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Aggregate Signatures
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σ𝑖 ← 𝖲𝗂𝗀𝗇 𝗌𝗄𝗂, 𝑚𝑖

𝗌𝗄𝗂, 𝗉𝗄𝗂 ← 𝖪𝖾𝗒𝖦𝖾𝗇 1λ

𝗉𝗄 = 𝗉𝗄1, … , 𝗉𝗄𝗇
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𝗉𝗄 = 𝗉𝗄1, … , 𝗉𝗄𝗇

𝑚, Σ

✘ ← 𝖠𝗀𝗀𝖵𝖿 𝗉𝗄, 𝑚, Σ

Goal

Combine multiple σ𝑖 in a single Σ such that Σ ≪ |σ1 + ⋯ + |σn

• Reduce bandwidth
consumption

• Constrained devices

• Certificate chains

• Blockchains
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Types of Aggregate Signature

General Aggregate Signature (AS)

– Public aggregation by third party

– No interaction required by signers

– Construction based on bilinear pairings 
[BGLS03]
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permutation [LMRS04; Nev08; BGR12; 
GOR18]
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Types of Aggregate Signature

General Aggregate Signature (AS)

– Public aggregation by third party

– No interaction required by signers

– Construction based on bilinear pairings 
[BGLS03]

Sequential Aggregate Signature (SAS)

– Signatures are iteratively aggregated

– Can be built from trapdoor 
permutation [LMRS04; Nev08; BGR12; 
GOR18]
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Can (S)AS be built from post-quantum assumptions? Yes, from lattices

Lattice-based

MQ-based

Code-based

[EB14; WW19; BT23]
[EMP16; CLNPT19]

?

✘
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SAS from Trapdoor Permutation
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𝗉𝗄

𝑚
π−1𝖧 σ

Public key

Message

Private key

Signature

Full Domain Hash (FDH) signature from trapdoor permutation π: 𝒳 → 𝒳and a suitable 
hash function 𝖧: {0,1}∗ → 𝒳.



#RSAC

SAS from Trapdoor Permutation

Full Domain Hash (FDH) signature from trapdoor permutation π: 𝒳 → 𝒳and a suitable 
hash function 𝖧: {0,1}∗ → 𝒳.
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Aggregation (simplified) [LMRS04, Nev08]: embed the previous aggregate signature 
into the new data to be signed.
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Aggregation (simplified) [LMRS04, Nev08]: embed the previous aggregate signature 
into the new data to be signed.

Verification: recover each intermediate signature. Requires 𝑛 steps of verification.
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SAS from Trapdoor Permutation

Full Domain Hash (FDH) signature from trapdoor permutation π: 𝒳 → 𝒳and a suitable 
hash function 𝖧: {0,1}∗ → 𝒳.
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Aggregation (simplified) [LMRS04, Nev08]: embed the previous aggregate signature 
into the new data to be signed.

Verification: recover each intermediate signature. Requires 𝑛 steps of verification.
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Previous
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⋯

⋮

𝗉𝗄1, … , 𝗉𝗄𝗇

π𝑛

Rigid transposition of FDH approach to post-quantum assumptions is impractical
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Trapdoor Functions

A trapdoor function (TDF) is a tuple of three algorithm 𝖳𝗋𝖺𝗉𝖦𝖾𝗇, 𝖥, 𝖨 :

𝖳𝗋𝖺𝗉𝖦𝖾𝗇 1λ : takes as input a security parameter 1λ and generates an efficiently computable function 

𝖥: 𝒳 → 𝒴 and a trapdoor 𝖨 that allow to invert 𝖥.

𝖥 𝑥 : takes as input 𝑥 ∈ 𝒳 and outputs 𝖥 𝑥 ∈ 𝒴.

𝖨 𝑦 : takes as input 𝑦 ∈ 𝒴 and outputs 𝑥 ∈ 𝒳 such that 𝖥 𝑥 = 𝑦 or it fails by returning ⊥.
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When 𝖥 is a permutation, the security of the FDH scheme is reduced to the one-wayness (OW) of 𝖥.

Generic trapdoor functions lose uniformity properties and provable security with FDH.
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We can regain provable security using the probabilistic hash-and-sign with retry 
approach.
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Probabilistic Hash-and-Sign with Retry

Signature from trapdoor function 𝖥, 𝖨  and a suitable hash function 𝖧: 𝒳 → 𝒴.
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𝑟

𝑚
𝖨𝖧 (𝑟, 𝑥)

Private key

Signature

Repeat with new 𝑟
until 𝖨 𝜂 ≠ ⊥

𝜂Message

Salt
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Probabilistic Hash-and-Sign with Retry

Signature from trapdoor function 𝖥, 𝖨  and a suitable hash function 𝖧: 𝒳 → 𝒴.

