
SESSION ID:

#RSAC

Edoardo Signorini

History-Free Sequential Aggregation
of Hash-and-Sign Signatures

Cryptographer
Telsy

@Edoars

CRYP-M06B

#RSAC

Disclaimer

Presentations are intended for educational purposes only and do not replace independent professional
judgment. Statements of fact and opinions expressed are those of the presenters individually and,
unless expressly stated to the contrary, are not the opinion or position of RSA Conference or any other
co-sponsors. RSA Conference does not endorse or approve, and assumes no responsibility for, the
content, accuracy or completeness of the information presented.

Attendees should note that sessions may be audio- or video-recorded and may be published in various
media, including print, audio and video formats without further notice. The presentation template and
any media capture are subject to copyright protection.

© 2024 RSA Conference LLC or its affiliates. The RSA Conference logo and other trademarks are proprietary. All rights reserved.

2

#RSAC

Aggregate Signatures

3

σ𝑖 ← 𝖲𝗂𝗀𝗇 𝗌𝗄𝗂, 𝑚𝑖

𝗌𝗄𝗂, 𝗉𝗄𝗂 ← 𝖪𝖾𝗒𝖦𝖾𝗇 1λ

𝗉𝗄 = 𝗉𝗄1, … , 𝗉𝗄𝗇

#RSAC

Aggregate Signatures

4

σ𝑖 ← 𝖲𝗂𝗀𝗇 𝗌𝗄𝗂, 𝑚𝑖

Σ ← 𝖠𝗀𝗀𝖲𝗂𝗀𝗇 𝑚, σ

𝗌𝗄𝗂, 𝗉𝗄𝗂 ← 𝖪𝖾𝗒𝖦𝖾𝗇 1λ

𝗉𝗄 = 𝗉𝗄1, … , 𝗉𝗄𝗇

𝑚, Σ

✘ ← 𝖠𝗀𝗀𝖵𝖿 𝗉𝗄, 𝑚, Σ

Goal

Combine multiple σ𝑖 in a single Σ such that Σ ≪ |σ1 + ⋯ + |σn

#RSAC

Aggregate Signatures

5

σ𝑖 ← 𝖲𝗂𝗀𝗇 𝗌𝗄𝗂, 𝑚𝑖

Σ ← 𝖠𝗀𝗀𝖲𝗂𝗀𝗇 𝑚, σ

𝗌𝗄𝗂, 𝗉𝗄𝗂 ← 𝖪𝖾𝗒𝖦𝖾𝗇 1λ

𝗉𝗄 = 𝗉𝗄1, … , 𝗉𝗄𝗇

𝑚, Σ

✘ ← 𝖠𝗀𝗀𝖵𝖿 𝗉𝗄, 𝑚, Σ

Goal

Combine multiple σ𝑖 in a single Σ such that Σ ≪ |σ1 + ⋯ + |σn

• Reduce bandwidth
consumption

• Constrained devices

• Certificate chains

• Blockchains

#RSAC

Types of Aggregate Signature

General Aggregate Signature (AS)

– Public aggregation by third party

– No interaction required by signers

– Construction based on bilinear pairings
[BGLS03]

6

σ1

σ𝑛

Signer 1

Signer 𝑛

Σ

Aggregator

#RSAC

Types of Aggregate Signature

General Aggregate Signature (AS)

– Public aggregation by third party

– No interaction required by signers

– Construction based on bilinear pairings
[BGLS03]

Sequential Aggregate Signature (SAS)

– Signatures are iteratively aggregated

– Can be built from trapdoor
permutation [LMRS04; Nev08; BGR12;
GOR18]

7

⋱
Signer 1

Signer 2

Signer 𝑛

Σ1
Σ2

Σn−1

Σn

σ1

σ𝑛

Signer 1

Signer 𝑛

Σ

Aggregator

#RSAC

Types of Aggregate Signature

General Aggregate Signature (AS)

– Public aggregation by third party

– No interaction required by signers

– Construction based on bilinear pairings
[BGLS03]

Sequential Aggregate Signature (SAS)

– Signatures are iteratively aggregated

– Can be built from trapdoor
permutation [LMRS04; Nev08; BGR12;
GOR18]

