \mathfrak{C}_1 and \mathfrak{C}_2 . Find two matrices $L \in \mathrm{GL}_k(q)$ and $Q \in \mathrm{M}_n(q)$ such that

$$G_2 = LG_1Q$$

We can formulate it as the GAIP of a group action of $\mathcal{G} = \operatorname{GL}_k(q) \times \operatorname{M}_n(q)$ on the set X of full rank matrices in $\mathbb{F}_q^{k \times n}$:

 $\star \colon \mathcal{G} \times X \to X, \quad ((L,Q),G) \mapsto LGQ$

 $(Q, G) \mapsto \operatorname{SF}(GQ).$

In practice, we are considering the restricted action of $M_n(q)$ on the set of [n, k] linear codes over \mathbb{F}_q .

 $(Q, G) \mapsto \operatorname{SF}(GQ).$

In practice, we are considering the restricted action of $M_n(q)$ on the set of [n, k] linear codes over \mathbb{F}_q .

Can this be generalized?

 $(Q, G) \mapsto SF(GQ).$

In practice, we are considering the restricted action of $M_n(q)$ on the set of [n, k] linear codes over \mathbb{F}_q .

Can this be generalized?

 \mathcal{O} Yes! Up to semi-direct product factorisation $\mathcal{G} = \mathcal{G}_1 \rtimes \mathcal{G}_2$.

🖒 Without requiring new assumptions on the group action.

🖒 Same parametrizations, smaller signatures.

$$(Q,G) \mapsto \operatorname{SF}(GQ).$$

In practice, we are considering the restricted action of $M_n(q)$ on the set of [n, k] linear codes over \mathbb{F}_q .

Can this be generalized?

- \mathcal{O} Yes! Up to semi-direct product factorisation $\mathcal{G} = \mathcal{G}_1 \rtimes \mathcal{G}_2$.
- $m \ref{O}$ Without requiring new assumptions on the group action.
- 🖒 Same parametrizations, smaller signatures.
- A Requires finding a canonical form for the relation induced by \mathcal{G}_1 .
- A Potential overhead introduced by the computation of the canonical form.

Equivalence Relation from Groups Factorisation

Suppose we can write $\mathcal{G} = \mathcal{G}_1 \times \mathcal{G}_2$ and that it is efficient to find a decomposition $g = (g_1, g_2)$ for all $g \in \mathcal{G}$.

Define the following relation on $X \times X$:

 $x \sim y \iff \exists g_1 \in \mathcal{G}_1 \text{ such that } y = (g_1, e) \star x.$

Suppose we can write $\mathcal{G} = \mathcal{G}_1 \times \mathcal{G}_2$ and that it is efficient to find a decomposition $g = (g_1, g_2)$ for all $g \in \mathcal{G}$.

Define the following relation on $X \times X$:

$$x \sim y \iff \exists g_1 \in \mathcal{G}_1 \text{ such that } y = (g_1, e) \star x.$$

 \sim is an equivalence relation and we can define a new group action $(\mathcal{G}_2, X_\sim, \tilde{\star})$ on the quotient space X_\sim as follows

$$g_2 \,\tilde{\star} \, [x]_{\sim} \mapsto [(e, g_2) \star x]_{\sim}$$

Suppose we can write $\mathcal{G} = \mathcal{G}_1 \times \mathcal{G}_2$ and that it is efficient to find a decomposition $g = (g_1, g_2)$ for all $g \in \mathcal{G}$.

Define the following relation on $X \times X$:

$$x \sim y \iff \exists g_1 \in \mathcal{G}_1 \text{ such that } y = (g_1, e) \star x.$$

 \sim is an equivalence relation and we can define a new group action $(\mathcal{G}_2, X_\sim, \tilde{\star})$ on the quotient space X_\sim as follows

$$g_2 \,\tilde{\star} \, [x]_{\sim} \mapsto [(e, g_2) \star x]_{\sim}$$

The action above is well-defined when \mathcal{G}_1 is normal in \mathcal{G} .

Orbit Equivalence Algorithm

Let (\mathcal{G}, X, \star) be a group action such that $\mathcal{G} = \mathcal{G}_1 \times \mathcal{G}_2$. An orbit equivalence algorithm for \mathcal{G}_1 is a polynomial-time computable map $OE : X \times X \to \mathcal{G}_1 \cup \{\bot\}$ such that $OE(x_0, x_1) \in \mathcal{G}_1$ and $(OE(x_0, x_1), e) \star x_0 = x_1$ if and only if x_0 and x_1 are in the same orbit with respect to \sim , and $OE(x_0, x_1) = \bot$ otherwise.