18

𝑟

𝑚
𝖧 (𝑟, 𝑥)

Message

Salt

Private key

Signature

Repeat with new 𝑟
until 𝖨 𝜂 ≠ ⊥

𝜂

The security of the scheme is based on the one-wayness of 𝖥 and the following additional 
property [KX24]:

The output of the signing algorithm (𝑟,𝑥) is such that:

1. The salt 𝑟 is indistinguishable from 𝑟 ←𝑅 {0,1}λ.

2. The signature 𝑥 is indistinguishable from 𝑥 ←𝑅 𝒳.

𝖨
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Generalize SAS Schemes
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Consider a generic trapdoor function 𝖥, 𝖨  with 𝖥: 𝒳 → 𝒴.
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Use an efficient encoding function 𝖾𝗇𝖼: 𝒳 → 𝒴 × 𝒳′ that splits σi as α𝑖 , β𝑖  [Nev08].
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Use an efficient encoding function 𝖾𝗇𝖼: 𝒳 → 𝒴 × 𝒳′ that splits σi as α𝑖 , β𝑖  [Nev08].

The aggregate signature is given by Σ𝑛 = β1, … , β𝑛−1, σ𝑛 .

This construction is claimed secure with every multivariate HaS scheme [EMP16; 

CLNPT19].

Embedded in σn

Part of Σ𝑛

False in general!

Consider a generic trapdoor function 𝖥, 𝖨  with 𝖥: 𝒳 → 𝒴.
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The following aggregate scheme is not provably secure (and sometimes provably insecure) with 
generic TDF. 
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Steps to Provable Security
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• 𝖥𝘪 is not injective and aggregate signatures are not unique on fixed input.
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Steps to Provable Security
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• 𝖥𝘪 is not injective and aggregate signatures are not unique on fixed input.

• If σ𝑛−1 is part of the input to 𝖧 it is not possible to directly retrieve it during verification.
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σn−1

σn

𝖾𝗇𝖼 β𝑛−1

α𝑛−1

⊕

ℎ𝑛−1

𝖦

ℎ𝑛

ℎ𝑛

σn−1

β1, … , β𝑛−2𝖠𝗀𝗀𝖲𝗂𝗀𝗇

The following aggregate scheme is not provably secure (and sometimes provably insecure) with 
generic TDF. 

𝖥𝟣, … , 𝖥𝘯
𝑚1, … , 𝑚𝑛
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• 𝖥𝘪 is not injective and aggregate signatures are not unique on fixed input.

• If σ𝑛−1 is part of the input to 𝖧 it is not possible to directly retrieve it during verification.

• Failure on 𝖨𝘯 may leak information.

I𝑛𝖧 ⊕

σn−1

σn

𝖾𝗇𝖼 β𝑛−1

α𝑛−1

⊕

ℎ𝑛−1

𝖦

ℎ𝑛

ℎ𝑛

σn−1

𝑟𝑛

β1, … , β𝑛−2𝖠𝗀𝗀𝖲𝗂𝗀𝗇

The following aggregate scheme is not provably secure (and sometimes provably insecure) with 
generic TDF. 

𝖥𝟣, … , 𝖥𝘯
𝑚1, … , 𝑚𝑛
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Compared with the previous construction
• Good: is provable secure (but not fully black-box).
• Good: is an history-free SAS scheme.
• Bad: the full 𝑛 party signature has an overhead of length 2λ +  𝑛λ.

A Secure SAS Scheme

27

I𝑛𝖧 ⊕

σn−1

σn

𝖾𝗇𝖼 β𝑛−1

α𝑛−1

⊕

ℎ𝑛−1

𝖦

ℎ𝑛

ℎ𝑛

σn−1

𝖥𝗇
𝑚𝑛
𝑟𝑛

𝑟1, … , 𝑟𝑛−1 β1, … , β𝑛−2𝖠𝗀𝗀𝖲𝗂𝗀𝗇

The following aggregate scheme is provably secure in the ROM with generic TDF. 
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Benchmarking
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Conclusion

Hash-and-Sign Aggregation

Many post-quantum trapdoor signatures are built from the hash-and-sign with 
retry approach.

The same issues regarding provable security are also encountered for 
aggregated signatures.

Our Protocol

Generalizes existing constructions for non-trapdoor functions.

Recovers probable security with only a small overhead.

The effectiveness of aggregation varies depending on the scheme and is 
generally not optimal.
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Thank you for your attention!
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