8

⋱
Signer 1

Signer 2

Signer 𝑛

Σ1
Σ2

Σn−1

Σn

σ1

σ𝑛

Signer 1

Signer 𝑛

Σ

Aggregator

Can (S)AS be built from post-quantum assumptions? Yes, from lattices

#RSAC

Types of Aggregate Signature

General Aggregate Signature (AS)

– Public aggregation by third party

– No interaction required by signers

– Construction based on bilinear pairings
[BGLS03]

Sequential Aggregate Signature (SAS)

– Signatures are iteratively aggregated

– Can be built from trapdoor
permutation [LMRS04; Nev08; BGR12;
GOR18]

9

Can (S)AS be built from post-quantum assumptions? Yes, from lattices

Lattice-based

MQ-based

Code-based

[EB14; WW19; BT23]
[EMP16; CLNPT19]

?

✘

#RSAC

SAS from Trapdoor Permutation

10

𝗉𝗄

𝑚
π−1𝖧 σ

Public key

Message

Private key

Signature

Full Domain Hash (FDH) signature from trapdoor permutation π: 𝒳 → 𝒳and a suitable
hash function 𝖧: {0,1}∗ → 𝒳.

#RSAC

SAS from Trapdoor Permutation

Full Domain Hash (FDH) signature from trapdoor permutation π: 𝒳 → 𝒳and a suitable
hash function 𝖧: {0,1}∗ → 𝒳.

11

Aggregation (simplified) [LMRS04, Nev08]: embed the previous aggregate signature
into the new data to be signed.

π𝑛
−1𝖧

𝑚1, … , 𝑚𝑛

⊕

Σn−1

Σn

Previous
signature

New
signature

⋯

⋮

𝗉𝗄1, … , 𝗉𝗄𝗇

#RSAC

SAS from Trapdoor Permutation

Full Domain Hash (FDH) signature from trapdoor permutation π: 𝒳 → 𝒳and a suitable
hash function 𝖧: {0,1}∗ → 𝒳.

12

Aggregation (simplified) [LMRS04, Nev08]: embed the previous aggregate signature
into the new data to be signed.

Verification: recover each intermediate signature. Requires 𝑛 steps of verification.

𝖧
𝑚1, … , 𝑚𝑛

⊕

Σn−1

Σn

Previous
signature

New
signature

⋯

⋮

𝗉𝗄1, … , 𝗉𝗄𝗇

π𝑛

#RSAC

SAS from Trapdoor Permutation

Full Domain Hash (FDH) signature from trapdoor permutation π: 𝒳 → 𝒳and a suitable
hash function 𝖧: {0,1}∗ → 𝒳.

13

Aggregation (simplified) [LMRS04, Nev08]: embed the previous aggregate signature
into the new data to be signed.

Verification: recover each intermediate signature. Requires 𝑛 steps of verification.

𝖧
𝑚1, … , 𝑚𝑛

⊕

Σn−1

Σn

Previous
signature

New
signature

⋯

⋮

𝗉𝗄1, … , 𝗉𝗄𝗇

π𝑛

Rigid transposition of FDH approach to post-quantum assumptions is impractical

#RSAC

Trapdoor Functions

A trapdoor function (TDF) is a tuple of three algorithm 𝖳𝗋𝖺𝗉𝖦𝖾𝗇, 𝖥, 𝖨 :

𝖳𝗋𝖺𝗉𝖦𝖾𝗇 1λ : takes as input a security parameter 1λ and generates an efficiently computable function

𝖥: 𝒳 → 𝒴 and a trapdoor 𝖨 that allow to invert 𝖥.

𝖥 𝑥 : takes as input 𝑥 ∈ 𝒳 and outputs 𝖥 𝑥 ∈ 𝒴.

𝖨 𝑦 : takes as input 𝑦 ∈ 𝒴 and outputs 𝑥 ∈ 𝒳 such that 𝖥 𝑥 = 𝑦 or it fails by returning ⊥.

14

#RSAC

Trapdoor Functions

A trapdoor function (TDF) is a tuple of three algorithm 𝖳𝗋𝖺𝗉𝖦𝖾𝗇, 𝖥, 𝖨 :

𝖳𝗋𝖺𝗉𝖦𝖾𝗇 1λ : takes as input a security parameter 1λ and generates an efficiently computable function

𝖥: 𝒳 → 𝒴 and a trapdoor 𝖨 that allow to invert 𝖥.

𝖥 𝑥 : takes as input 𝑥 ∈ 𝒳 and outputs 𝖥 𝑥 ∈ 𝒴.