- The commitment is $(h_1, h_2) \star x$, where $(h_1, h_2) \leftarrow \mathcal{G}_1 \times \mathcal{G}_2$.
- If ch = 0, reveal $rsp = (h_1, h_2)$.

- The commitment is $(h_1, h_2) \star x$, where $(h_1, h_2) \leftarrow \mathcal{G}_1 \times \mathcal{G}_2$.
- If ch = 0, reveal $rsp = (h_1, h_2)$.
- If ch = 1, reveal rsp = $h_2g_2^{-1}$.

- The commitment is $(h_1, h_2) \star x$, where $(h_1, h_2) \leftarrow \mathcal{G}_1 \times \mathcal{G}_2$.
- If ch = 0, reveal $rsp = (h_1, h_2)$.
- If ch = 1, reveal rsp = $h_2g_2^{-1}$.
- Compute $\tilde{y} = (e, \mathsf{rsp}) \star y$ and verify $\mathsf{OE}(\tilde{x}, \tilde{y}) \neq \bot$

Consider a cryptographic group action $(\mathcal{G}, X, \star), x \in X, \mathcal{G} = \mathcal{G}_1 \times \mathcal{G}_2$ and a OE algorithm for \mathcal{G}_1 . Let $g_2 \in \mathcal{G}_2$ be the witness for the statement (x, y).

- The commitment is $(h_1, h_2) \star x$, where $(h_1, h_2) \leftarrow \mathcal{G}_1 \times \mathcal{G}_2$.
- If ch = 0, reveal $rsp = (h_1, h_2)$.
- If ch = 1, reveal rsp = $h_2g_2^{-1}$.
- Compute $\tilde{y} = (e, \mathsf{rsp}) \star y$ and verify $\mathsf{OE}(\tilde{x}, \tilde{y}) \neq \bot$

V Not commitment recoverable!

To compute $\tilde{\star},$ we use a special class of representatives.

Definition²

A canonical form with failure for a relation \sim on $X \times X$ is a map $CF : X \to X \cup \{\bot\}$ such that, for any $x, y \in X$,

- 1. if $x \sim y$ then CF(x) = CF(y);
- 2. if $CF(x) \neq \bot$ then $CF(x) \sim x$.

²Chou, Persichetti, and Santini. "On Linear Equivalence, Canonical Forms, and Digital Signatures". 2023.

To compute $\widetilde{\star},$ we use a special class of representatives.

Definition²

A canonical form with failure for a relation \sim on $X \times X$ is a map $CF : X \to X \cup \{\bot\}$ such that, for any $x, y \in X$,

- 1. if $x \sim y$ then CF(x) = CF(y);
- 2. if $CF(x) \neq \bot$ then $CF(x) \sim x$.

The quotient action is given by $g_2 \stackrel{\sim}{\star} x \mapsto \mathsf{CF}((e, g_2) \star x).$

²Chou, Persichetti, and Santini. "On Linear Equivalence, Canonical Forms, and Digital Signatures". 2023.

To compute $\widetilde{\star},$ we use a special class of representatives.

Definition²

A canonical form with failure for a relation \sim on $X \times X$ is a map $CF : X \to X \cup \{\bot\}$ such that, for any $x, y \in X$,

- 1. if $x \sim y$ then CF(x) = CF(y);
- 2. if $CF(x) \neq \bot$ then $CF(x) \sim x$.

The quotient action is given by $g_2 \stackrel{\sim}{\star} x \mapsto \mathsf{CF}((e, g_2) \star x).$

²Chou, Persichetti, and Santini. "On Linear Equivalence, Canonical Forms, and Digital Signatures". 2023.

- GAIP_{*} for (\mathcal{G}, X, \star) and GAIP_{*} for $(\mathcal{G}_2, X_{\sim}, \tilde{\star})$ are equivalent.
- The use of a canonical form compresses both signatures and public keys:
 - Respond to challenges using only elements of \mathcal{G}_2 .
 - Canonical representatives of X_{\sim} may have a particular form (e.g. systematic form).

Applications

Our canonical form for LEP can be applied to LESS.