𝖨 𝑦 : takes as input 𝑦 ∈ 𝒴 and outputs 𝑥 ∈ 𝒳 such that 𝖥 𝑥 = 𝑦 or it fails by returning ⊥.

When 𝖥 is a permutation, the security of the FDH scheme is reduced to the one-wayness (OW) of 𝖥.

Generic trapdoor functions lose uniformity properties and provable security with FDH.

15

#RSAC

Trapdoor Functions

A trapdoor function (TDF) is a tuple of three algorithm 𝖳𝗋𝖺𝗉𝖦𝖾𝗇, 𝖥, 𝖨 :

𝖳𝗋𝖺𝗉𝖦𝖾𝗇 1λ : takes as input a security parameter 1λ and generates an efficiently computable function

𝖥: 𝒳 → 𝒴 and a trapdoor 𝖨 that allow to invert 𝖥.

𝖥 𝑥 : takes as input 𝑥 ∈ 𝒳 and outputs 𝖥 𝑥 ∈ 𝒴.

𝖨 𝑦 : takes as input 𝑦 ∈ 𝒴 and outputs 𝑥 ∈ 𝒳 such that 𝖥 𝑥 = 𝑦 or it fails by returning ⊥.

When 𝖥 is a permutation, the security of the FDH scheme is reduced to the one-wayness (OW) of 𝖥.

Generic trapdoor functions lose uniformity properties and provable security with FDH.

16

We can regain provable security using the probabilistic hash-and-sign with retry
approach.

#RSAC

Probabilistic Hash-and-Sign with Retry

Signature from trapdoor function 𝖥, 𝖨 and a suitable hash function 𝖧: 𝒳 → 𝒴.

17

𝑟

𝑚
𝖨𝖧 (𝑟, 𝑥)

Private key

Signature

Repeat with new 𝑟
until 𝖨 𝜂 ≠ ⊥

𝜂Message

Salt

#RSAC

Probabilistic Hash-and-Sign with Retry

Signature from trapdoor function 𝖥, 𝖨 and a suitable hash function 𝖧: 𝒳 → 𝒴.

18

𝑟

𝑚
𝖧 (𝑟, 𝑥)

Message

Salt

Private key

Signature

Repeat with new 𝑟
until 𝖨 𝜂 ≠ ⊥

𝜂

The security of the scheme is based on the one-wayness of 𝖥 and the following additional
property [KX24]:

The output of the signing algorithm (𝑟,𝑥) is such that:

1. The salt 𝑟 is indistinguishable from 𝑟 ←𝑅 {0,1}λ.

2. The signature 𝑥 is indistinguishable from 𝑥 ←𝑅 𝒳.

𝖨

#RSAC

Generalize SAS Schemes

19

Consider a generic trapdoor function 𝖥, 𝖨 with 𝖥: 𝒳 → 𝒴.

I𝑛𝖧
𝑚1, … , 𝑚𝑛

⊕

Σn−1

Σn

⋯

⋮

𝗉𝗄1, … , 𝗉𝗄𝗇

✘

#RSAC

Consider a generic trapdoor function 𝖥, 𝖨 with 𝖥: 𝒳 → 𝒴.

Generalize SAS Schemes

20

I𝑛𝖧
𝑚1, … , 𝑚𝑛

⊕

σn−1

σn

⋯

⋮

𝖾𝗇𝖼 β𝑛−1
α𝑛−1

𝗉𝗄1, … , 𝗉𝗄𝗇

Use an efficient encoding function 𝖾𝗇𝖼: 𝒳 → 𝒴 × 𝒳′ that splits σi as α𝑖 , β𝑖 [Nev08].

#RSAC

Generalize SAS Schemes

21

I𝑛𝖧
𝑚1, … , 𝑚𝑛

⊕

σn−1

σn

⋯

⋮

𝖾𝗇𝖼 β𝑛−1
α𝑛−1

𝗉𝗄1, … , 𝗉𝗄𝗇

Use an efficient encoding function 𝖾𝗇𝖼: 𝒳 → 𝒴 × 𝒳′ that splits σi as α𝑖 , β𝑖 [Nev08].

The aggregate signature is given by Σ𝑛 = β1, … , β𝑛−1, σ𝑛 .

This construction is claimed secure with every multivariate HaS scheme [EMP16;

CLNPT19].

Embedded in σn

Part of Σ𝑛

Consider a generic trapdoor function 𝖥, 𝖨 with 𝖥: 𝒳 → 𝒴.

#RSAC

Generalize SAS Schemes

22

I𝑛𝖧
𝑚1, … , 𝑚𝑛

⊕

σn−1

σn

⋯

⋮

𝖾𝗇𝖼 β𝑛−1
α𝑛−1

𝗉𝗄1, … , 𝗉𝗄𝗇

Use an efficient encoding function 𝖾𝗇𝖼: 𝒳 → 𝒴 × 𝒳′ that splits σi as α𝑖 , β𝑖 [Nev08].

The aggregate signature is given by Σ𝑛 = β1, … , β𝑛−1, σ𝑛 .

This construction is claimed secure with every multivariate HaS scheme [EMP16;

CLNPT19].

Embedded in σn

Part of Σ𝑛

False in general!

Consider a generic trapdoor function 𝖥, 𝖨 with 𝖥: 𝒳 → 𝒴.

#RSAC

The following aggregate scheme is not provably secure (and sometimes provably insecure) with
generic TDF.

23

I𝑛𝖧

σn−1

σn

𝖾𝗇𝖼 β𝑛−1

α𝑛−1

⊕
𝖥𝟣, … , 𝖥𝘯

𝑚1, … , 𝑚𝑛

β1, … , β𝑛−2𝖠𝗀𝗀𝖲𝗂𝗀𝗇

Steps to Provable Security

#RSAC

The following aggregate scheme is not provably secure (and sometimes provably insecure) with
generic TDF.

Steps to Provable Security

24

• 𝖥𝘪 is not injective and aggregate signatures are not unique on fixed input.

I𝑛𝖧

σn−1

σn

𝖾𝗇𝖼 β𝑛−1

α𝑛−1

⊕

σn−1

β1, … , β𝑛−2𝖠𝗀𝗀𝖲𝗂𝗀𝗇

𝖥𝟣, … , 𝖥𝘯
𝑚1, … , 𝑚𝑛

#RSAC

Steps to Provable Security

25

• 𝖥𝘪 is not injective and aggregate signatures are not unique on fixed input.

• If σ𝑛−1 is part of the input to 𝖧 it is not possible to directly retrieve it during verification.

I𝑛𝖧 ⊕

σn−1

σn

𝖾𝗇𝖼 β𝑛−1

α𝑛−1

⊕

ℎ𝑛−1

𝖦

ℎ𝑛

ℎ𝑛

σn−1

β1, … , β𝑛−2𝖠𝗀𝗀𝖲𝗂𝗀𝗇

The following aggregate scheme is not provably secure (and sometimes provably insecure) with
generic TDF.

𝖥𝟣, … , 𝖥𝘯
𝑚1, … , 𝑚𝑛

#RSAC

Steps to Provable Security

26

• 𝖥𝘪 is not injective and aggregate signatures are not unique on fixed input.

• If σ𝑛−1 is part of the input to 𝖧 it is not possible to directly retrieve it during verification.

• Failure on 𝖨𝘯 may leak information.

I𝑛𝖧 ⊕

σn−1

σn

𝖾𝗇𝖼 β𝑛−1

α𝑛−1

⊕

ℎ𝑛−1

𝖦

ℎ𝑛

ℎ𝑛

σn−1

𝑟𝑛

β1, … , β𝑛−2𝖠𝗀𝗀𝖲𝗂𝗀𝗇

The following aggregate scheme is not provably secure (and sometimes provably insecure) with
generic TDF.

𝖥𝟣, … , 𝖥𝘯
𝑚1, … , 𝑚𝑛

#RSAC

Compared with the previous construction
• Good: is provable secure (but not fully black-box).
• Good: is an history-free SAS scheme.
• Bad: the full 𝑛 party signature has an overhead of length 2λ + 𝑛λ.

A Secure SAS Scheme

27

I𝑛𝖧 ⊕

σn−1

σn

𝖾𝗇𝖼 β𝑛−1

α𝑛−1

⊕

ℎ𝑛−1

𝖦

ℎ𝑛

ℎ𝑛

σn−1

𝖥𝗇
𝑚𝑛
𝑟𝑛

𝑟1, … , 𝑟𝑛−1 β1, … , β𝑛−2𝖠𝗀𝗀𝖲𝗂𝗀𝗇

The following aggregate scheme is provably secure in the ROM with generic TDF.