Parameter set	Sec. Level	LEP	IS-LEP ³	CF-LEP ⁴	This work
LESS-1b	I	15726	8646	2496	9096
LESS-3b		30408	17208	5658	18858
LESS-5b	V	53896	30616	10056	34696

- A We obtain a compression only with respect to a basic form of LESS.
- A Recently, [CPS23] introduced a new notion of linear equivalence (which can be partially framed within our framework).

 $^{^{3}}$ Persichetti and Santini. "A New Formulation of the Linear Equivalence Problem and Shorter LESS Signatures". 2023.

⁴Chou, Persichetti, and Santini. "On Linear Equivalence, Canonical Forms, and Digital Signatures". 2023.

Given n, m, k and q, a Matrix Code \mathfrak{C} is a linear subspace of $\mathbb{F}_q^{n \times m}$ of dimension k. The weight is given by the rank: $\operatorname{wt}(A) = \operatorname{rk}(A)$.

In the rank metric, the code equivalence can be formulated as follows.

Matrix Code Equivalence (MCE)

Let $\{M_i\}_i, \{N_i\}_i$ be two bases for two equivalent codes \mathfrak{C}_1 and \mathfrak{C}_2 . Find two matrices $A \in \operatorname{GL}_n(q)$ and $B \in \operatorname{GL}_m(q)$ such that

 $\langle AM_iB\rangle_i = \langle N_i\rangle.$

Matrix Code Equivalence II

Using representatives, we can formulate the MCE as the GAIP of a group action of $\mathcal{G} \simeq \underbrace{\operatorname{GL}_n(q)}_{\mathcal{G}_1} \times \underbrace{\operatorname{GL}_m(q) \times \operatorname{GL}_k(q)}_{\mathcal{G}_2}$ on the set $X = \{(M_1, \ldots, M_k) \mid M_i \in \mathbb{F}_q^{n \times m}\}$:

 $(A, B, C) \star (M_1, \dots, M_k) = C(AM_1B, \dots, AM_kB).$

Matrix Code Equivalence II

Using representatives, we can formulate the MCE as the GAIP of a group action of $\mathcal{G} \simeq \underbrace{\operatorname{GL}_n(q)}_{\mathcal{G}_1} \times \underbrace{\operatorname{GL}_m(q) \times \operatorname{GL}_k(q)}_{\mathcal{G}_2}$ on the set $X = \{(M_1, \ldots, M_k) \mid M_i \in \mathbb{F}_q^{n \times m}\}$:

 $(A, B, C) \star (M_1, \dots, M_k) = C(AM_1B, \dots, AM_kB).$

Or, equivalently, by defining $M = [M_1 \mid M_2 \mid \ldots \mid M_k] \in \mathbb{F}_q^{n \times mk}$,

 $(A, B, C) \star M = CM(A^T \otimes B).$

Matrix Code Equivalence II

Using representatives, we can formulate the MCE as the GAIP of a group action of $\mathcal{G} \simeq \underbrace{\operatorname{GL}_n(q)}_{\mathcal{G}_1} \times \underbrace{\operatorname{GL}_m(q) \times \operatorname{GL}_k(q)}_{\mathcal{G}_2} \text{ on the set } X = \{(M_1, \dots, M_k) \mid M_i \in \mathbb{F}_q^{n \times m}\}:$ $(A, B, C) \star (M_1, \dots, M_k) = C(AM_1B, \dots, AM_kB).$

Or, equivalently, by defining $M = [M_1 \mid M_2 \mid \ldots \mid M_k] \in \mathbb{F}_a^{n \times mk}$,

$$(A, B, C) \star M = CM(A^T \otimes B).$$

We can apply our framework by defining the following relation induced by $\mathcal{G}_2 = \operatorname{GL}_m(q) \times \operatorname{GL}_k(q)$:

 $M \sim N \iff \exists B \in \operatorname{GL}_m(q), C \in \operatorname{GL}_k(q) \text{ s.t. } N = CM(\mathbf{I}_n \otimes B) = (\mathbf{I}_n, B, C) \star M,$

which induces the group action $(GL_n(q), X_{\sim}, \tilde{\star})$.

Canonical Form for MCE I

We assume n = m. Let $M = [M_1 | M_2 | \dots | M_k] \in \mathbb{F}_q^{n \times nk}$ and let $X, Y \in GL_n(q)$.

 $M = [M_1 \mid M_2 \mid \ldots \mid M_k]$

 $N = [XM_1Y \mid XM_2Y \mid \ldots \mid XM_kY]$

Canonical Form for MCE I

We assume n = m. Let $M = [M_1 | M_2 | \dots | M_k] \in \mathbb{F}_q^{n \times nk}$ and let $X, Y \in GL_n(q)$.

1. Put M in systematic form.

$$M = [M_1 \mid M_2 \mid \ldots \mid M_k]$$

$$\downarrow SF$$

$$\mathbf{I}_n \mid M_1^{-1}M_2 \mid \ldots \mid M_1^{-1}M_k$$

$$N = \begin{bmatrix} XM_1Y \mid XM_2Y \mid \dots \mid XM_kY \end{bmatrix}$$

$$\int \mathsf{SF}$$

$$\mathbf{I}_n \mid Y^{-1}M_1^{-1}M_2Y \mid \dots \mid Y^{-1}M_1^{-1}M_kY \end{bmatrix}$$

Canonical Form for MCE I

We assume n = m. Let $M = [M_1 | M_2 | \dots | M_k] \in \mathbb{F}_q^{n \times nk}$ and let $X, Y \in GL_n(q)$.

1. Put M in systematic form.

We need to find a canonical form for a tuple of simultaneously similar matrices.

Canonical Form for MCE II

We assume n = m. Let $M = [M_1 | M_2 | \dots | M_k] \in \mathbb{F}_q^{n \times nk}$ and let $X, Y \in GL_n(q)$.

1. Put M in systematic form.

$$[\mathbf{I}_n \mid \bar{M}_2 \mid \dots \mid \bar{M}_k] \qquad \qquad [\mathbf{I}_n \mid \mathbf{Y}^{-1} \bar{M}_2 \mathbf{Y} \mid \dots \mid \mathbf{Y}^{-1} \bar{M}_k \mathbf{Y}]$$

 \bar{M}_2 is similar to its Frobenius Normal Form (FNF). If \bar{M}_2 is non-degenerate, its FNF has the following form

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -c_0 \\ 1 & 0 & \dots & 0 & -c_1 \\ 0 & 1 & \dots & 0 & -c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -c_{n-1} \end{pmatrix}, \quad \text{where } \sum_{i=0}^{n-1} c_i X^i = \det(\bar{M}_2 - X\mathbf{I}_n)$$

Canonical Form for MCE II

We assume n = m. Let $M = [M_1 | M_2 | \dots | M_k] \in \mathbb{F}_q^{n \times nk}$ and let $X, Y \in GL_n(q)$.

- 1. Put M in systematic form.
- 2. Find the solution set V of matrices $B \in GL_n(q)$ such that $B^{-1}\overline{M}_2B$ is equal to $\operatorname{circ}(e_n)$ on the first n-1 columns.

$$[\mathbf{I}_n \mid \bar{M}_2 \mid \ldots \mid \bar{M}_k] \qquad \qquad [\mathbf{I}_n \mid \mathbf{Y}^{-1} \bar{M}_2 \mathbf{Y} \mid \ldots \mid \mathbf{Y}^{-1} \bar{M}_k \mathbf{Y}]$$

 \bar{M}_2 is similar to its Frobenius Normal Form (FNF). If \bar{M}_2 is non-degenerate, its FNF has the following form

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -c_0 \\ 1 & 0 & \dots & 0 & -c_1 \\ 0 & 1 & \dots & 0 & -c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -c_{n-1} \end{pmatrix}, \quad \text{where } \sum_{i=0}^{n-1} c_i X^i = \det(\bar{M}_2 - X\mathbf{I}_n)$$

Canonical Form for MCE III

We assume n = m. Let $M = [M_1 \mid M_2 \mid \ldots \mid M_k] \in \mathbb{F}_q^{n \times nk}$ and let $X, Y \in GL_n(q)$.

- 1. Put M in systematic form.
- 2. Find the solution set V of matrices $B \in GL_n(q)$ such that $B^{-1}\overline{M}_2B$ is equal to $\operatorname{circ}(e_n)$ on the first n-1 columns.

 $[\mathbf{I}_n \mid \bar{M}_2 \mid \ldots \mid \bar{M}_k]$

 $[\mathbf{I}_n \mid Y^{-1}\bar{M}_2Y \mid \ldots \mid Y^{-1}\bar{M}_kY]$

Canonical Form for MCE III

We assume n = m. Let $M = [M_1 \mid M_2 \mid \ldots \mid M_k] \in \mathbb{F}_q^{n \times nk}$ and let $X, Y \in GL_n(q)$.