#RSAC

Benchmarking

23%

31%

34%

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

5 20 100

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

b
yt

es
)

Number of signers

UOV

UOV Ip UOV Ip (Agg.) UOV Compression Rate

28

11%

16%

17%

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

5 20 100

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

b
yt

es
)

Number of signers

MAYO

MAYO 2 MAYO 2 (Agg.) MAYO Compression Rate

#RSAC

Conclusion

Hash-and-Sign Aggregation

Many post-quantum trapdoor signatures are built from the hash-and-sign with
retry approach.

The same issues regarding provable security are also encountered for
aggregated signatures.

Our Protocol

Generalizes existing constructions for non-trapdoor functions.

Recovers probable security with only a small overhead.

The effectiveness of aggregation varies depending on the scheme and is
generally not optimal.

29

#RSAC

Thank you for your attention!

#RSAC

References I

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. “Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps”. EUROCRYPT 2003.

[BGR12] Kyle Brogle, Sharon Goldberg, and Leonid Reyzin. “Sequential Aggregate Signatures with Lazy
Verification from Trapdoor Permutations”. ASIACRYPT 2012.

[BT23] Katharina Boudgoust and Akira Takahashi. “Sequential half-aggregation of lattice-based
signatures”. ESORICS 2023.

[CLNPT19] Jiahui Chen, Jie Ling, Jianting Ning, Zhiniang Peng, and Yang Tan. “MQ Aggregate Signature
Schemes with Exact Security Based on UOV Signature”. Inscrypt 2019.

[EB14] Rachid El Bansarkhani and Johannes Buchmann. “Towards Lattice Based Aggregate Signatures”.
AFRICACRYPT 2014.

[EMP16] Rachid El Bansarkhani, Mohamed Saied Emam Mohamed, and Albrecht Petzoldt. “MQSAS - A
Multivariate Sequential Aggregate Signature Scheme”. ISC 2016.

31

#RSAC

References II

[GOR18] Craig Gentry, Adam O’Neill, and Leonid Reyzin. “A Unified Framework for Trapdoor-Permutation-
Based Sequential Aggregate Signatures”. PKC 2018.

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. “Sequential Aggregate
Signatures from Trapdoor Permutations”. EUROCRYPT 2004.

[KX24] Haruhisa Kosuge and Keita Xagawa. “Probabilistic hash-and-sign with retry in the quantum random
oracle model”. PKC 2024.

[Nev08] Gregory Neven. “Efficient Sequential Aggregate Signed Data”. EUROCRYPT 2008.

[WW19] Zhipeng Wang and Qianhong Wu. “A Practical Lattice-Based Sequential Aggregate Signature”.
ProvSec 2019.

32

	Default Section
	Slide 1: History-Free Sequential Aggregation of Hash-and-Sign Signatures
	Slide 2: Disclaimer
	Slide 3: Aggregate Signatures
	Slide 4: Aggregate Signatures
	Slide 5: Aggregate Signatures
	Slide 6: Types of Aggregate Signature
	Slide 7: Types of Aggregate Signature
	Slide 8: Types of Aggregate Signature
	Slide 9: Types of Aggregate Signature
	Slide 10: SAS from Trapdoor Permutation
	Slide 11: SAS from Trapdoor Permutation
	Slide 12: SAS from Trapdoor Permutation
	Slide 13: SAS from Trapdoor Permutation
	Slide 14: Trapdoor Functions
	Slide 15: Trapdoor Functions
	Slide 16: Trapdoor Functions
	Slide 17: Probabilistic Hash-and-Sign with Retry
	Slide 18: Probabilistic Hash-and-Sign with Retry
	Slide 19: Generalize SAS Schemes
	Slide 20: Generalize SAS Schemes
	Slide 21: Generalize SAS Schemes
	Slide 22: Generalize SAS Schemes
	Slide 23: Steps to Provable Security
	Slide 24: Steps to Provable Security
	Slide 25: Steps to Provable Security
	Slide 26: Steps to Provable Security
	Slide 27: A Secure SAS Scheme
	Slide 28: Benchmarking
	Slide 29: Conclusion
	Slide 30: Thank you for your attention!
	Slide 31: References I
	Slide 32: References II