- 1. Put M in systematic form.
- 2. Find the solution set V of matrices $B \in GL_n(q)$ such that $B^{-1}\overline{M}_2B$ is equal to $\operatorname{circ}(e_n)$ on the first n-1 columns.
- 3. Find the unique solution $B \in V$ that minimizes the first column of $B^{-1}\overline{M}_3B$ (according to an ordering for \mathbb{F}_q^n).

Canonical Form for MCE III

We assume n = m. Let $M = [M_1 \mid M_2 \mid \ldots \mid M_k] \in \mathbb{F}_q^{n \times nk}$ and let $X, Y \in GL_n(q)$.

- 1. Put M in systematic form.
- 2. Find the solution set V of matrices $B \in GL_n(q)$ such that $B^{-1}\overline{M}_2B$ is equal to $\operatorname{circ}(e_n)$ on the first n-1 columns.
- 3. Find the unique solution $B \in V$ that minimizes the first column of $B^{-1}\overline{M}_3B$ (according to an ordering for \mathbb{F}_q^n).

$$\begin{bmatrix} \mathbf{I}_n \mid \bar{M}_2 \mid \dots \mid \bar{M}_k \end{bmatrix} \qquad \begin{bmatrix} \mathbf{I}_n \mid \mathbf{Y}^{-1} \bar{M}_2 \mathbf{Y} \mid \dots \mid \mathbf{Y}^{-1} \bar{M}_k \mathbf{Y} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{I}_n \mid B^{-1} \bar{M}_2 B \mid \dots \mid B^{-1} \bar{M}_k B \end{bmatrix} \qquad \begin{bmatrix} \mathbf{I}_n \mid B'^{-1} \mathbf{Y}^{-1} \bar{M}_2 \mathbf{Y} B' \mid \dots \mid B'^{-1} \mathbf{Y}^{-1} \bar{M}_k \mathbf{Y} B' \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{I}_n \mid B'^{-1} \mathbf{Y}^{-1} \bar{M}_2 \mathbf{Y} B' \mid \dots \mid B'^{-1} \mathbf{Y}^{-1} \bar{M}_k \mathbf{Y} B' \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{I}_n \mid B^{-1} \bar{M}_2 B \mid \dots \mid B^{-1} \bar{M}_k B \end{bmatrix}$$

There is a one-to-one correspondence between V and V' given by $B \mapsto Y^{-1}B$.

A The canonical form for MCE is expected polynomial time but inefficient (runs in $O(qn^6)$).

Designated Forms

A The canonical form for MCE is expected polynomial time but inefficient (runs in $O(qn^6)$).

We can use a near-canonical form and an additional information from the commitment to efficiently designate a representative in X_{\sim} .

Designated Forms

A The canonical form for MCE is expected polynomial time but inefficient (runs in $O(qn^6)$).

We can use a near-canonical form and an additional information from the commitment to efficiently designate a representative in X_{\sim} .

In the previous procedure, B is randomly chosen in V and the first column of $B^{-1}\bar{M}_3B$ is sent together with the response.

Our canonical form for MCE can be applied to MEDS.

Parameter set	Sec. Level	MEDS ⁵	This work	Gain
MEDS-9923	I	9896	6074	38.6%
MEDS-13220	I	12976	7516	42.1%
MEDS-41711	111	41080	23062	43.9%
MEDS-69497		54736	29788	45.6%
MEDS-134180	V	132424	70284	46.9%
MEDS-167717	V	165332	86462	47.7%

⚠ The signature size is almost halved.

A We introduce a computational overhead in the signing and verification procedure.

⁵Chou et al. "Matrix Equivalence Digital Signature". 2023.

Conclusions

Conclusions and Future Work

- Recipe: factor $\mathcal{G} \simeq \mathcal{G}_1 \rtimes \mathcal{G}_2$ and find a canonical form for the relation induced by \mathcal{G}_1 .

 - 🖒 Smaller signature and (somewhat) smaller public key.
 - A Computational overhead.
- **Extended usage**: the restricted action is still a group action and can be employed beyond digital signatures.
- Possible cryptanalytic advantages: once we have found a canonical form, we can focus on the action of G₂ and solve GAIP_{*}.

Future work:

- Extend the framework to other kinds of group factorization.
- Integrate new optimizations for MEDS.
- Apply the framework to ALTEQ.

Questions?